Поиск
Озвучивание недоступно Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы к Главе 4

1. Burger J.A., Wiestner A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances // Nat. Rev. Cancer. 2018. Vol. 18, N 3. P. 148–167.

2. Collins R.J., Verschuer L.A., Harmon B.V., Prentice R.L., Pope J.H., Kerr J.F. Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro // Br. J. Haematol. 1989. Vol. 71, N 3. P. 343–350.

3. Panayiotidis P., Jones D., Ganeshaguru K., Foroni L., Hoffbrand A.V. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro // Br. J. Haematol. 1996. Vol. 92, N 1. P. 97–103.

4. Lagneaux L., Delforge A., De Bruyn C., Bernier M., Bron D. Adhesion to bone marrow stroma inhibits apoptosis of chronic lymphocytic leukemia cells // Leuk. Lymphoma. 1999. Vol. 35, N 5–6. 445–453.

5. Burger J.A., Tsukada N., Burger M., Zvaifler N.J., Dell’Aquila M., Kipps T.J. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1 // Blood. 2000. Vol. 96, N 8. P. 2655–2663.

6. Pedersen I.M., Kitada S., Leoni L.M., Zapata J.M., Karras J.G., Tsukada N. et al. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1 // Blood. 2002. Vol. 100, N 5. P. 1795–1801.

7. Hwang K.K., Chen X., Kozink D.M., Gustilo M., Marshall D.J., Whitesides J.F. et al. Enhanced outgrowth of EBV-transformed chronic lymphocytic leukemia B cells mediated by coculture with macrophage feeder cells // Blood. 2012. Vol. 119, N 7. P. e35–e44.

8. Herndon T.M., Chen S.S., Saba N.S., Valdez J., Emson C., Gatmaitan M. et al. Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood // Leukemia. 2017. Vol. 31, N 6. P. 1340–1347.

9. Herishanu Y., Perez-Galan P., Liu D., Biancotto A., Pittaluga S., Vire B. et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia // Blood. 2011. Vol. 117, N 2. P. 563–574.

10. Burger J.A., O’Brien S. Evolution of CLL treatment – from chemoimmunotherapy to targeted and individualized therapy // Nat. Rev. Clin. Oncol. 2018. Vol. 15, N 8. P. 510–527.

11. Caligaris-Cappio F., Ghia P. Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? // J. Clin. Oncol. 2008. Vol. 26, N 27. P. 4497–4503.

12. Messmer B.T., Messmer D., Allen S.L., Kolitz J.E., Kudalkar P., Cesar D. et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells // J. Clin. Invest. 2005. Vol. 115, N 3. P. 755–764.

13. Ponzoni M., Doglioni C., Caligaris-Cappio F. Chronic lymphocytic leukemia: the pathologist’s view of lymph node microenvironment // Semin. Diagn. Pathol. 2011. Vol. 28, N 2. P. 161–166.

14. Inamdar K.V., Bueso-Ramos C.E. Pathology of chronic lymphocytic leukemia: an update // Ann. Diagn. Pathol. 2007. Vol. 11, N 5. P. 363–389.

15. Lampert I.A., Wotherspoon A., Van Noorden S., Hasserjian R.P. High expression of CD23 in the proliferation centers of chronic lymphocytic leukemia in lymph nodes and spleen // Hum. Pathol. 1999. Vol. 30, N 6. P. 648–654.

16. Ding W., Nowakowski G.S., Knox T.R., Boysen J.C., Maas M.L., Schwager S.M. et al. Bi-directional activation between mesenchymal stem cells and CLL B-cells: implication for CLL disease progression // Br. J. Haematol. 2009. Vol. 147, N 4. P. 471–483.

17. Ruan J., Hyjek E., Kermani P., Christos P.J., Hooper A.T., Coleman M. et al. Magnitude of stromal hemangiogenesis correlates with histologic subtype of non-Hodgkin’s lymphoma // Clin. Cancer Res. 2006. Vol. 12, N 19. P. 5622–5631.

18. Kurtova A.V., Balakrishnan K., Chen R., Ding W., Schnabl S., Quiroga M.P. et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance // Blood. 2009. Vol. 114, N 20. P. 4441–4450.

19. Burger J.A., Burger M., Kipps T.J. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells // Blood. 1999. Vol. 94, N 11. P. 3658–3667.

20. Burger J.A., Ghia P., Rosenwald A., Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies // Blood. 2009. Vol. 114, N 16. P. 3367–3375.

21. Burger M., Hartmann T., Krome M., Rawluk J., Tamamura H., Fujii N. et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells // Blood. 2005. Vol. 106, N 5. P. 1824–1830.

22. Purroy N., Abrisqueta P., Carabia J., Carpio C., Palacio C., Bosch F. et al. Co-culture of primary CLL cells with bone marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo // Oncotarget. 2015. Vol. 6, N 10. P. 7632–7643.

23. Giannoni P., Scaglione S., Quarto R., Narcisi R., Parodi M., Balleari E. et al. An interaction between hepatocyte growth factor and its receptor (c-MET) prolongs the survival of chronic lymphocytic leukemic cells through STAT3 phosphorylation: a potential role of mesenchymal cells in the disease // Haematologica. 2011. Vol. 96, N 7. P. 1015–1023.

24. de la Fuente M.T., Casanova B., Moyano J.V., Garcia-Gila M., Sanz L., Garcia-Marco J. et al. Engagement of alpha4beta1 integrin by fibronectin induces in vitro resistance of B chronic lymphocytic leukemia cells to fludarabine // J. Leukoc. Biol. 2002. Vol. 71, N 3. P. 495–502.

25. Brachtl G., Sahakyan K., Denk U., Girbl T., Alinger B., Hofbauer S.W. et al. Differential bone marrow homing capacity of VLA-4 and CD38 high expressing chronic lymphocytic leukemia cells // PLoS. One. 2011. Vol. 6, N 8. Article ID e23758.

26. Gattei V., Bulian P., Del Principe M.I., Zucchetto A., Maurillo L., Buccisano F. et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia // Blood. 2008. Vol. 111, N 2. P. 865–873.

27. Baumann T., Delgado J., Santacruz R., Martinez-Trillos A., Rozman M., Aymerich M. et al. CD49d (ITGA4) expression is a predictor of time to first treatment in patients with chronic lymphocytic leukaemia and mutated IGHV status // Br. J. Haematol. 2016. Vol. 172, N 1. P. 48–55.

28. Bulian P., Shanafelt T.D., Fegan C., Zucchetto A., Cro L., Nuckel H. et al. CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia // J. Clin. Oncol. 2014. Vol. 32, N 9. P. 897–904.

29. Shanafelt T.D., Geyer S.M., Bone N.D., Tschumper R.C., Witzig T.E., Nowakowski G.S. et al. CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential // Br. J. Haematol. 2008. Vol. 140, N 5. P. 537–546.

30. Sivina M., Hartmann E., Vasyutina E., Boucas J.M., Breuer A., Keating M.J. et al. Stromal cells modulate TCL1 expression, interacting AP-1 components and TCL1-targeting micro-RNAs in chronic lymphocytic leukemia // Leukemia. 2012. Vol. 26, N 8. P. 1812–1820.

31. Mangolini M., Gotte F., Moore A., Ammon T., Oelsner M., Lutzny-Geier G. et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia // Nat. Commun. 2018. Vol. 9, N 1. Article ID 3839.

32. Nwabo Kamdje A.H., Bassi G., Pacelli L., Malpeli G., Amati E., Nichele I. et al. Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy // Blood Cancer J. 2012. Vol. 2, N 5. P. e73.

33. Jitschin R., Braun M., Qorraj M., Saul D., Le Blanc K., Zenz T. et al. Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling // Blood. 2015. Vol. 125, N 22. P. 3432–3436.

34. Marquez M.E., Hernandez-Uzcategui O., Cornejo A., Vargas P., Da Costa O. Bone marrow stromal mesenchymal cells induce down regulation of CD20 expression on B-CLL: implications for rituximab resistance in CLL // Br. J. Haematol. 2015. Vol. 169, N 2. P. 211–218.

35. Lutzny G., Kocher T., Schmidt-Supprian M., Rudelius M., Klein-Hitpass L., Finch A.J. et al. Protein kinase C-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo // Cancer Cell. 2013. Vol. 23, N 1. P. 77–92.

36. Paggetti J., Haderk F., Seiffert M., Janji B., Distler U., Ammerlaan W. et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts // Blood. 2015. Vol. 126, N 9. P. 1106–1117.

37. Ding W., Knox T.R., Tschumper R.C., Wu W., Schwager S.M., Boysen J.C. et al. Platelet-derived growth factor (PDG-F)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch // Blood. 2010. Vol. 116, N 16. P. 2984–2993.

38. Gehrke I., Gandhirajan R.K., Poll-Wolbeck S.J., Hallek M., Kreuzer K.A. Bone marrow stromal cell-derived vascular endothelial growth factor (VEGF) rather than chronic lymphocytic leukemia (CLL) cell-derived VEGF is essential for the apoptotic resistance of cultured CLL cells // Mol. Med. 2011. Vol. 17, N 7–8. P. 619–627.

39. Tsukada N., Burger J.A., Zvaifler N.J., Kipps T.J. Distinctive features of «nurse-like» cells that differentiate in the context of chronic lymphocytic leukemia // Blood. 2002. Vol. 99, N 3. P. 1030–1037.

40. Giannoni P., Pietra G., Travaini G., Quarto R., Shyti G., Benelli R. et al. Chronic lymphocytic leukemia nurse-like cells express hepatocyte growth factor receptor (c-MET) and indoleamine 2,3-dioxygenase and display features of immunosuppressive type 2 skewed macrophages // Haematologica. 2014. Vol. 99, N 6. P. 1078–1087.

41. Burkle A., Niedermeier M., Schmitt-Graff A., Wierda W.G., Keating M.J., Burger J.A. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia // Blood. 2007. Vol. 110, N 9. P. 3316–3325.

42. Nishio M., Endo T., Tsukada N., Ohata J., Kitada S., Reed J.C. et al. Nurse-like cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha // Blood. 2005. Vol. 106, N 3. P. 1012–1020.

43. Endo T., Nishio M., Enzler T., Cottam H.B., Fukuda T., James D.F. et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway // Blood. 2007. Vol. 109, N 2. P. 703–710.

44. Burger J.A., Quiroga M.P., Hartmann E., Burkle A., Wierda W.G., Keating M.J. et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurse-like cell cocultures and after BCR stimulation // Blood. 2009. Vol. 113, N 13. P. 3050–3058.

45. Mittal A.K., Chaturvedi N.K., Rai K.J., Gilling-Cutucache C.E., Nordgren T.M., Moragues M. et al. Chronic lymphocytic leukemia cells in a lymph node microenvironment depict molecular signature associated with an aggressive disease // Mol. Med. 2014. Vol. 20. P. 290–301.

46. Binder M., Lechenne B., Ummanni R., Scharf C., Balabanov S., Trusch M. et al. Stereotypical chronic lymphocytic leukemia B-cell receptors recognize survival promoting antigens on stromal cells // PLoS One. 2010. Vol. 5, N 12. Article ID e15992.

47. Hacken E.T., Gounari M., Back J.W., Shimanovskaya E., Scarfo L., Kim E. et al. Calreticulin as a novel B-cell receptor antigen in chronic lymphocytic leukemia // Haematologica. 2017. Vol. 102, N 10. P. e394–e396.

 
 
 
 
 
 

Предыдущая страница

Следующая страница

Список литературы к Главе 4
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу