Поиск
Озвучивание недоступно Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы к Главе 14

1. Tsujimoto Y. et al. Involvement of the bcl-2 gene in human follicular lymphoma // Science. 1985. Vol. 228, N 4706. P. 1440–1443.

2. Vaux D.L., Cory S., Adams J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells // Nature. 1988. Vol. 335, N 6189. P. 440–442.

3. McDonnell T.J. et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation // Cell. 1989. Vol. 57, N 1. P. 79–88.

4. Liu Y. et al. Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia // Oncogene. 1997. Vol. 15, N 20. P. 2463–2473.

5. Bullrich F. et al. Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene // Cancer Res. 2001. Vol. 61, N 18. P. 6640–6648.

6. Tiazhelova T.V. et al. [Search for transcribed segments in the region of q14.3 of human chromosome 13 in silico] // Genetika. 2004. Vol. 40, N 3. P. 422–426.

7. Calin G.A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia // Proc. Natl Acad. Sci. USA. 2002. Vol. 99, N 24. P. 15 524–15 529.

8. Cimmino A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2 // Proc. Natl Acad. Sci. USA. 2005. Vol. 102, N 39. Article ID 13944.

9. Strasser A., Cory S., Adams J.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases // Embo J. 2011. Vol. 30, N 18. P. 3667–3683.

10. Chen L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function // Mol. Cell. 2005. Vol. 17, N 3. P. 393–403.

11. Roberts A.W., Huang D. Targeting BCL2 with BH3 mimetics: basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related B cell malignancies // Clin. Pharmacol. Ther. 2017. Vol. 101, N 1. P. 89–98.

12. Lessene G., Czabotar P.E., Colman P.M. BCL-2 family antagonists for cancer therapy // Nat. Rev. Drug Discov. 2008. Vol. 7, N 12. P. 989–1000.

13. Oltersdorf T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours // Nature. 2005. Vol. 435, N 7042. P. 677–681.

14. van Delft M.F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized // Cancer Cell. 2006. Vol. 10, N 5. P. 389–399.

15. Mason K.D. et al. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia // Leukemia. 2009. Vol. 23, N 11. P. 2034–2041.

16. Del Gaizo Moore V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737 // J. Clin. Invest. 2007. Vol. 117, N 1. P. 112–121.

17. Tse C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor // Cancer Res. 2008. Vol. 68, N 9. P. 3421–3428.

18. Park C.M. et al. Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins // J. Med. Chem. 2008. Vol. 51, N 21. P. 6902–6915.

19. Wilson W.H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity // Lancet Oncol. 2010. Vol. 11, N 12. P. 1149–1159.

20. Roberts A.W. et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease // J. Clin. Oncol. 2012. Vol. 30, N 5. P. 488–496.

21. Mason K.D. et al. Programmed anuclear cell death delimits platelet life span // Cell. 2007. Vol. 128, N 6. P. 1173–1186.

22. Zhang H. et al. Bcl-2 family proteins are essential for platelet survival // Cell Death Differ. 2007. Vol. 14, N 5. P. 943–951.

23. O’Brien S.M. et al. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia // Blood. 2009. Vol. 113, N 2. P. 299–305.

24. Liu Q., Wang H.G. Anti-cancer drug discovery and development: Bcl-2 family small molecule inhibitors // Commun. Integr. Biol. 2012. Vol. 5, N 6. P. 557–565.

25. Souers A.J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets // Nat. Med. 2013. Vol. 19, N 2. P. 202–208.

26. Vogler M. et al. ABT-199 selectively inhibits BCL2 but not BCL2L1 and efficiently induces apoptosis of chronic lymphocytic leukaemic cells but not platelets // Br. J. Haematol. 2013. Vol. 163, N 1. P. 139–142.

27. Anderson M.A. et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism // Blood. 2016. Vol. 127, N 25. P. 3215–3224.

28. Gentile M. et al. Venetoclax for the treatment of chronic lymphocytic leukemia // Expert Opin. Investig. Drugs. 2017. Vol. 26, N 11. P. 1307–1316.

29. Roberts A.W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia // N. Engl. J. Med. 2016. Vol. 374, N 4. P. 311–322.

30. Stilgenbauer S. et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study // Lancet Oncol. 2016. Vol. 17, N 6. P. 768–778.

31. Jones J.A. et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: an interim analysis of a multicentre, open-label, phase 2 trial // Lancet Oncol. 2018. Vol. 19, N 1. P. 65–75.

32. Coutre S. et al. Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy // Blood. 2018. Vol. 131, N 15. P. 1704–1711.

33. Kater A.P. et al. Fixed duration of venetoclax-rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival: post-treatment follow-up of the MURANO phase III study // J. Clin. Oncol. 2019. Vol. 37, N 4. P. 269–277.

34. Deng R. et al. Bayesian population model of the pharmacokinetics of venetoclax in combination with rituximab in patients with relapsed/refractory chronic lymphocytic leukemia: results from the phase III MURANO study // Clin. Pharmacokinet. 2019. Vol. 58, N 12. P. 1621–1634.

35. Kater A.P. et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia: 4-year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study // J. Clin. Oncol. 2020. Vol. 38, N 34. P. 4042–4054.

36. Fischer K. et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions // N. Engl. J. Med. 2019. Vol. 380, N 23. P. 2225–2236.

37. Cervantes-Gomez F. et al. Pharmacological and protein profiling suggests venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia // Clin. Cancer Res. 2015. Vol. 21, N 16. P. 3705–3715.

38. Hillmen P. et al. Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia: the CLARITY study // J. Clin. Oncol. 2019. Vol. 37, N 30. P. 2722–2729.

39. Jain N. et al. Combined ibrutinib and venetoclax in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) // Blood. 2019. Vol. 134, suppl. 1. P. 359–359.

40. Jain N. et al. Ibrutinib and venetoclax for first-line treatment of CLL // N. Engl. J. Med. 2019. Vol. 380, N 22. P. 2095–2103.

41. Wierda W.G., Tam C.S., Allan J.N., Siddiqi T., Kipps T.J., Opat S. et al. Ibrutinib (Ibr) plus venetoclax (Ven) for first-line treatment of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL): 1-year disease-free survival (DFS) results from the MRD cohort of the phase 2 CAPTIVATE study // Blood. 2020. URL: https://ash.confex.com/ash/2020/webprogram/Paper134446.html.

42. Tam C. et al. Ibrutinib (Ibr) plus venetoclax (Ven) for first-line treatment of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL): 1-year disease-free survival (DFS) results from the MRD cohort of the phase 2 CAPTIVATE study // Blood. 2020. Vol. 136. P. 16–17.

43. Cho-Vega J.H. et al. MCL-1 expression in B-cell non-Hodgkin’s lymphomas // Hum. Pathol. 2004. Vol. 35, N 9. P. 1095–1100.

44. Gong J.-N. et al. Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivot- al role of MCL1 // Blood. 2016. Vol. 128, N 14. P. 1834–1844.

45. Punnoose E.A. et al. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models // Mol. Cancer Ther. 2016. Vol. 15, N 5. P. 1132–1144.

46. Vogler M. et al. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia // Blood. 2009. Vol. 113, N 18. P. 4403–4413.

47. Herishanu Y. et al. Activation of CD44, a receptor for extracellular matrix components, protects chronic lymphocytic leukemia cells from spontaneous and drug induced apoptosis through MCL-1 // Leuk. Lymphoma. 2011. Vol. 52, N 9. P. 1758–1769.

48. Konopleva M. et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia // Cancer Cell. 2006. Vol. 10, N 5. P. 375–388.

49. Lin K.H. et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia // Sci. Rep. 2016. Vol. 6. Article ID 27696.

50. Yecies D. et al. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1 // Blood. 2010. Vol. 115, N 16. P. 3304–3313.

51. Gerecitano J.F. et al. A phase 1 study of venetoclax (ABT-199 / GDC-0199) monotherapy in patients with relapsed/refractory non-Hodgkin lymphoma // Blood. 2015. Vol. 126, N 23. P. 254.

52. Mestre-Escorihuela C. et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas // Blood. 2006. Vol. 109, N 1. P. 271–280.

53. Bachmann P.S. et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition // Blood. 2010. Vol. 116, N 16. P. 3013–3022.

54. Davids M.S. et al. Safety, efficacy and immune effects of venetoclax 400 mg daily in patients with relapsed chronic lymphocytic leukemia (CLL) // J. Clin. Oncol. 2016. Vol. 34, N 15. Suppl. P. 7527.

55. Leverson J.D. et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy // Sci. Transl. Med. 2015. Vol. 7, N 279. P. 279ra40.

Предыдущая страница

Следующая страница

Список литературы к Главе 14
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу