Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Глава 7. Механические колебания и волны

Повторяющиеся движения или изменения состояния называют колебаниями (переменный электрический ток, движение маятника, работа сердца и т.п.). Всем колебаниям независимо от их природы присущи некоторые общие закономерности. Колебания распространяются в среде в виде волн. В данной главе рассматриваются механические колебания и волны.

7.1. ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Среди различных видов колебаний наиболее простой формой является гармоническое колебание, т.е. такое, при котором колеблющаяся величина изменяется в зависимости от времени по закону синуса или косинуса.

Пусть, например, материальная точка массой т подвешена на пружине (рис. 7.1, а). В этом положении упругая сила F1 уравновешивает силу тяжести mg. Если оттянуть пружину на расстояние х(рис. 7.1, б), то на материальную точку будет действовать большая упругая сила. Изменение упругой силы, согласно закону Гука, пропорционально изменению длины пружины или смещению х точки:

F = -кх, (7.1)

где к - жесткость пружины; знак минус показывает, что сила всегда направлена в сторону положения равновесия: F < 0 при х > 0, F > 0 при х < 0.

Другой пример.

Математический маятник отклонен от положения равновесия на небольшой угол α (рис. 7.2). Тогда траекторию движения маятника можно считать прямой линией, совпадающей с осью ОХ. В этом случае выполняется приближенное равенство

где х - смещение материальной точки относительно положения равновесия; l - длина нити маятника.

На материальную точку (см. рис. 7.2) действуют сила натяжения FH нити и сила тяжести mg. Их равнодействующая равна:

Сравнивая (7.2) и (7.1), видим, что в этом примере равнодействующая сила подобна упругой, так как пропорциональна смещению материальной точки и направлена к положению равновесия. Такие силы, неупругие по природе, но аналогичные по свойствам силам, возникающим при мальж деформациях упругих тел, называют квазиупругими.

Для продолжения работы требуется Регистрация
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
Глава 7. Механические колебания и волны
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу

Оглавление

Данный блок поддерживает скрол*