Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Атеросклероз и ожирение
Список литературы
Поставить закладку
Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации. VII пересмотр. Атеросклероз и дислипидемии. 2020. №1.
Akoumianakis I, Antoniades C. Dipeptidyl peptidase IV inhibitors as novel regulators of vascular disease. Vasc Pharmacol. 2017;96–98:1–4.
Antonopoulos, A.S., Sanna, F., Sabharwal, N., Thomas, S., Oikonomou, E.K., Herdman, L. et al. (2017) Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 9, eaal2658.
Baltieri N, Guizoni DM, Victorio JA, Davel AP. Protective role of perivascular adipose tissue in endothelial dysfunction and insulin‑induced vasodilatation of hypercholesterolemic LDL receptor‑deficient mice. Front Physiol. 2018;9:229.
Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36.
Beltowski J. Endogenous hydrogen sulfide in perivascular adipose tissue: role in the regulation of vascular tone in physiology and pathology. Can J Physiol Pharmacol. 2013;91(11):889–98.
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692–702.
Bi P, Shan T, Liu W, Yue F, Yang X, Liang XR, et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med. 2014;20(8):911–8.
Bickel C, Schnabel RB, Zeller T, Lackner KJ, Rupprecht HJ, Blankenberg S, et al. Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: results from the AtheroGene study. Biomarkers. 2017;22(3–4):210–8.
Boon MR, van den Berg SA, Wang Y, van den Bossche J, Karkam‑ pouna S, Bauwens M, et al. BMP7 activates brown adipose tissue and reduces diet ‑ induced obesity only at subthermoneutrality. PLoS ONE. 2013;8(9):e74083.
Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519(7542):242–6.
Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, et al. Adipocytes produce aldosterone through calcineurin‑dependent signaling pathways: implications in diabetes mellitus ‑ associated obesity and vascular dysfunction. Hypertension. 2012;59(5):1069–78.
Brown N, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman D, et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol. 2014;34(8):1621–30.
Carriere A, Jeanson Y, Berger‑Muller S, Andre M, Chenouard V, Arnaud E, et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes. 2014;63(10):3253–65.
Chatterjee T, Aronow B, Tong W, Manka D, Tang Y, Bogdanov V, et al. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genomics. 2013;45(16):697–709.
Chen Y, Xu X, Zhang Y, Liu K, Huang F, Liu B, et al. Diosgenin regulates adipokine expression in perivascular adipose tissue and ameliorates endothelial dysfunction via regulation of AMPK. J Steroid Biochem Mol Biol. 2016;155(Pt A):155–65.
Church et al. Gastroenterology 2006;130:2023–30
Cybularz M, Langbein H, Zatschler B, Brunssen C, Deussen A, Matschke K, et al. Endothelial function and gene expression in perivascular adipose tissue from internal mammary arteries of obese patients with coronary artery disease. Atheroscler Suppl. 2017;30:149–58.
Dattilo AM and Kris-Etherton PM. Am J Clin Nutr. 1992;56(2):320-8
Dib LH, Ortega MT, Fleming SD, Chapes SK, Melgarejo T. Bone marrow leptin signaling mediates obesity‑associated adipose tissue inflammation in male mice. Endocrinology. 2014;155(1):40–6.
Ding, Y., Xian, X., Holland, W.L., Tsai, S. and Herz, J. (2016) Low-density lipoprotein receptor-related protein-1 protects against hepatic insulin resistance and hepatic steatosis. EBioMedicine 7, 135–145.
Drosos I, Chalikias G, Pavlaki M, Kareli D, Epitropou G, Bougioukas G, et al. Differences between perivascular adipose tissue surrounding the heart and the internal mammary artery: possible role for the leptin ‑ inflammation ‑ fibrosis ‑ hypoxia axis. Clin Res Cardiol. 2016;105(11):887–900.
Du Y, Ji Q, Cai L, Huang F, Lai Y, Liu Y, et al. Association between omentin‑1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc Diabetol. 2016;15:90.
Fabbiano S, Suarez‑Zamorano N, Rigo D, Veyrat‑Durebex C, Stevanovic Dokic A, Colin DJ, et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 2016;24(3):434–46.
Fadini GP, Avogaro A. Cardiovascular effects of DPP‑4 inhibition: beyond GLP‑1. Vasc Pharmacol. 2011;55(1–3):10–6.
Fernandez‑Alfonso MS, Gil‑Ortega M, Garcia‑Prieto CF, Aranguez I, Ruiz‑Gayo M, Somoza B. Mechanisms of perivascular adipose tissue dysfunction in obesity. Int J Endocrinol. 2013;2013:402053.
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC‑1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271–81.
Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc. 2014;3(2):e000582.
Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet ‑ induced inflammation. Am J Physiol Heart Circ Physiol. 2011;301(4):H1425–37.
Furuhashi M, Fuseya T, Murata M, Hoshina K, Ishimura S, Mita T, et al. Local production of fatty acid‑binding protein 4 in epicardial/perivascular fat and macrophages is linked to coronary atherosclerosis. Arterio‑ scler Thromb Vasc Biol. 2016;36(5):825–34.
Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.
Gauthier MS, O’Brien EL, Bigornia S, Mott M, Cacicedo JM, Xu XJ, et al. Decreased AMP‑activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole‑body insulin resistance in morbidly obese humans. Biochem Biophys Res Com‑ mun. 2011;404(1):382–7.
Gollasch M. Vasodilator signals from perivascular adipose tissue. Br J Pharmacol. 2012;165(3):633–42.
Guzik T, Skiba D, Touyz R, Harrison D. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009–23.
Hoeke G, Kooijman S, Boon MR, Rensen PC, Berbee JF. Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res. 2016;118(1):173–82.
James et al. Chapter 8. Comparative Quantification of Health Risks. WHO. 2004
Klop B et al Nutrients. 2013; 5(4):1218-40
Konaniah, E.S., Kuhel, D.G., Basford, J.E., Weintraub, N.L. and Hui, D.Y. (2017) Deficiency of LRP1 in mature adipocytes promotes diet-induced inflammation and atherosclerosis-brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1046–1049.
Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 2016 DOI: 10.1056/NEJMoa1603827
Liu G, Ding M, Chiuve SE, Rimm EB, Franks PW, Meigs JB, et al. Plasma levels of fatty acid‑binding protein 4, retinol‑binding protein 4, high‑molecular‑weight adiponectin, and cardiovascular mortality among men with type 2 diabetes: a 22 ‑ year prospective study. Arterioscler Thromb Vasc Biol. 2016;36(11):2259–67.
Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L., et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2019.
Mancio, J., Oikonomou, E.K. and Antoniades, C. (2018) Perivascular adipose tissue and coronary atherosclerosis. Heart 104, 1654–1662.
Marso SP, Daniels GH, Brown‑Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.
Must et al. JAMA 1999;282:1523–9; 3. Li et al. Prev Med 2010;51:18–23;
Nature Reviews Drug Discovery, 2016, v15, p 405-424 DOI: 10.1038/nrd.2016.31
Nava, E. and Llorens, S. (2019) The local regulation of vascular function: from an inside-outside to an outside-inside model. Front. Physiol. 10, 729.
Ortega Moreno L, Copetti M, Fontana A, De Bonis C, Salvemini L, Trischitta V, et al. Evidence of a causal relationship between high serum adiponectin levels and increased cardiovascular mortality rate in patients with type 2 diabetes. Cardiovasc Diabetol. 2016;15:17.
Pantalone et al. BMJ Open. 2017;7:e017583;
Pereira VH, Marques F, Lages V, Pereira FG, Patchev A, Almeida OF, et al. Glucose intolerance after chronic stress is related with downregulated PPAR‑gamma in adipose tissue. Cardiovasc Diabetol. 2016;15(1):114.
Quesada I, Cejas J, Garcia R, Cannizzo B, Redondo A, Castro C. Vascular dysfunction elicited by a cross talk between periaortic adipose tissue and the vascular wall is reversed by pioglitazone. Cardiovasc Ther. 2018;36(3):e12322.
Rana KS, Pararasa C, Afzal I, Nagel DA, Hill EJ, Bailey CJ, et al. Plasma irisin is elevated in type 2 diabetes and is associated with increased E ‑ selectin levels. Cardiovasc Diabetol. 2017;16(1):147.
Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016;8(2):101–9.
Sakaue T, Suzuki J, Hamaguchi M, Suehiro C, Tanino A, Nagao T, et al. Perivascular adipose tissue angiotensin II type 1 receptor promotes vascular inflammation and aneurysm formation. Hypertension. 2017;70(4):780–9.
Salim H, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Yagi S, et al. Teneligliptin, a dipeptidyl peptidase‑4 inhibitor, attenuated pro‑inflammatory phenotype of perivascular adipose tissue and inhibited atherogenesis in normoglycemic apolipoprotein‑E‑deficient mice. Vasc Pharmacol. 2017;96–98:19–25.
Sanchez‑Gurmaches J, Hung CM, Guertin DA. Emerging complexities in adipocyte origins and identity. Trends Cell Biol. 2016;26(5):313–26.
Sedding, D.G., Boyle, E.C., Demandt, J.A.F., Sluimer, J.C., Dutzmann, J., Haverich, A. et al. (2018) Vasa Vasorum angiogenesis: key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front. Immunol. 9, 706.
Sena C, Pereira A, Fernandes R, Letra L, Seiça R. Adiponectin improves endothelial function in mesenteric arteries of rats fed a high‑fat diet: role of perivascular adipose tissue. Br J Pharmacol. 2017;174(20):3514–26.
Skarulis MC, Celi FS, Mueller E, Zemskova M, Malek R, Hugendubler L, et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metab. 2010;95(1):256–62.
Skiba DS, Nosalski R, Mikolajczyk TP, Siedlinski M, Rios FJ, Montezano AC, et al. Anti ‑atherosclerotic effect of the angiotensin 1–7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2017;174(22):4055–69.
Srikakulapu P, Upadhye A, Rosenfeld SM, Marshall MA, McSkimming C, Hickman AW, et al. Perivascular adipose tissue harbors atheroprotective IgM‑producing B cells. Front Physiol. 2017;8:719.
Szasz T, Webb R. Perivascular adipose tissue: more than just structural support. Clin Sci. 2012;122(1):1–12.
Tanaka K, Sata M. Roles of perivascular adipose tissue in the pathogenesis of atherosclerosis. Front Physiol. 2018;9:3.
Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M, et al. Resveratrol induces brown‑ like adipocyte formation in white fat through activation of AMP ‑ activated protein kinase (AMPK) alpha1. Int J Obes (Lond). 2015;39(6):967–76.
Wang Z, Wang D, Wang Y. Cigarette smoking and adipose tissue: the emerging role in progression of atherosclerosis. Mediators Inflamm. 2017;2017:3102737.
Wood PD et al. N Engl J Med 1991;325:461–466
Wueest S, Item F, Lucchini FC, Challa TD, Muller W, Bluher M, et al. Mesenteric fat lipolysis mediates obesity ‑ associated hepatic steatosis and insulin resistance. Diabetes. 2016;65(1):140–8.
Для продолжения работы требуется
Регистрация
Предыдущая страница
Следующая страница
Оглавление
Список сокращений
Эпидемиология атеросклероза и ожирения
Механизмы развития атеросклероза
Профилактика и лечение атеросклероза и дислипидемий
Жировая ткань и атеросклероз
Характеристики ПВЖТ
ПВЖТ и атеросклероз
Антиатерогенные эффекты жировой ткани
Проатерогенные эффекты ПВЖТ
Адипокины ПВЖТ и атеросклероз
Жировая ткань и воспаление
Хемокины, цитокины и жировая ткань
Иммунные клетки и жировая ткань
Клеточно-молекулярные связи между ПВЖТ и стенкой сосуда при прогрессировании атеросклероза
Связь между атеросклерозом и сахарным диабетом
Жировая ткань и vasa vasorum адвентиции
Клиническое значение визуализации ПВЖТ
Жировая ткань как терапевтическая мишень
Заключение
Тестовые задания для усвоения материала
Список литературы
Приложение 1. Шкала SCORE для определения риска развития сердечно-сосудистой смерти в ближайшие 10 лет.
Данный блок поддерживает скрол*