Вилли Кюне показал Липпману опыт, в котором капля ртути, покрытая серной кислотой, деформировалась при легком прикосновении железной проволочки. Липпман пришел к выводу, что металлы и серная кислота образуют электрическую пару, разность потенциалов в которой изменяет эквипотенциальность поверхностного натяжения ртути.
По возвращении в Париж для завершения образования Липпман провел исследования электрокапиллярности, влияния электрических полей на поверхностное натяжение жидкостей, а в 1875 г. защитил в Сорбонне диссертацию на соискание степени доктора наук. В 1878 г. он стал сотрудником факультета естественных наук Парижского университета, а в 1883 г. назначен профессором математической физики. С 1886 г. Липпман руководил научно-исследовательской лабораторией до конца своей жизни.
Липпман провел исследование эффекта образования электричества под действием механической деформации ртутной поверхности. Это представляло собой явление, обратное тому, на котором основано действие
Рис. 1. Схема измерений мембранного потенциала покоя с помощью внутриклеточного стеклянного микроэлектрода (М). Второй электрод (И) помещен в омывающую клетку жидкость
Рис. 2. Потенциалы действия, зарегистрированные с помощью внутриклеточных микроэлектродов: а - гигантского аксона кальмара; б - скелетного мышечного волокна; в - волокна мышцы сердца собаки; 1 - восходящая фаза ПД; 2 - нисходящая фаза; 3 - следовая гиперполяризация (а) и следовая деполяризация (б)
Рис. 3. Изменения натриевой и калиевой проводимости мембраны нервного волокна во время генерации потенциала действия (I). Изменения проводимости пропорциональны изменениям проницаемости для Na+(II) и К+(III)
Рис. 4. Регистрация распространения потенциала действия вдоль нервного волокна: А, Б - внеклеточные электроды; Р - раздражающие электроды. Вверху - отклонение луча осциллографа под влиянием волны возбуждения; 1 - волна возбуждения под электродом А; 2 - под электродом Б