Поиск
Озвучивание недоступно Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы к Главе 11

1. Thompson P.A. et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long­term disease­free survival in IGHV­mutated chronic lymphocytic leukemia // Blood. 2016. Vol. 127, N 3. P. 303–309.

2. Bottcher S. et al. Standardized MRD flow and ASO IGH RQ­PCR for MRD quantification in CLL patients after rituximab­containing immunochemotherapy: a comparative analysis // Leukemia. 2009. Vol. 23, N 11. P. 2007–2017.

3. Bottcher S. et al. Comparative analysis of minimal residual disease detection using four­color flow cytometry, consensus IgH­PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation // Leukemia. 2004. Vol. 18, N 10. P. 1637–1645.

4. Fischer K. et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions // N. Engl. J. Med. 2019. Vol. 380, N 23. P. 2225–2236.

5. Goede V. et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions // N. Engl. J. Med. 2014. Vol. 370, N 12. P. 1101–1110.

6. Hallek M. et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open­label, phase 3 trial // Lancet. 2010. Vol. 376, N 9747. P. 1164–1174.

7. Moreno C. et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first­line treatment of chronic lymphocytic leukaemia (iLLUMINATE): a multicentre, randomised, open­label, phase 3 trial // Lancet Oncol. 2019. Vol. 20, N 1. P. 43–56.

8. Woyach J.A. et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL // N. Engl. J. Med. 2018. Vol. 379, N 26. P. 2517–2528.

9. Sharman J.P. et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment­naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial // Lancet. 2020. Vol. 395, N 10 232. P. 1278–1291.

10. Kassirskiĭ I.A., Volkova M.A. [Main problems of chronic lympheleukemia] // Ter. Arkh. 1970. Vol. 42, N 1. P. 8–15.

11. O’Brien S. et al. Single­agent ibrutinib in treatment­naive and relapsed/refractory chronic lymphocytic leukemia: a 5­year experience // Blood. 2018. Vol. 131, N 17. P. 1910–1919.

12. Burger J.A. et al. Long­term efficacy and safety of first­line ibrutinib treatment for patients with CLL/SLL: 5 years of follow­up from the phase 3 RESONATE­2 study // Leukemia. 2020. Vol. 34, N 3. P. 787–798.

13. Mahon F.X. et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial // Lancet Oncol. 2010. Vol. 11, N 11. P. 1029–1035.

14. Ahn I.E. et al. Depth and durability of response to ibrutinib in CLL: 5­year follow­up of a phase 2 study // Blood. 2018. Vol. 131, N 21. P. 2357–2366.

15. Hillmen P. et al. Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia: the CLARITY study // J. Clin. Oncol. 2019. Vol. 37, N 30. P. 2722–2729.

16. Jain N. et al. Combined ibrutinib and venetoclax in patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) // Blood. 2019. Vol. 134, suppl. 1. P. 359–359.

17. Siddiqi T., Tam C.S., Allan J.N., Kipps T.J., Opat S., Tedeschi A. et al. First­line ibrutinib (ibr) + venetoclax (Ven) for patients (Pts) with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL): efficacy and safety results from captivate MRD cohort // EHA Library. 2020. Vol. 12. P. S158.

18. Jain N. et al. Ibrutinib and venetoclax for first­line treatment of CLL // N. Engl. J. Med. 2019. Vol. 380, N 22. P. 2095–2103.

19. Noy A. et al. Clonotypic polymerase chain reaction confirms minimal residual disease in CLL nodular PR: results from a sequential treatment CLL protocol // Blood. 2001. Vol. 97, N 7. P. 1929–1936.

20. Vuillier F. et al. Evaluation of residual disease in B­cell chronic lymphocytic leukemia patients in clinical and bone­marrow remission using CD5­CD19 markers and PCR study of gene rearrangements // Leuk. Lymphoma. 1992. Vol. 7, N 3. P. 195–204.

21. Provan D. et al. Eradication of polymerase chain reaction­detectable chronic lymphocytic leukemia cells is associated with improved outcome after bone marrow transplantation // Blood. 1996. Vol. 88, N 6. P. 2228–2235.

22. van der Velden V.H. et al. Detection of minimal residual disease in hematologic malignancies by real­time quantitative PCR: principles, approaches, and laboratory aspects // Leukemia. 2003. Vol. 17, N 6. P. 1013–1034.

23. FDA authorizes first next generation sequencing­based test to detect very low levels of remaining cancer cells in patients with acute lymphoblastic leukemia or multiple myeloma. 2018. URL: https://www.fda.gov/news­events/press­announcements/fda­authorizes­first­next­generation­sequenc­ ing­based­test­detect­very­low­levels­remaining­cancer

24. Bruggemann M. et al. Standardized next­generation sequencing of immunoglobulin and T­cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality­NGS validation study // Leukemia. 2019. Vol. 33, N 9. P. 2241–2253.

25. Clavio M. et al. First line Fludarabine treatment of symptomatic chronic lymphoproliferative diseases: clinical results and molecular analysis of minimal residual disease // Eur. J. Haematol. 1998. Vol. 61, N 3. P. 197–203.

26. Fischer M., Klein U., Kuppers R. Molecular single­cell analysis reveals that CD5­positive peripher­ al blood B cells in healthy humans are characterized by rearranged Vkappa genes lacking somatic mutation // J. Clin. Invest. 1997. Vol. 100, N 7. P. 1667–1676.

27. Robertson L.E. et al. Response assessment in chronic lymphocytic leukemia after fludarabine plus prednisone: clinical, pathologic, immunophenotypic, and molecular analysis // Blood. 1992. Vol. 80, N 1. P. 29–36.

28. Lundin J. et al. Phase II trial of subcutaneous anti­CD52 monoclonal antibody alemtuzumab (Campath­1H) as first­line treatment for patients with B­cell chronic lymphocytic leukemia (B­CLL) // Blood. 2002. Vol. 100, N 3. P. 768–773.

29. Rawstron A.C. et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia // Leukemia. 2007. Vol. 21, N 5. P. 956–964.

30. Rawstron A.C. et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL // Leukemia. 2013. Vol. 27, N 1. P. 142–149.

31. Rawstron A.C. et al. A complementary role of multiparameter flow cytometry and high­throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Re­ search Initiative on CLL study // Leukemia. 2016. Vol. 30, N 4. P. 929–936.

32. Borowitz M.J. et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study // Blood. 2008. Vol. 111, N 12. P. 5477–5485.

33. Tam C.S., Keating M.J. Chemoimmunotherapy of chronic lymphocytic leukemia // Nat. Rev. Clin. Oncol. 2010. Vol. 7, N 9. P. 521–532.

34. Cabezudo E. et al. Analysis of residual disease in chronic lymphocytic leukemia by flow cytometry // Leukemia. 1997. Vol. 11, N 11. P. 1909–1914.

35. Keating M.J. et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia // J. Clin. Oncol. 2005. Vol. 23, N 18. P. 4079–4088.

36. Patz M. et al. ROR­1 is a highly discriminative marker in flow cytometric minimal residual disease (MRD) detection in chronic lymphocytic leukemia (CLL) // Blood. 2016. Vol. 128. P. 3197–3197.

37. Rawstron A.C. et al. The level of residual CLL objectively predicts the outcome of patients following FCR­based therapy with sequential benefits per log depletion and improved post­treatment monitoring // Blood. 2015. Vol. 126, N 23. P. 1717–1717.

38. Kwok M. et al. Minimal residual disease is an independent predictor for 10­year survival in CLL // Blood. 2016. Vol. 128, N 24. P. 2770–2773.

39. Carlson C.S. et al. Using synthetic templates to design an unbiased multiplex PCR assay // Nat. Commun. 2013. Vol. 4. P. 2680.

40. Hallek M. et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL // Blood. 2018. Vol. 131, N 25. P. 2745–2760.

41. Robak T. et al. Cladribine combined with cyclophosphamide is highly effective in the treatment of chronic lymphocytic leukemia // Hematol. J. 2002. Vol. 3, N 5. P. 244–250.

42. Moreton P. et al. Eradication of minimal residual disease in B­cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival // J. Clin. Oncol. 2005. Vol. 23, N 13. P. 2971–2979.

43. Bottcher S. et al. Minimal residual disease quantification is an independent predictor of progression­free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial // J. Clin. Oncol. 2012. Vol. 30, N 9. P. 980–988.

44. Kovacs G. et al. Minimal residual disease assessment improves prediction of outcome in patients with chronic lymphocytic leukemia (CLL) who achieve partial response: comprehensive analysis of two phase III studies of the German CLL Study Group // J. Clin. Oncol. 2016. Vol. 34, N 31. P. 3758–3765.

45. Eichhorst B. et al. First­line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open­label, randomised, phase 3, non­inferiority trial // Lancet Oncol. 2016. Vol. 17, N 7. P. 928–942.

46. Dimier N. et al. A model for predicting effect of treatment on progression­free survival using MRD as a surrogate end point in CLL // Blood. 2018. Vol. 131, N 9. P. 955–962.

47. Thompson P.A., MRD negativity as a surrogate for PFS in CLL? // Blood. 2018. Vol. 131, N 9. P. 943–944.

48. Hallek M. et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute­Working Group 1996 guidelines // Blood. 2008. Vol. 111, N 12. P. 5446–5456.

49. Rawstron A.C. et al. Compartment effect on the prognostic significance of MRD detection in CLL: impact of treatment type and duration of follow­up // Blood. 2016. Vol. 128, N 22. P. 3226–3226.

50. European Medicines Agency – Appendix 4 to the guideline on the evaluation of anticancer medicinal products in man – condition specific guidance. URL: https://www.ema.europa.eu/en/documents/scientific­guideline/evaluation­anticancer­medicinal­products­man­appendix­4­condition­specific­guid­ ance­rev2_en.pdf

51. Varghese A.M. et al. Eradication of minimal residual disease improves overall and progression­free survival in patients with chronic lymphocytic leukaemia, evidence from NCRN CLL207: a phase II trial assessing alemtuzumab consolidation // Br. J. Haematol. 2017. Vol. 176, N 4. P. 573–582.

52. Никитин Е.А. Дифференцированная терапия хронического лимфолейкоза : дис. … д-ра мед. наук. Москва, 2014. 222 с.

53. Jain N. et al. Ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab (iFCG) for first­line treatment of IGHV­mutated CLL and without Del(17p)/mutated TP53 // Blood. 2019. Vol. 134. P. 357.

 
 

Предыдущая страница

Следующая страница

Список литературы к Главе 11
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу