Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Прогнозное моделирование в IBM SPSS Statistics, R и Python: метод деревьев решений и случайный лес
Ключи к вопросам
Предыдущая страница
Следующая страница
Оглавление
От рецензента
Предисловие
Глава 1. Введение в метод деревьев решений
Часть I. ПОСТРОЕНИЕ ДЕРЕВЬЕВ РЕШЕНИЙ И СЛУЧАЙНОГО ЛЕСА В IBM SPSS STATISTICS
+
Часть II. ПОСТРОЕНИЕ ДЕРЕВЬЕВ РЕШЕНИЙ И СЛУЧАЙНОГО ЛЕСА В R И PYTHON
+
Приложение 1. Предварительная подготовка данных в Python с помощью библиотеки pandas
Приложение 2. Предварительная подготовка данных в R
Приложение 3. Визуализация данных в Python с помощью библиотек matplotlib, seaborn и plotly
Приложение 4. Построение ROC-кривой и вычисление AUC вручную
Приложение 5. Декомпозиция прогнозов дерева решений и случайного леса с помощью питоновского пакета treeinterpreter для улучшения интерпретабельности
Ключи к вопросам
Библиографический список
Предметный указатель
Данный блок поддерживает скрол*