Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801- 10. http://doi:10.1001/jama.2016.0287 2. Varpula M., Tallgren M., Saukkonen K., Voipio-Pulkki L., Pettilä V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005 Aug;31(8):1066-71. doi: 10.1007/s00134-005-2688-z 3. Shankar-Hari M., Phillips G.S., Levy M.L., Seymour C.W. et al. Developing a new definition and assessing new clinical criteria for Septic shock: For the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016 Feb 23;315(8):775-87. doi: 10.1001/jama.2016.0289 4. Vincent J.L., Sakr Y., Singer M., Martin-Loeches I. et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA. 2020 Apr 21;323(15):1478-1487. doi: 10.1001/jama.2020.2717 5. Яковлев С.В., Суворова М.П., Белобородов В.Б., Басин Е.Е. и соавт. Распространенность и клиническое значение нозокомиальных инфекций в лечебных учреждениях России: исследование ЭРГИНИ. Антибиотики и химиотерапия. 2016. т. 61, № 5-6, с. 32-42. 6. Bertsimas D., Lukin G., Mingardi L., Nohadani O. et al. COVID-19 mortality risk assessment: An international multi-center study. PLoS One. 2020 Dec 9;15(12):e0243262. doi: 10.1371/journal.pone.0243262 7. Dessie Z.G., Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021 Aug 21;21(1):855. doi: 10.1186/s12879-021-06536-3 8. Pawestri H.A., Eggink D., Isfandari S., Thanh T.T. et al. Viral Factors Associated With the High Mortality Related to Human Infections With Clade 2.1 Influenza A/H5N1 Virus in Indonesia. Clin Infect Dis. 2020 Mar 3;70(6):1139-1146. doi: 10.1093/cid/ciz328 9. Neumann G., Chen H., Gao G.F., Shu Y., Kawaoka Y. H5N1 influenza viruses: outbreaks and biological properties. Cell Res. 2010 Jan;20(1):51-61. doi: 10.1038/cr.2009.124 10. Lobo S.M., Watanabe A.S.A., Salomão M.L.M., Queiroz F. et al. Excess mortality is associated with influenza A (H1N1) in patients with severe acute respiratory illness. J Clin Virol. 2019 Jul;116:62-68. doi: 10.1016/j.jcv.2019.05.003 11. Li S.H., Hsieh M.J., Lin S.W., Chuang L.P. et al. Outcomes of severe H1N1 pneumoniae: A retrospective study at intensive care units. J Formos Med Assoc. 2020 Jan;119(1 Pt 1):26-33. doi: 10.1016/j.jfma.2019.02.006 47 12. Seymour C.W., Kennedy J.N., Wang S., Chang C.C.H. et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA. 2019 May 28;321(20):2003-2017. doi: 10.1001/jama.2019.5791 13. Chen G.Y., Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010 Dec;10(12):826-37. doi: 10.1038/nri2873 14. Taylor J., Toh C.H., Hoots W.K., Wada H., Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001 Nov;86(5):1327-30 15. Chiscano-Camón L. et al. Pathophysiology of septic shock. Med. Intensiva. Ediciones Doyma, S.L., 2022; 46:1-13 16. Bauzá-Martinez J., Aletti F., Pinto B.B., Ribas V. et al. Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality. Br J Anaesth. 2018 Nov;121(5):1065- 1074. doi: 10.1016/j.bja.2018.05.072 17. Bermejo-Martin J.F., Martín-Fernandez M., López-Mestanza C., Duque P., Almansa R. et al. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med. 2018 Oct 30;7(11):400. doi: 10.3390/jcm7110400 18. López-Aguirre Y., Páramo J.A. Endothelial cell and hemostatic activation in relation to cytokines in patients with sepsis. Thromb Res. 1999 Apr 15;94(2):95-101. doi: 10.1016/s0049- 3848(98)00200-x 19. Mesquida J., Gruartmoner G., Ferrer R. Passive leg raising for assessment of volume responsiveness: A review. Curr Opin Crit Care. 2017 Jun;23(3):237-243. doi: 10.1097/MCC.0000000000000404 20. García-De-Acilu M., Mesquida J., Gruartmoner G., Ferrer R. Hemodynamic support in septic shock. Curr Opin Anaesthesiol. 2021 Apr 1;34(2):99-106. doi: 10.1097/ACO.0000000000000959 21. Bateman R.M., Tokunaga C., Kareco T., Dorscheid D.R., Walley K.R. Myocardial hypoxiainducible HIF-1α, VEGF, and GLUT1 gene expression is associated with microvascular and ICAM-1 heterogeneity during endotoxemia. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H448-56. doi: 10.1152/ajpheart.00035.2007 22. Sakr Y., Dubois M.J., De Backer D., Creteur J., Vincent J.L. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004 Sep;32(9):1825-31.doi: 10.1097/01.ccm.0000138558.16257.3f 23. Trzeciak S., McCoy J.V., Dellinger R.P., Arnold R.C. et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008 Dec;34(12):2210-7. doi: 10.1007/s00134-008-1193-6 48 24. De Backer D., Creteur J., Preiser J.C., Dubois M.J., Vincent J.L. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002 Jul 1;166(1):98-104. doi: 10.1164/rccm.200109-016oc 25. Hungerford J.E., Sessa W.C., Segal S.S. Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J. 2000 Jan;14(1):197-207. doi: 10.1096/fasebj.14.1.197 26. Dietrich H.H., Ellsworth M.L., Sprague R.S., Dacey Jr. R.G. Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1294-8. doi: 10.1152/ajpheart.2000.278.4.H1294 27. Tyml K., Wang X., Lidington D., Ouellette Y. Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo. Am J Physiol Heart Circ Physiol. 2001 Sep;281(3):H1397-406. doi: 10.1152/ajpheart.2001.281.3.H1397 28. Cabrales P., Vázquez B.Y.S., Tsai A.G., Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol (1985). 2007 Jun;102(6):2251-9. doi: 10.1152/japplphysiol.01155.2006 29. Marechal X., Favory R., Joulin O., Montaigne D. et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock. 2008 May;29(5):572-6. doi: 10.1097/SHK.0b013e318157e926 30. Piagnerelli M., Boudjeltia K.Z., Vanhaeverbeek M., Vincent J.L. Red blood cell rheology in sepsis. Intensive Care Med. 2003 Jul;29(7):1052-61. doi: 10.1007/s00134-003-1783-2 31. Eichelbrönner O., Sielenkämper A., Cepinskas G., Sibbald W.J., Chin-Yee I.H. Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Crit Care Med. 2000 Jun;28(6):1865-70. doi: 10.1097/00003246-200006000-00030 32. Edul V.S.K, Ince C., Navarro N., Previgliano L. et al. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann Intensive Care. 2014 Dec 4;4:39. doi: 10.1186/s13613-014-0039-3 33. Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19 Suppl 3(Suppl 3):S8. doi: 10.1186/cc14726 34. Dubin A., Pozo M.O., Casabella C.A., Pálizas F. Jr. et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: A prospective study. Crit Care. 2009;13(3):R92. doi: 10.1186/cc7922 35. Rady M.Y., Rivers E.P., Nowak R.M. Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med. 1996 Mar;14(2):218-25. doi: 10.1016/s0735-6757(96)90136-9 36. Bateman R.M., Walley K.R. Microvascular resuscitation as a therapeutic goal in severe sepsis. Crit Care. 2005;9 Suppl 4(Suppl 4):S27-32. doi: 10.1186/cc3756 49 37. Vincent J.L., Privalle C.T., Singer M. et al. Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX). Crit Care Med. 2015 Jan;43(1):57-64. doi: 10.1097/CCM.0000000000000554 38. Top A.P.C., Ince C., de Meij N., van Dijk M., Tibboel D. Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care. Crit Care Med. 2011 Jan;39(1):8- 13. doi: 10.1097/CCM.0b013e3181fb7994 39. Fleischmann C., Scherag A., Adhikari N.K.J., Hartog C.S. et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016 Feb 1;193(3):259-72. doi: 10.1164/rccm.201504-0781OC 40. Fleischmann-Struzek C., Mellhammar L., Rose N., Cassini A. et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020 Aug;46(8):1552-1562. doi: 10.1007/s00134-020- 06151-x 41. Tian H.C., Zhou J.F., Weng L., Hu X.Y. et al. Epidemiology of Sepsis-3 in a sub-district of Beijing: secondary analysis of a population-based database. Chin Med J (Engl). 2019 Sep 5;132(17):2039-2045. doi: 10.1097/CM9.0000000000000392 42. Liu Y.-C., Yao Y., Yu M.-M., Gao Y.-L. et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis. BMC Infect Dis. 2022 Jun 21;22(1):564. doi: 10.1186/s12879-022-07543-8 43. Xie J., Wang H., Kang Y., Zhou L. et al. The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey. Crit Care Med. 2020 Mar;48(3):e209-e218. doi: 10.1097/CCM.0000000000004155 44. Markwart R., Saito H., Harder T., Tomczyk S. et al. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med. 2020 Aug;46(8):1536-1551. doi: 10.1007/s00134-020-06106-2 45. Lakbar I. Munoz M., Pauly V., Orleans V. et al. Septic shock: incidence, mortality and hospital readmission rates in French intensive care units from 2014 to 2018. Anaesth Crit Care Pain Med. 2022 Jun;41(3):101082. doi: 10.1016/j.accpm.2022.101082 46. Liang J., Li Z., Dong H., Xu C. Prognostic factors associated with mortality in mechanically ventilated patients in the intensive care unit: A single-center, retrospective cohort study of 905 patients. Medicine (Baltimore). 2019 Oct;98(42):e17592. doi: 10.1097/MD.0000000000017592 47. Jones D., Moran J., Udy A., Pilcher D. et al. Temporal changes in the epidemiology of sepsisrelated intensive care admissions from the emergency department in Australia and New Zealand. Emerg Med Australas. 2022 Dec;34(6):995-1003. doi: 10.1111/1742-6723.14034 50 48. Chen S., Gao Z., Hu L., Zuo Y. et al. Association of Septic Shock with Mortality in Hospitalized COVID-19 Patients in Wuhan, China. Adv Virol. 2022 Apr 23;2022:3178283. doi: 10.1155/2022/3178283 49. Li J., Luo H., Deng G., Chang J. et al. Multidimensional Evaluation of All-Cause Mortality Risk and Survival Analysis for Hospitalized Patients with COVID-19. Int J Med Sci. 2021 Jun 26;18(14):3140-3149. doi: 10.7150/ijms.58889 50. Lenney M., Kopp B., Erstad B. Effect of fixed-dose hydrocortisone on vasopressor dose and mean arterial pressure in obese and nonobese patients with septic shock. Am J Health Syst Pharm. 2022 Aug 19;79(Suppl 3):S94-S99. doi: 10.1093/ajhp/zxac156 51. Meresse Z., Medam S., Mathieu C., Duclos G et al. Vasopressors to treat refractory septic shock. Minerva Anestesiol. 2020 May;86(5):537-545. doi: 10.23736/S0375-9393.20.13826-4 52. Nandhabalan P., Ioannou N., Meadows C., Wyncoll D. Refractory septic shock: our pragmatic approach. Crit Care. 2018 Sep 19;22(1):215. doi: 10.1186/s13054-018-2144-4 53. Vincent JL, Ince C, Bakker J. Clinical review: Circulatory shock an update: a tribute to Professor Max Harry Weil. Crit Care. 2012 Nov 20;16(6):239. doi: 10.1186/cc11510 54. Hariri G., Joffre J., Leblanc G., Bonsey M. et al. Narrative review: clinical assessment of peripheral tissue perfusion in septic shock. Ann Intensive Care. 2019 Mar 13;9(1):37. doi: 10.1186/s13613-019-0511-1 55. Preda G., Bourcier S., Joffre J., Boelle P.Y. et al. Mottling score is associated with 28-day mortality in critically ill patients with sepsis. Minerva Anestesiol. 2017 Jun;83(6):664-666. doi: 10.23736/S0375-9393.17.11816-X 56. Amson H., Vacheron C.H., Thiolliere F., Piriou V. et al. Core-to-skin temperature gradient measured by thermography predicts day-8 mortality in septic shock: A prospective observational study. J Crit Care. 2020 Dec;60:294-299. doi: 10.1016/j.jcrc.2020.08.022 57. Magnin M., Amson H., Vacheron C.H., Thiollière F. et al. Associations between peripheral perfusion disorders, mean arterial pressure and dose of norepinephrine administrated in the early phase of septic shock. Clin Exp Pharmacol Physiol. 2021 Oct;48(10):1327-1335. doi: 10.1111/1440-1681.13540 58. Ait-Oufella H., Bige N., Boelle P.Y., Pichereau C. et al. Capillary refill time exploration during septic shock. Intensive Care Med. 2014 Jul;40(7):958-64. doi: 10.1007/s00134-014-3326-4 59. Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006 Aug;12(4):315- 21. doi: 10.1097/01.ccx.0000235208.77450.15 60. Yang W.S., Kang H.D., Jung S.K., Lee Y.J. et al. A mortality analysis of septic shock, vasoplegic shock and cryptic shock classified by the third international consensus definitions (Sepsis-3). Clin Respir J. 2020 Sep;14(9):857-863. doi: 10.1111/crj.13218 51 61. Ko B.S., Kim K., Choi S.H., Kang G.H. et al. Prognosis of patients excluded by the definition of septic shock based on their lactate levels after initial fluid resuscitation: a prospective multicenter observational study. Crit Care. 2018 Feb 24;22(1):47. doi: 10.1186/s13054-017-1935-3 62. Mengya Z., Meili D. Lactic acid, lactate clearance and procalcitonin in assessing the severity and predicting prognosis in sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020;32(4):449-453. 63. Dünser M.W., Takala J., Ulmer H., Mayr V.D. et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009 Jul;35(7):1225-33.doi: 10.1007/s00134-009-1427-2 64. Sasko B., Butz T., Prull M.W., Liebeton J. et al. Earliest Bedside Assessment of Hemodynamic Parameters and Cardiac Biomarkers: Their Role as Predictors of Adverse Outcome in Patients with Septic Shock. Int J Med Sci. 2015 Aug 5;12(9):680-8. doi: 10.7150/ijms.11720 65. Houwink A.P.I., Rijkenberg S., Bosman R.J, van der Voort P.H.J. The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: a retrospective cohort analysis. Crit Care. 2016 Mar 12;20:56. doi: 10.1186/s13054-016-1243-3 66. Xu J.Y., Ma S.Q., Pan C., He H.L. et al. A high mean arterial pressure target is associated with improved microcirculation in septic shock patients with previous hypertension: a prospective open label study. Crit Care. 2015 Mar 30;19(1):130. doi: 10.1186/s13054-015-0866-0 67. Borthwick H.A., Brunt L.K., Mitchem K.L., Chaloner C. Does lactate measurement performed on admission predict clinical outcome on the intensive care unit? A concise systematic review. Ann Clin Biochem. 2012 Jul;49(Pt 4):391-4. doi: 10.1258/acb.2011.011227 68. Liu G., Lv H., An Y., Wei X. et al. Early lactate levels for prediction of mortality in patients with sepsis or septic shock: A meta-analysis. Int J Clin Exp Med 2017;10(1):37-47 69. Evans L., Rhodes A., Alhazzani W., Antonelli M. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021 Nov;47(11):1181-1247. doi: 10.1007/s00134-021-06506-y 70. Приказ Минздрава РФ от 10.05.2017 N 203Н — Об утверждении критериев оценки качества медицинской помощи [Electronic resource]. URL: https://normativ.kontur.ru/document?moduleId=1&documentId=293575 (accessed: 05.07.2022). 71. Tarui T., Yamaguchi Y., Suzuki K., Tsuruta R. et al. Early evaluation of severity in patients with severe sepsis: a comparison with “septic shock” - subgroup analysis of the Japanese Association for Acute Medicine Sepsis Registry (JAAM-SR). Acute Med Surg. 2017 Jul 27;4(4):426-431. doi: 10.1002/ams2.299 52 72. Dumas G., Lavillegrand J.R., Joffre J., Bigé N. et al. Mottling score is a strong predictor of 14- day mortality in septic patients whatever vasopressor doses and other tissue perfusion parameters. Crit Care. 2019 Jun 10;23(1):211. doi: 10.1186/s13054-019-2496-4 73. Ait-Oufella H., Lemoinne S., Boelle P.Y., Galbois A. et al. Mottling score predicts survival in septic shock. Intensive Care Med. 2011 May;37(5):801-7. doi: 10.1007/s00134-011-2163-y 74. Zampieri F.G., Damiani L.P., Bakker J., Ospina-Tascón G.A. et al. Effects of a Resuscitation Strategy Targeting Peripheral Perfusion Status versus Serum Lactate Levels among Patients with Septic Shock. A Bayesian Reanalysis of the ANDROMEDA-SHOCK Trial. Am J Respir Crit Care Med. 2020 Feb 15;201(4):423-429. doi: 10.1164/rccm.201905-0968OC 75. Kattan E., Hernández G., Ospina-Tascón G., Valenzuela E.D. et al. A lactate-targeted resuscitation strategy may be associated with higher mortality in patients with septic shock and normal capillary refill time: a post hoc analysis of the ANDROMEDA-SHOCK study. Ann Intensive Care. 2020 Aug 26;10(1):114. doi: 10.1186/s13613-020-00732-1 76. Morocho J.P., Martínez A.F., Cevallos M.M., Vasconez-Gonzalez J. et al. Prolonged Capillary Refilling as a Predictor of Mortality in Patients With Septic Shock. J Intensive Care Med. 2022 Mar;37(3):423-429. doi: 10.1177/08850666211003507 77. Kumar A., Roberts D., Wood K.E., Light B. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006 Jun;34(6):1589-96. doi: 10.1097/01.CCM.0000217961.75225.E9 78. Brindley P.G., Zhu N., Sligl W. Best evidence in critical care medicine: Early antibiotics and survival from septic shock: It’s about time. Can J Anaesth. 2006 Nov;53(11):1157-1160. doi: 10.1007/BF03022884 79. Rangel Frausto M.S., Pittet D., Costigan M., Hwang T. et al. The Natural History of the Systemic Inflammatory Response Syndrome (SIRS): A Prospective Study. JAMA. 1995 Jan 11;273(2):117-23 80. Cheng M.P., Stenstrom R., Paquette K., Stabler S.N. et al. Blood Culture Results Before and After Antimicrobial Administration in Patients With Severe Manifestations of Sepsis: A Diagnostic Study. Ann Intern Med. 2019 Oct 15;171(8):547-554. doi: 10.7326/M19-1696 81. Opota O., Croxatto A., Prod'hom G., Greub G. et al. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect. 2015 Apr;21(4):313-22. doi: 10.1016/j.cmi.2015.01.003 82. Белобородов В.Б., Гусаров В.Г., Дехнич А.В., Замятин М.Н., Зубарева Н.А. Диагностика и антимикробная терапия инфекций, вызванных полирезистентными микроорганизмами. Методические рекомендации Российской некоммерческой общественной организации «Ассоциация анестезиологов-реаниматологов», Межрегиональной общественной организации. Вестник анестезиологии и реаниматологии. 2020. т. 16, № 1, с. 52-83. 53 83. Wolk D.M., Johnson J.K. Rapid Diagnostics for Blood Cultures: Supporting Decisions for Antimicrobial Therapy and Value-Based Care. J Appl Lab Med. 2019 Jan;3(4):686-697. doi: 10.1373/jalm.2018.028159 84. Gang L., Wei F., Zhang G., Sun L., Lian R.. Clinical value of early liquid resuscitation guided by passive leg-raising test combined with transthoracic echocardiography in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019 Apr;31(4):413-417. doi: 10.3760/cma.j.issn.2095-4352.2019.04.008 85. Cherpanath T.G.V., Hirsch A., Geerts B.F, Lagrand W.K. et al. Predicting Fluid Responsiveness by Passive Leg Raising: A Systematic Review and Meta-Analysis of 23 Clinical Trials. Crit Care Med. 2016 May;44(5):981-91. doi: 10.1097/CCM.0000000000001556 86. Misango D., Pattnaik R., Baker T., Dünser M.W. et al. Haemodynamic assessment and support in sepsis and septic shock in resource-limited settings. Trans R Soc Trop Med Hyg. 2017 Nov 1;111(11):483-489. doi: 10.1093/trstmh/try007 87. Kaur B., Kaur S., Yaddanapudi L.N., Singh N.V. Comparison between invasive and noninvasive blood pressure measurements in critically ill patients receiving inotropes. Blood Press Monit. 2019 Feb;24(1):24-29. doi: 10.1097/MBP.0000000000000358 88. Riley L.E., Chen G.J., Latham H.E. Comparison of noninvasive blood pressure monitoring with invasive arterial pressure monitoring in medical ICU patients with septic shock. Blood Press Monit. 2017 Aug;22(4):202-207. doi: 10.1097/MBP.0000000000000258 89. Araghi A., Bander J.J., Guzman J.A. Arterial blood pressure monitoring in overweight critically ill patients: invasive or noninvasive? Crit Care. 2006;10(2):R64. doi: 10.1186/cc4896 90. Bur A., Hirschl M.M., Herkner H., Oschatz E. et al. Accuracy of oscillometric blood pressure measurement according to the relation between cuff size and upper-arm circumference in critically ill patients. Crit Care Med. 2000 Feb;28(2):371-6. doi: 10.1097/00003246-200002000- 00014 91. Won Y.K., Jong H.J., Jin W.H., Sang B.H. et al. Radial to femoral arterial blood pressure differences in septic shock patients receiving high-dose norepinephrine therapy. Shock. 2013 Dec;40(6):527-31. doi: 10.1097/SHK.0000000000000064 92. Agudelo Torres D.E., Navarro-Martinez J., Galiana-Ivars M., Alarcon Martinez C. Comments on Cecconi et al.: Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2015 Mar;41(3):570. doi: 10.1007/s00134-014-3588-x 93. Хромачева Н.О., Фот Е.В, Кузьков В.В., Киров М.Ю. Целенаправленная дегидратационная терапия при сепсисе и остром респираторном дистресс-синдроме под контролем волюметрического мониторинга гемодинамики. Вестник анестезиологии и реаниматологии. 2019. № 6. с. 6–15. doi.org/10.21292/2078-5658-2019-16-6-6-15 54 94. Gavelli F., Shi R., Teboul J.L., Azzolina D. et al. Extravascular lung water levels are associated with mortality: a systematic review and meta-analysis. Crit Care. 2022 Jul 6;26(1):202. doi: 10.1186/s13054-022-04061-6 95. Kuttab H.I., Lykins J.D., Hughes M.D., Wroblewski K. et al. Evaluation and Predictors of Fluid Resuscitation in Patients With Severe Sepsis and Septic Shock. Crit Care Med. 2019 Nov;47(11):1582-1590. doi: 10.1097/CCM.0000000000003960 96. Leisman D.E., Goldman C., Doerfler M.E., Masick K.D. et al. Patterns and Outcomes Associated With Timeliness of Initial Crystalloid Resuscitation in a Prospective Sepsis and Septic Shock Cohort. Crit Care Med. 2017 Oct;45(10):1596-1606. doi: 10.1097/CCM.0000000000002574 97. National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Clinical Trials Network. Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension. N Engl J Med. 2023 Feb 9;388(6):499-510. doi: 10.1056/NEJMoa2212663 98. Lewis S.R., Pritchard M.W., Evans D.J., Butler A.R. et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2018 Aug 3;8(8):CD000567. doi: 10.1002/14651858.CD000567.pub7 99. Rochwerg B., Alhazzani W., Sindi A., Heels-Ansdell D. et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014 Sep 2;161(5):347-55. doi: 10.7326/M14-0178 100. Yang J., Liu F., Zhu X. Colloids vs. crystalloids in fluid resuscitation for septic shock: A metaanalysis. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010 Jun;22(6):340-5 101. Chowdhury A.H., Cox E.F., Francis S.T., Lobo D.N. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Рlasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012 Jul;256(1):18-24. doi: 10.1097/SLA.0b013e318256be72 102. Kellum J.A. Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med. 2002 Feb;30(2):300-5. doi: 10.1097/00003246-200202000-00006 103. Kellum J.A., Song M., Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis // Chest, 2006. Vol. 130, № 4. P. 962–967. 104. Waters J.H. et al. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Chest. 2006 Oct;130(4):962-7. doi: 10.1378/chest.130.4.962 105. Williams E.L., Hildebrand K.L., McCormick S.A., Bedel M.J. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human 55 volunteers. Anesth Analg. 1999 May;88(5):999-1003. doi: 10.1097/00000539-199905000- 00006 106. Bayer O., Reinhart K., Kohl M., Kabischet B. et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med. 2012 Sep;40(9):2543-51. doi: 10.1097/CCM.0b013e318258fee7 107. Rochwerg B., Alhazzani W., Gibson A., Ribic C.M. et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med. 2015 Sep;41(9):1561-71. doi: 10.1007/s00134-015-3794-1 108. Haase N., Perner A., Hennings L.I., Siegemund M. et al. Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ. 2013 Feb 15;346:f839. doi: 10.1136/bmj.f839 109. Moeller C., Fleischmann C., Thomas-Rueddel D., Vlasakov V. et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care. 2016 Oct;35:75-83. doi: 10.1016/j.jcrc.2016.04.011 110. Martin G.S., Bassett P. Crystalloids vs. colloids for fluid resuscitation in the Intensive Care Unit: A systematic review and meta-analysis. J Crit Care. 2019 Apr;50:144-154. doi: 10.1016/j.jcrc.2018.11.031 111. Park C.H.L., de Almeida J.P., de Oliveira G.Q., Rizk S.I. et al. Lactated Ringer’s Versus 4% Albumin on Lactated Ringer’s in Early Sepsis Therapy in Cancer Patients: A Pilot SingleCenter Randomized Trial. Crit Care Med. 2019 Oct;47(10):e798-e805. doi: 10.1097/CCM.0000000000003900 112. Kakaei F., Hashemzadeh S., Asheghvatan A., Zarrintan S. et al. Albumin As a Resuscitative Fluid in Patients with Severe Sepsis: A Randomized Clinical Trial. Australian International Academic Centre. 2017; 5(4):8-16. DOI: 10.7575/aiac.abcmed.17.05.04.02 113. Caironi P., Tognoni G., Masson S., Fumagalli R. et al. Albumin Replacement in Severe Sepsis or Septic Shock. N Engl J Med. 2014 Apr 10;370(15):1412-21. doi: 10.1056/NEJMoa1305727 114. Hébert P.C., Wells G., Blajchman M.A., Marshall J. et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999 Feb 11;340(6):409-17. doi: 10.1056/NEJM199902113400601 115. Rygård S.L., Holst L.B., Wetterslev J., Winkel P. et al. Long-term outcomes in patients with septic shock transfused at a lower versus a higher haemoglobin threshold: the TRISS randomised, multicentre clinical trial. Intensive Care Med. 2016 Nov;42(11):1685-1694. doi: 10.1007/s00134-016-4437-x 56 116. Holst L.B., Haase N., Wetterslev J., Wernerman J. et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014 Oct 9;371(15):1381-91. doi: 10.1056/NEJMoa1406617 117. Hirano Y, Miyoshi Y, Kondo Y, Okamoto K, Tanaka H. Liberal versus restrictive red blood cell transfusion strategy in sepsis or septic shock: a systematic review and meta-analysis of randomized trials. Crit Care. 2019 Jul 25;23(1):262. doi: 10.1186/s13054-019-2543-1 118. Asfar P., Meziani F., Hamel J.F., Grelon F. et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014 Apr 24;370(17):1583-93. doi: 10.1056/NEJMoa1312173 119. Bourgoin A., Leone M., Delmas A., Garnier F. et al. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005 Apr;33(4):780-6. doi: 10.1097/01.ccm.0000157788.20591.23 120. He H.W., Liu W.L., Zhou X., Long Y., Liu D.W. Effect of mean arterial pressure change by norepinephrine on peripheral perfusion index in septic shock patients after early resuscitation. Chin Med J (Engl). 2020 Sep 20;133(18):2146-2152. doi: 10.1097/CM9.0000000000001017 121. LeDoux D., Astiz M.E., Carpati C.M., Rackow E.C. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000 Aug;28(8):2729-32. doi: 10.1097/00003246- 200008000-00007 122. Leone M, Asfar P., Radermacher P., Vincent J.L., Martin C. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit Care. 2015 Mar 10;19(1):101. doi: 10.1186/s13054-015-0794-z 123. Hylands M., Moller M.H., Asfar P., Toma A. et al. A systematic review of vasopressor blood pressure targets in critically ill adults with hypotension. Can J Anaesth. 2017 Jul;64(7):703-715. doi: 10.1007/s12630-017-0877-1 124. Lamontagne F., Meade M.O., Hébert P.C., Asfar P. et al. Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med. 2016 Apr;42(4):542-550. doi: 10.1007/s00134-016-4237-3 125. Lamontagne F., Richards-Belle A., Thomas K., Harrison D.A. et al. Effect of Reduced Exposure to Vasopressors on 90-Day Mortality in Older Critically Ill Patients With Vasodilatory Hypotension: A Randomized Clinical Trial. JAMA. 2020 Mar 10;323(10):938-949. doi: 10.1001/jama.2020.0930 126. Delaney A., Finnis M., Bellomo R., Udy A. et al. Initiation of vasopressor infusions via peripheral versus central access in patients with early septic shock: A retrospective cohort study. Emerg Med Australas. 2020 Apr;32(2):210-219.doi: 10.1111/1742-6723.13394 57 127. Ricard J.D., Salomon L., Boyer A., Thiery G. et al. Central or peripheral catheters for initial venous access of ICU patients: a randomized controlled trial. Crit Care Med. 2013 Sep;41(9):2108-15. doi: 10.1097/CCM.0b013e31828a42c5 128. Cardenas-Garcia J., Schaub K.F., Belchikov Y.G., Narasimhan M. et al. Safety of peripheral intravenous administration of vasoactive medication. J Hosp Med. 2015 Sep;10(9):581-5. doi: 10.1002/jhm.2394 129. Tian D.H., Smyth C., Keijzers G., Macdonald S.P. et al. Safety of peripheral administration of vasopressor medications: A systematic review. Emerg Med Australas. 2020 Apr;32(2):220-227. doi: 10.1111/1742-6723.13406 130. Loubani O.M., Green R.S. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J Crit Care. 2015 Jun;30(3):653.e9-17. doi: 10.1016/j.jcrc.2015.01.014 131. Beck V., Chateau D., Bryson G.L., Pisipati A. et al. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Crit Care. 2014 May 12;18(3):R97. doi: 10.1186/cc13868 132. Black L.P., Puskarich M.A., Smotherman C., Miller T. et al. Time to vasopressor initiation and organ failure progression in early septic shock. J Am Coll Emerg Physicians Open. 2020 May 2;1(3):222-230. doi: 10.1002/emp2.12060 133. Li Y., Li H., Zhang D. Timing of norepinephrine initiation in patients with septic shock: A systematic review and meta-analysis. Crit Care. 2020 Aug 6;24(1):488. doi: 10.1186/s13054- 020-03204-x 134. Avni T., Lador A., Lev S., Leibovici L. et al. Vasopressors for the treatment of septic shock: Systematic review and meta-analysis. PLoS One. 2015 Aug 3;10(8):e0129305. doi: 10.1371/journal.pone.0129305 135. Ruslan M.A., Baharuddin K.A., Noor N.M., Yazid M. et al. Norepinephrine in septic shock: A systematic review and meta-analysis. West J Emerg Med. 2021 Feb 16;22(2):196-203. doi: 10.5811/westjem.2020.10.47825 136. Elbouhy M.A., Soliman M., Gaber A., Taema K.M., Abdel-Aziz A. Early Use of Norepinephrine Improves Survival in Septic Shock: Earlier than Early. Arch Med Res. 2019 Aug;50(6):325-332. doi: 10.1016/j.arcmed.2019.10.003 137. Sandilands A.J., O’Shaughnessy K.M., Brown M.J. Greater inotropic and cyclic AMP responses evoked by noradrenaline through Arg389 beta 1-adrenoceptors versus Gly389 beta 1- adrenoceptors in isolated human atrial myocardium. Br J Pharmacol. 2003 Jan;138(2):386-92. doi: 10.1038/sj.bjp.0705030 58 138. Ammar M.A., Ammar A.A., Wieruszewski P.M., Bissell B.D. et al. Timing of vasoactive agents and corticosteroid initiation in septic shock. Ann Intensive Care. 2022 May 30;12(1):47. doi: 10.1186/s13613-022-01021-9 139. Colon Hidalgo D., Patel J., Masic D., Park D., Rech M.A. Delayed vasopressor initiation is associated with increased mortality in patients with septic shock. J Crit Care. 2020 Feb;55:145- 148. doi: 10.1016/j.jcrc.2019.11.004 140. De Backer D., Creteur J., Silva E., Vincent J.L. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003 Jun;31(6):1659-67. doi: 10.1097/01.CCM.0000063045.77339.B6 141. Myburgh J.A., Higgins A., Jovanovska A., Lipman J. et al. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008 Dec;34(12):2226-34. doi: 10.1007/s00134-008-1219-0 142. Belletti A., Benedetto U., Biondi-Zoccai G., Leggieri C. et al. The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials. J Crit Care. 2017 Feb;37:91-98. doi: 10.1016/j.jcrc.2016.08.010 143. Walley K.R. Sepsis-induced myocardial dysfunction. Curr Opin Crit Care. 2018 Aug;24(4):292- 299. doi: 10.1097/MCC.0000000000000507 144. Gordon A.C., Perkins G.D., Singer M., McAuley D.F. et al. Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis. N Engl J Med. 2016 Oct 27;375(17):1638-1648. doi: 10.1056/NEJMoa1609409 145. Bhattacharjee S., Soni K.D., Maitra S., Baidya D.K. Levosimendan does not provide mortality benefit over dobutamine in adult patients with septic shock: A meta-analysis of randomized controlled trials. J Clin Anesth. 2017 Jun;39:67-72. doi: 10.1016/j.jclinane.2017.03.011 146. Ferrer R., Artigas A., Suarez D., Palencia E. et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009 Nov 1;180(9):861-6. doi: 10.1164/rccm.200812-1912OC 147. Kalil A.C., Johnson D.W., Lisco S.J., Sun J. Early Goal-Directed Therapy for Sepsis: A Novel Solution for Discordant Survival Outcomes in Clinical Trials. Crit Care Med. 2017 Apr;45(4):607-614. doi: 10.1097/CCM.0000000000002235 148. Seymour C.W., Gesten F., Prescott H.C., Friedrich M.E. et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med. 2017 Jun 8;376(23):2235-2244. doi: 10.1056/NEJMoa1703058 149. Klompas M., Calandra T., Singer M. Antibiotics for Sepsis-Finding the Equilibrium. JAMA. 2018 Oct 9;320(14):1433-1434. doi: 10.1001/jama.2018.12179 59 150. Prescott H.C., Iwashyna T.J. Improving Sepsis Treatment by Embracing Diagnostic Uncertainty. Ann Am Thorac Soc. 2019 Apr;16(4):426-429. doi: 10.1513/AnnalsATS.201809- 646PS. 151. Hammond N.E., Kumar A., Kaur P., Tirupakuzhi Vijayaraghavan B.K. et al. Estimates of Sepsis Prevalence and Outcomes in Adult Patients in the ICU in India: A Cross-sectional Study. Chest. 2022 Jun;161(6):1543-1554. doi: 10.1016/j.chest.2021.12.673 152. Baggs J., Jernigan J.A., Halpin A.L., Epstein L. et al. Risk of Subsequent Sepsis Within 90 Days After a Hospital Stay by Type of Antibiotic Exposure. Clin Infect Dis. 2018 Mar 19;66(7):1004-1012. doi: 10.1093/cid/cix947 153. Branch-Elliman W., O'Brien W., Strymish J., Itani K. et al. Association of Duration and Type of Surgical Prophylaxis With Antimicrobial-Associated Adverse Events. JAMA Surg. 2019 Jul 1;154(7):590-598. doi: 10.1001/jamasurg.2019.0569 154. Hranjec T., Rosenberger L.H., Swenson B., Metzger R. et al. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensivecare-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis. 2012 Oct;12(10):774-80. doi: 10.1016/S1473-3099(12)70151-2 155. Ong D.S.Y., Frencken J.F., Klein Klouwenberg P.M.C., Juffermans N. et al. Short-Course Adjunctive Gentamicin as Empirical Therapy in Patients With Severe Sepsis and Septic Shock: A Prospective Observational Cohort Study. Clin Infect Dis. 2017 Jun 15;64(12):1731-1736. doi: 10.1093/cid/cix186 156. Tamma P.D., Avdic E., Li D.X., Dzintars K., Cosgrove S.E. Association of Adverse Events With Antibiotic Use in Hospitalized Patients. JAMA Intern Med. 2017 Sep 1;177(9):1308-1315. doi: 10.1001/jamainternmed.2017.1938 157. Teshome B.F., Vouri S.M., Hampton N., Kollef M.H., Micek S.T. Duration of Exposure to Antipseudomonal β-Lactam Antibiotics in the Critically Ill and Development of New Resistance. Pharmacotherapy. 2019 Mar;39(3):261-270. doi: 10.1002/phar.2201 158. Klein Klouwenberg P.M.C., Cremer O.L., van Vught L.A., Ong D.S.Y. et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: A cohort study. Crit Care. 2015 Sep 7;19(1):319. doi: 10.1186/s13054-015-1035-1 159. Heffner A.C., Horton J.M., Marchick M.R., Jones A.E. Etiology of illness in patients with severe sepsis admitted to the hospital from the emergency department. Clin Infect Dis. 2010 Mar 15;50(6):814-20. doi: 10.1086/650580 160. Contou D., Roux D., Jochmans S., Coudroy R. et al. Septic shock with no diagnosis at 24 hours: a pragmatic multicenter prospective cohort study. Crit Care. 2016 Nov 6;20(1):360. doi: 10.1186/s13054-016-1537-5 60 161. Liu V.X., Fielding-Singh V., Greene J.D., Baker J.M. et al. The Timing of Early Antibiotics and Hospital Mortality in Sepsis. Am J Respir Crit Care Med. 2017 Oct 1;196(7):856-863. doi: 10.1164/rccm.201609-1848OC 162. Wirz Y., Meier M.A., Bouadma L. et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: a patientlevel meta-analysis of randomized trials. Crit Care. 2018 Aug 15;22(1):191. doi: 10.1186/s13054-018-2125-7 163. Layios N., Lambermont B., Canivet J.L., Morimont P. et al. Procalcitonin usefulness for the initiation of antibiotic treatment in intensive care unit patients. Crit Care Med. 2012 Aug;40(8):2304-9. doi: 10.1097/CCM.0b013e318251517a 164. Jensen J.U., Hein L., Lundgren B., Bestle M.H. et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011 Sep;39(9):2048-58. doi: 10.1097/CCM.0b013e31821e8791 165. Wacker C., Prkno A., Brunkhorst F.M., Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013 May;13(5):426-35. doi: 10.1016/S1473-3099(12)70323-7 166. Gornet M., Leroux P., Ramont L., De Ruffi S. et al. Lack of admission biomarkers’ clinical utility in outcomes prediction in patients suspected with infection in the emergency department. Am J Emerg Med. 2021 Sep;47:109-114. doi: 10.1016/j.ajem.2021.03.050 167. Брико Н.И., Сидоренко С.В., Проценко Д.Н. Программа СКАТ (Стратегия Контроля Антимикробной Терапии) при оказании стационарной медицинской помощи // Программа СКАТ (Стратегия Контроля Антимикробной Терапии) При Оказании Стационарной Медицинской Помощи. Москва: Издательство «Перо», 2018. 156 p. 168. Aliberti S., Reyes L.F., Faverio P., Sotgiu G. et al. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infect Dis. 2016 Dec;16(12):1364-1376. doi: 10.1016/S1473-3099(16)30267-5 169. Rhee C., Kadri S.S., Dekker J.P., Danner R.L. et al. Prevalence of Antibiotic-Resistant Pathogens in Culture-Proven Sepsis and Outcomes Associated With Inadequate and BroadSpectrum Empiric Antibiotic Use. JAMA Netw Open. 2020 Apr 1;3(4):e202899. doi: 10.1001/jamanetworkopen.2020.2899 170. Callejo-Torre F., Bouza J.M.E., Astigarraga P.O., Del Corral M.J.C. et al. Risk factors for methicillin-resistant Staphylococcus aureus colonisation or infection in intensive care units and their reliability for predicting MRSA on ICU admission. Infez Med. 2016 Sep 1;24(3):201-9. 61 171. Shorr A.F., Myers D.E., Huang D.B., Nathanson B.H. et al. A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia. BMC Infect Dis. 2013 Jun 6;13:268.doi: 10.1186/1471-2334-13-268 172. Wooten D.A., Winston L.G. Risk factors for methicillin-resistant Staphylococcus aureus in patients with community-onset and hospital-onset pneumonia. Respir Med. 2013 Aug;107(8):1266-70. doi: 10.1016/j.rmed.2013.05.006 173. Gasch O., Camoez M., Domínguez M.A., Padilla B. et al. Predictive factors for early mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2013 Jun;68(6):1423-30. doi: 10.1093/jac/dkt016 174. Gasch O., Camoez M., Dominguez M.A., Padilla B. et al. Predictive factors for mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infection: impact on outcome of host, microorganism and therapy. Clin Microbiol Infect. 2013 Nov;19(11):1049-57. doi: 10.1111/1469-0691.12108 175. Lodise T.P., McKinnon P.S., Swiderski L., Rybak M.J. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003 Jun 1;36(11):1418-23. doi: 10.1086/375057 176. Paul M., Kariv G., Goldberg E., Raskin M. et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2010 Dec;65(12):2658-65. doi: 10.1093/jac/dkq373 177. Schramm G.E., Johnson J.A., Doherty J.A., Micek S.T., Kollef M.H. Methicillin-resistant Staphylococcus aureus sterile-site infection: The importance of appropriate initial antimicrobial treatment. Crit Care Med. 2006 Aug;34(8):2069-74. doi: 10.1097/01.CCM.0000227655.41566.3E 178. Cowley M.C., Ritchie D.J., Hampton N., Kollef M.H., Micek S.T. Outcomes Associated With De-escalating Therapy for Methicillin-Resistant Staphylococcus aureus in Culture-Negative Nosocomial Pneumonia. Chest. 2019 Jan;155(1):53-59. doi: 10.1016/j.chest.2018.10.014 179. Paonessa J.R., Shah R.D., Pickens C.I., Lizza B.D. et al. Rapid Detection of MethicillinResistant Staphylococcus aureus in BAL: A Pilot Randomized Controlled Trial. Chest. 2019 May;155(5):999-1007. doi: 10.1016/j.chest.2019.02.007 180. Rhodes A., Evans L.E., Alhazzani W., Levy M.M. et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017 Mar;43(3):304-377. doi: 10.1007/s00134-017-4683-6 181. Alevizakos M., Karanika S., Detsis M., Mylonakis E. Colonisation with extended-spectrum βlactamase-producing Enterobacteriaceae and risk for infection among patients with solid or haematological malignancy: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016 Dec;48(6):647-654. doi: 10.1016/j.ijantimicag.2016.08.021 62 182. Arulkumaran N., Routledge M., Schlebusch S., Lipman J. et al. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med. 2020 Feb;46(2):225-235. doi: 10.1007/s00134-020-05929-3 183. Gonçalves-Pereira J., Póvoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Crit Care. 2011;15(5):R206. doi: 10.1186/cc10441 184. de Jong E., van Oers J.A., Beishuizen A., Vos P. et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016 Jul;16(7):819-827. doi: 10.1016/S1473- 3099(16)00053-0 185. Roberts J.A., Abdul-Aziz M.H., Davis J.S., Dulhunty J.M. et al. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am J Respir Crit Care Med. 2016 Sep 15;194(6):681-91. doi: 10.1164/rccm.201601-0024OC 186. Vardakas K.Z., Voulgaris G.L., Maliaros A., Samonis G., Falagas M.E. Prolonged versus shortterm intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018 Jan;18(1):108-120. doi: 10.1016/S1473-3099(17)30615-1 187. Chumbita M., Puerta-Alcalde P., Gudiol C., Garcia-Pouton N. et al. Impact of Empirical Antibiotic Regimens on Mortality in Neutropenic Patients with Bloodstream Infection Presenting with Septic Shock. Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0174421. doi: 10.1128/AAC.01744-21 188. Roberts J.A., Paratz J., Paratz E., Krueger W.A., Lipman J. Continuous infusion of beta-lactam antibiotics in severe infections: a review of its role. Int J Antimicrob Agents. 2007 Jul;30(1):11- 8. doi: 10.1016/j.ijantimicag.2007.02.002 189. De Waele J.J., Lipman J., Carlier M., Roberts J.A. Subtleties in practical application of prolonged infusion of β-lactam antibiotics. Int J Antimicrob Agents. 2015 May;45(5):461-3. doi: 10.1016/j.ijantimicag.2015.01.007 190. Kollef M., Micek S., Hampton N., Doherty J.A., Kumar A. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012 Jun;54(12):1739-46. doi: 10.1093/cid/cis305 191. Garey K.W., Rege M., Pai M.P., Mingo D.E. et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 2006 Jul 1;43(1):25-31. doi: 10.1086/504810 192. Magill S.S., Edwards J.R., Bamberg W., Beldavs Z.G. et al. Multistate Point-Prevalence Survey of Health Care-Associated Infections. N Engl J Med. 2022 Jun 16;386(24):2348. doi: 10.1056/NEJMx210023 63 193. Méan M., Marchetti O., Calandra T. Bench-to-bedside review: Candida infections in the intensive care unit. Crit Care. 2008;12(1):204. doi: 10.1186/cc6212 194. Pappas P.G., Kauffman C.A., Andes D.R., Clancy C.J. et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016 Feb 15;62(4):e1-50. doi: 10.1093/cid/civ933 195. Marriott D.J.E., Playford E.G., Chen S., Slavin M. et al. Determinants of mortality in nonneutropenic ICU patients with candidaemia. Crit Care. 2009;13(4):R115. doi: 10.1186/cc7964 196. Morrell M., Fraser V.J., Kollef M.H. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005 Sep;49(9):3640-5. doi: 10.1128/AAC.49.9.3640-3645.2005 197. Clancy C.J., Nguyen M.H. Diagnosing Invasive Candidiasis. J Clin Microbiol. 2018 Apr 25;56(5):e01909-17. doi: 10.1128/JCM.01909-17 198. Kullberg B.J., Arendrup M.C. Invasive Candidiasis. N Engl J Med. 2015 Oct 8;373(15):1445- 56. doi: 10.1056/NEJMra1315399 199. Sandven P., Qvist H., Skovlund E., Giercksky K.E. et al. Significance of Candida recovered from intraoperative specimens in patients with intra-abdominal perforations. Crit Care Med. 2002 Mar;30(3):541-7. doi: 10.1097/00003246-200203000-00008 200. Hachem R., Hanna H., Kontoyiannis D., Jiang Y., Raad I. The changing epidemiology of invasive candidiasis: Candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer. 2008 Jun;112(11):2493-9. doi: 10.1002/cncr.23466 201. Horn D.L., Neofytos D., Anaissie E.J., Fishman J.A. et al. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009 Jun 15;48(12):1695-703. doi: 10.1086/599039 202. Andes D.R., Safdar N., Baddley J.W., Playford G. et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis. 2012 Apr;54(8):1110-22. doi: 10.1093/cid/cis021 203. Kett D.H., Azoulay E., Echeverria P.M., Vincent J.L. et al. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011 Apr;39(4):665-70. doi: 10.1097/CCM.0b013e318206c1ca 204. Cleveland A.A., Harrison L.H., Farley M.M., Hollick R. et al. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008-2013: results from population-based surveillance. PLoS One. 2015 Mar 30;10(3):e0120452. doi: 10.1371/journal.pone.0120452 64 205. Zhang A.Y., Shrum S., Williams S., Petnic S. et al. The Changing Epidemiology of Candidemia in the United States: Injection Drug Use as an Increasingly Common Risk Factor-Active Surveillance in Selected Sites, United States, 2014-2017. Clin Infect Dis. 2020 Oct 23;71(7):1732-1737. doi: 10.1093/cid/ciz1061 206. Blumberg H.M., Jarvis W.R., Soucie J.M., Edwards J.E. et al. Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis. 2001 Jul 15;33(2):177-86. doi: 10.1086/321811 207. Clumeck N., Sonnet J., Taelman H., Mascart-Lemone F. et al. Acquired immunodeficiency syndrome in African patients. N Engl J Med. 1984 Feb 23;310(8):492-7. doi: 10.1056/NEJM198402233100804 208. Chow J.K., Golan Y., Ruthazer R., Karchmer A.W. et al. Risk factors for albicans and nonalbicans candidemia in the intensive care unit. Crit Care Med. 2008 Jul;36(7):1993-8. doi: 10.1097/CCM.0b013e31816fc4cd 209. Ostrosky-Zeichner L., Pappas P.G. Invasive candidiasis in the intensive care unit. Crit Care Med. 2006 Mar;34(3):857-63. doi: 10.1097/01.CCM.0000201897.78123.44 210. Vergidis P., Clancy C.J., Shields R.K., Park S.Y. et al. Intra-Abdominal Candidiasis: The Importance of Early Source Control and Antifungal Treatment. PLoS One. 2016 Apr 28;11(4):e0153247. doi: 10.1371/journal.pone.0153247 211. Ballard N., Robley L., Barrett D., Fraser D., Mendoza I. Patients’ recollections of therapeutic paralysis in the intensive care unit. Am J Crit Care. 2006 Jan;15(1):86-94; quiz 95. 212. Horvath E.E., Murray C.K., Vaughan G.M., Chung K.K. et al. Fungal wound infection (not colonization) is independently associated with mortality in burn patients. Ann Surg. 2007 Jun;245(6):978-85. doi: 10.1097/01.sla.0000256914.16754.80 213. Murray C.K., Loo F.L., Hospenthal D.R., Cancio L.C. et al. Incidence of systemic fungal infection and related mortality following severe burns. Burns. 2008 Dec;34(8):1108-12. doi: 10.1016/j.burns.2008.04.007 214. Kim H., Chung S.P., Choi S.H., Kang G.H. et al. Impact of timing to source control in patients with septic shock: A prospective multi-center observational study. J Crit Care. 2019 Oct;53:176-182. doi: 10.1016/j.jcrc.2019.06.012 215. Martínez M.L., Ferrer R., Torrents E., Guillamat-Prats R. et al. Impact of Source Control in Patients With Severe Sepsis and Septic Shock. Crit Care Med. 2017 Jan;45(1):11-19. doi: 10.1097/CCM.0000000000002011 216. Azuhata T., Kinoshita K., Kawano D., Komatsu T. et al. Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal 65 perforation with associated septic shock. Crit Care. 2014 May 2;18(3):R87. doi: 10.1186/cc13854 217. Bloos F., Thomas-Rüddel D., Rüddel H., Engel C. et al. Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study. Crit Care. 2014 Mar 3;18(2):R42. doi: 10.1186/cc13755 218. Jimenez M.F., Marshall J.C. Source control in the management of sepsis Intensive Care Med. 2001;27 Suppl 1:S49-62. doi: 10.1007/pl00003797 219. Bloos F., Rüddel H., Thomas-Rüddel D., Schwarzkopf D. et al. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: a cluster randomized trial. Intensive Care Med. 2017 Nov;43(11):1602-1612. doi: 10.1007/s00134-017-4782-4 220. Buck D.L., Vester-Andersen M., Møller M.H. Surgical delay is a critical determinant of survival in perforated peptic ulcer. Br J Surg. 2013 Jul;100(8):1045-9. doi: 10.1002/bjs.9175 221. Dhala A., Sasangohar F., Kash B., Ahmadi N., Masud F. Rapid Implementation and Innovative Applications of a Virtual Intensive Care Unit During the COVID-19 Pandemic: Case Study. J Med Internet Res. 2020 Sep 3;22(9):e20143. doi: 10.2196/20143 222. Chao W.N., Tsai C.F., Chang H.R., Chan K.S. et al. Impact of timing of surgery on outcome of Vibrio vulnificus-related necrotizing fasciitis. Am J Surg. 2013 Jul;206(1):32-9. doi: 10.1016/j.amjsurg.2012.08.008 223. Karvellas C.J., Abraldes J.G., Zepeda-Gomez S., Moffat D.C. et al. The impact of delayed biliary decompression and anti-microbial therapy in 260 patients with cholangitis-associated septic shock. Aliment Pharmacol Ther. 2016 Oct;44(7):755-66. doi: 10.1111/apt.13764 224. Solomkin J.S., Mazuski J.E., Bradley J.S., Rodvold K.A. et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg Infect (Larchmt). 2010 Feb;11(1):79-109. doi: 10.1089/sur.2009.9930 225. Horlocker T.T., Wedel D.J., Rowlingson J.C., Enneking F.K. et al. Regional Anesthesia in the patient receiving antithrombotic or thrombolytic therapy; American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (Third Edition). Reg Anesth Pain Med. 2010 Jan-Feb;35(1):64-101. doi: 10.1097/aap.0b013e3181c15c70 226. Mermel L.A., Allon M., Bouza E., Craven D.E. et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009 Jul 1;49(1):1-45. doi: 10.1086/599376 227. Ярошецкий А.И., Грицан А.И., Авдеев С.Н., Власенко А.В. и соавт. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома (Клинические рекомендации Общероссийской общественной организации «Федерация анестезиологов 66 и реаниматологов»). Анестезиология и реаниматология. 2020;(2):5‑39. DOI: 10.17116/anaesthesiology20200215 228. Tasaka S., Ohshimo S., Takeuchi M., Yasuda H. et al. ARDS Clinical Practice Guideline 2021. J Intensive Care. 2022 Jul 8;10(1):32. doi: 10.1186/s40560-022-00615-6 229. Acute Respiratory Distress Syndrome Network, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801. 230. Brochard L., Roudot-Thoraval F., Roupie E., Delclaux C. et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med. 1998 Dec;158(6):1831-8. doi: 10.1164/ajrccm.158.6.9801044 231. Brower R.G., Shanholtz C.B., Fessler H.E., Shade D.M. et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999 Aug;27(8):1492-8. doi: 10.1097/00003246-199908000-00015 232. Bernard G.R., Artigas A., Brigham K.L., Carlet J. et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):818-24. doi: 10.1164/ajrccm.149.3.7509706 233. ARDS Definition Task Force; Ranieri V.M., Rubenfeld G.D., Thompson B.T. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20;307(23):2526-33. doi: 10.1001/jama.2012.5669 234. Papazian L., Aubron C., Brochard L., Chiche J.D. et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019 Jun 13;9(1):69. doi: 10.1186/s13613-019-0540-9 235. Laffey J.G., Bellani G., Pham T., Fan E. et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016 Dec;42(12):1865-1876. doi: 10.1007/s00134-016-4571-5 236. Villar J., Martín-Rodríguez C., Domínguez-Berrot A.M., Fernández L. et al. A Quantile Analysis of Plateau and Driving Pressures: Effects on Mortality in Patients With Acute Respiratory Distress Syndrome Receiving Lung-Protective Ventilation. Crit Care Med. 2017 May;45(5):843-850. doi: 10.1097/CCM.0000000000002330 237. Parsons P.E., Eisner M.D., Thompson B.T., Matthay M.A. et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005 Jan;33(1):1-6; discussion 230-2. doi: 10.1097/01.ccm.0000149854.61192.dc 67 238. Gajic O., Dara S.I., Mendez J.L., Adesanya A.O. et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004 Sep;32(9):1817-24. doi: 10.1097/01.ccm.0000133019.52531.30 239. Neto A.S., Nagtzaam L., Schultz M.J. Ventilation with lower tidal volumes for critically ill patients without the acute respiratory distress syndrome: a systematic translational review and meta-analysis. Curr Opin Crit Care. 2014 Feb;20(1):25-32. doi: 10.1097/MCC.0000000000000044 240. Goligher E.C., Hodgson C.L., Adhikari N.K.J., Meade M.O. et al. Lung Recruitment Maneuvers for Adult Patients with Acute Respiratory Distress Syndrome. A Systematic Review and MetaAnalysis. Ann Am Thorac Soc. 2017 Oct;14(Supplement_4):S304-S311. doi: 10.1513/AnnalsATS.201704-340OT 241. Gattinoni L., Caironi P., Cressoni M., Chiumello D. et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006 Apr 27;354(17):1775-86. doi: 10.1056/NEJMoa052052 242. Hodgson C.L., Cooper D.J., Arabi Y., King V. et al. Maximal Recruitment Open Lung Ventilation in Acute Respiratory Distress Syndrome (PHARLAP). A Phase II, Multicenter Randomized Controlled Clinical Trial. Am J Respir Crit Care Med. 2019 Dec 1;200(11):1363- 1372. doi: 10.1164/rccm.201901-0109OC 243. Cavalcanti A.B., Suzumura E.A., Laranjeira L.N., de Moraes Paisani D. et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2017 Oct 10;318(14):1335-1345. doi: 10.1001/jama.2017.14171 244. Suzumura E.A., Amato M.B.P., Cavalcanti A.B. Understanding recruitment maneuvers. Intensive Care Med. 2016 May;42(5):908-911. doi: 10.1007/s00134-015-4025-5 245. Smetkin A.A., Kuzkov V.V., Suborov E.V., Bjertnaes L.J., Kirov M.Y. Increased extravascular lung water reduces the efficacy of alveolar recruitment maneuver in acute respiratory distress syndrome. Crit Care Res Pract. 2012;2012:606528. doi: 10.1155/2012/606528 246. Caironi P., Cressoni M., Chiumello D., Ranieri M. et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2010 Mar 15;181(6):578-86. doi: 10.1164/rccm.200905-0787OC 247. Rygård S.L., Butler E., Granholm A., Møller M.H. et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018 Jul;44(7):1003-1016. doi: 10.1007/s00134-018-5197-6 248. Huang L., Zhang S., Chang W., Xia F. et al. Terlipressin for the treatment of septic shock in adults: a systematic review and meta-analysis. BMC Anesthesiol. 2020 Mar 5;20(1):58. doi: 10.1186/s12871-020-00965-4 249. Gordon A.C., Mason A.J., Thirunavukkarasu N., Perkins G.D. et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial. JAMA. 2016 Aug 2;316(5):509-18. doi: 10.1001/jama.2016.10485 250. Malbrain M.L.N.G., Van Regenmortel N., Saugel B., De Tavernier B. et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care. 2018 May 22;8(1):66. doi: 10.1186/s13613-018- 0402-x 251. Wang H., Cui N., Su L., Long Y. et al. Prognostic value of extravascular lung water and its potential role in guiding fluid therapy in septic shock after initial resuscitation. J Crit Care. 2016 Jun;33:106-13. doi: 10.1016/j.jcrc.2016.02.011 252. Vignon P., Begot E., Mari A., Silva S. et al. Hemodynamic Assessment of Patients With Septic Shock Using Transpulmonary Thermodilution and Critical Care Echocardiography: A Comparative Study. Chest. 2018 Jan;153(1):55-64. doi: 10.1016/j.chest.2017.08.022 253. Annane D., Renault A., Brun-Buisson C., Megarbane B. et al. Hydrocortisone plus Fludrocortisone for Adults with Septic Shock. N Engl J Med. 2018 Mar 1;378(9):809-818. doi: 10.1056/NEJMoa1705716 254. Venkatesh B., Finfer S., Cohen J., Rajbhandari D. et al. Adjunctive Glucocorticoid Therapy in Patients with Septic Shock. N Engl J Med. 2018 Mar 1;378(9):797-808. doi: 10.1056/NEJMoa1705835 255. Madsen M.B., Hjortrup P.B., Hansen M.B., Lange T. et al. Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): a randomised, blinded, placebo-controlled trial. Intensive Care Med. 2017 Nov;43(11):1585-1593. doi: 10.1007/s00134-017-4786-0 256. Welte T., Dellinger R.P., Ebelt H., Ferrer M. et al. Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with severe community-acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase II trial (CIGMA study). Intensive Care Med. 2018 Apr;44(4):438-448. doi: 10.1007/s00134-018-5143-7 257. Cook D.J., Fuller H.D., Guyatt G.H., Marshall J.C. et al. Risk factors for gastrointestinal bleeding in critically ill patients. Canadian Critical Care Trials Group. N Engl J Med. 1994 Feb 10;330(6):377-81. doi: 10.1056/NEJM199402103300601 258. Krag M., Marker S., Perner A., Wetterslev J. et al. Pantoprazole in Patients at Risk for Gastrointestinal Bleeding in the ICU. N Engl J Med. 2018 Dec 6;379(23):2199-2208. doi: 10.1056/NEJMoa1714919 259. Granholm A., Zeng L., Dionne J.C., Perner A. et al. Predictors of gastrointestinal bleeding in adult ICU patients: a systematic review and meta-analysis. Intensive Care Med.2019 Oct;45(10):1347-1359 69 260. D’Silva K.M., Mehta R., Mitchell M., Lee T.C. et al. Proton pump inhibitor use and risk for recurrent Clostridioides difficile infection: a systematic review and meta-analysis. Clin Microbiol Infect. 2021 Jan 16;S1198-743X(21)00035-5. doi: 10.1016/j.cmi.2021.01.008 261. Cook D., Crowther M., Meade M., Rabbat C. et al. Deep venous thrombosis in medical-surgical critically ill patients: prevalence, incidence, and risk factors. Crit Care Med. 2005 Jul;33(7):1565-71. doi: 10.1097/01.ccm.0000171207.95319.b2. 262. Alhazzani W., Lim W., Jaeschke R.Z., Murad M.H. et al. Heparin thromboprophylaxis in medical-surgical critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care Med. 2013 Sep;41(9):2088-98. doi: 10.1097/CCM.0b013e31828cf104 263. Kahn S.R., Lim W., Dunn A.S., Cushman M. et al. Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012 Feb;141(2 Suppl):e195Se226S. doi: 10.1378/chest.11-2296 264. Arabi Y.M., Al-Hameed F., Burns K.E.A., Mehta S. et al. Adjunctive Intermittent Pneumatic Compression for Venous Thromboprophylaxis. N Engl J Med. 2019 Apr 4;380(14):1305-1315. doi: 10.1056/NEJMoa1816150 265. Finfer S., Chittock D.R., Su S.Y., Blair D. et al. The NICE-SUGAR Study. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009 Mar 26;360(13):1283- 97. doi: 10.1056/NEJMoa0810625 266. Badawi O., Waite M.D., Fuhrman S.A., Zuckerman I.H. et al. Association between intensive care unit-acquired dysglycemia and in-hospital mortality. Crit Care Med. 2012 Dec;40(12):3180-8. doi: 10.1097/CCM.0b013e3182656ae5 267. Krinsley J.S. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008 Nov;36(11):3008-13. doi: 10.1097/CCM.0b013e31818b38d2 268. Siegelaar S.E., Hermanides J., Oudemans-van Straaten H.M., van der Voort P.H.J. et al. Mean glucose during ICU admission is related to mortality by a U-shaped curve in surgical and medical patients: a retrospective cohort study. Crit Care. 2010;14(6):R224. doi: 10.1186/cc9369 269. Lu Z., Tao G., Sun X., Zhang Y. et al. Association of Blood Glucose Level and Glycemic Variability With Mortality in Sepsis Patients During ICU Hospitalization. Front Public Health. 2022 Apr 29;10:857368. doi: 10.3389/fpubh.2022.857368 270. American Diabetes Association. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018 Jan;41(Suppl 1):S144-S151. doi: 10.2337/dc18-S014 271. Van den Berghe G., Wouters P., Weekers F., Verwaest C. et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001 Nov 8;345(19):1359-67. doi: 10.1056/NEJMoa011300 70 272. Brunkhorst F.M., Engel C., Bloos F., Meier-Hellmann A. et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008 Jan 10;358(2):125-39. doi: 10.1056/NEJMoa070716 273. Preiser J.C., Devos P., Ruiz-Santana S., Mélot C. et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009 Oct;35(10):1738-48. doi: 10.1007/s00134-009- 1585-2 274. Griesdale D.E.G., de SouzaR.J., van Dam R.M., Heyland D.K. et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009 Apr 14;180(8):821-7. doi: 10.1503/cmaj.090206 275. Song F., Zhong L.J., Han L., Xie G.H. et al. Intensive insulin therapy for septic patients: a metaanalysis of randomized controlled trials. Biomed Res Int. 2014;2014:698265. doi: 10.1155/2014/698265 276. Jaber S., Paugam C., Futier E., Lefrantet J.-Y. et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, openlabel, randomised controlled, phase 3 trial. Lancet (London, England). Lancet. 2018 Jul 7;392(10141):31-40. doi: 10.1016/S0140-6736(18)31080-8 277. Fujii T., Luethi N., Young P.J., Frei D.R. et al; VITAMINS Trial Investigators: Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: The VITAMINS randomized clinical trial. JAMA. 2020 Feb 4;323(5):423-431. doi: 10.1001/jama.2019.22176 278. Zarbock A., Kellum J.A., Schmidt C., Van Aken H. et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA. 2016 May;315(20):2190-2199. doi: 10.1001/jama.2016.5828 279. Network VNARFT; Palevsky P.M., Zhang J.H., O’Connor T.Z. et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008 Jul 3;359(1):7-20. doi: 10.1056/NEJMoa0802639 280. Payen D., Mateo J., Cavaillon J.M., Fraisse F. et al. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009 Mar;37(3):803-10. doi: 10.1097/CCM.0b013e3181962316 281. Ricci Z, Romagnoli S, Reis T, Bellomo R, Ronco C. Hemoperfusion in the intensive care unit. Intensive Care Med. 2022 Oct;48(10):1397-1408.doi:10.1007/s00134-022-06810-1. 282. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–126. 71 Available at: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-GuidelineEnglish.pdf 283. Zarbock A., Nadim M.K., Pickkers P., Gomez H. et al. Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol. 2023 Jun;19(6):401-417.doi: 10.1038/s41581-023-00683-3 284. Ostermann M., Bellomo R., Burdmann E.A. et al. Conference Participants Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference Kidney Int. 2020 Aug;98(2):294-309. https://doi:10.1016/j.kint.2020.04.020 285. Putzu A., Schorer R., Lopez-Delgado J. C. et al. Blood Purification and Mortality in Sepsis and Septic Shock A Systematic Review and Metaanalysis of Randomized Trials. Anesthesiology. 2019 Sep;131(3):580-593. https://doi.org/10.1097/ALN.0000000000002820. 286. Snow T.A.C., Littlewood S., Corredor C., Singer M., Arulkumaran N. Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Purif. 2021;50(4-5):462-472. doi: 10.1159/000510982 287. Chen J-Y., Chen Y-Y., Pan H-C. et al. Accelerated versus watchful waiting strategy of kidney replacement therapy for acute kidney injury: a systematic review and meta-analysis of randomized clinical trials. Clinical Kidney Journal. 2022 Jan 14;15(5):974-984. https:/doi.org/10.1093/ckj/sfac011 288. Gaudry S., Hajage D., Martin-Lefevre L. et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, openlabel, randomised, controlled trial. Lancet. 2021 Apr 3;397(10281):1293-1300. doi: 10.1016/S0140-6736(21)00350-0 289. Kishikawa T., Fujieda H., Sakaguchi H. Comprehensive analysis of cytokine adsorption properties of polymethyl methacrylate (PMMA) membrane material. J Artif Organs. 2022 Dec;25(4):343-349. https://doi.org/10.1007/s10047-022-01323-6 290. Ferrari F., Husain-Syed F., Milla P., Lorenzin A. et al. Clinical Assessment of Continuous Hemodialysis with the Medium Cutoff EMiC®2 Membrane in Patients with Septic Shock. Blood Purif. 2022;51(11):912-922. doi: 10.1159/000522321. 291. Lumlertgul N., Hall A., Camporota L., Crichton S., Ostermann M. Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study). Crit Care. 2021 Jan 28;25(1):39. doi: 10.1186/s13054-021- 03476-x. 292. Broman M.E., Hansson F., Vincent J.L., Bodelsson M et al. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: A randomized crossover double-blind study. PLoS One. 2019 Aug 1;14(8):e0220444. doi: 10.1371/journal.pone.0220444 72 293. Schwindenhammer V., Girardot T., Chaulier K., Grégoire A. et al. oXiris use in septic shock: experience of two French centres. Blood Purif. 2019;47 Suppl 3:1-7. doi: 10.1159/000499510 294. Guan M., Wang H., Tang X., Zhao Y., Wang F. et al. Continuous Renal Replacement Therapy With Adsorbing Filter oXiris in Acute Kidney Injury With Septic Shock: A Retrospective Observational Study. Front Med (Lausanne). 2022 Apr 8;9:789623. doi: 10.3389/fmed.2022.789623. 295. Ye Z., Wang Y., Ge L. et al. Comparing Renal Replacement Therapy Modalities in Critically Ill Patients With Acute Kidney Injury: A Systematic Review and Network Meta-Analysis. Crit Care Explor. 2021 May 12;3(5):e0399. doi: 10.1097/CCE.0000000000000399. 296. Rabindranath K., Adams J., Macleod A.M. et al. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev. 2007 Jul 18;(3):CD003773. doi: 10.1002/14651858.CD003773.pub3 297. Hawchar F., László I., Öveges N., Trásy D. et al. Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study. J Crit Care. 2019 Feb;49:172- 178. https://doi.org/10.1016/j.jcrc.2018.11.003 298. Kogelmann K., Hübner T., Schwameis F., Drüner M. et al. First Evaluation of a New Dynamic Scoring System Intended to Support Prescription of Adjuvant CytoSorb Hemoadsorption Therapy in Patients with Septic Shock. J Clin Med. 2021 Jun 30;10(13):2939. https://doi.org/10.3390/jcm10132939 299. Arslan B., Kucukbingoz C., Kutuk M., Gunduz HM. A single-center experience with resin adsorption hemoperfusion combined with continuous veno-venous hemofiltration for septic shock patients. Medicine Science. 2019; 8(2):390-394. https://doi.org/10.5455/medscience.2018.07.8950 300. Kaçar C.K., Uzundere O., Kandemir D., Yektaş A. Efficacy of HA330 Hemoperfusion Adsorbent in Patients Followed in the Intensive Care Unit for Septic Shock and Acute Kidney Injury and Treated with Continuous Venovenous Hemodiafiltration as Renal Replacement Therapy. Blood Purif. 2020;49(4):448-456. https://doi.org/10.1159/000505565 301. Dellinger R.P., Bagshaw S.M., Antonelli M. et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA. 2018 Oct 9;320(14):1455-1463. doi: 10.1001/jama.2018.14618 302. Klein D.J., Foster D., Walker P.M. et al. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018 Dec;44(12):2205-2212. doi: 10.1007/s00134-018-5463-7 73 303. Fujimori K., Tarasawa K., Fushimi K. Effectiveness of polymyxin B hemoperfusion for sepsis depends on the baseline SOFA score: A nationwide observational study. Ann Intensive Care. 2021 Sep 26;11(1):141.doi: 10.1186/s13613-021-00928-z. 304. Rey S., Kulabukhov V., Popov A., Nikitina O. et al. Hemoperfusion using the LPS-selective mesoporous polymeric adsorbent in septic shock: a multicenter randomized clinical trial. Shock. 2023 Jun 1;59(6):846-854.doi: 10.1097/SHK.0000000000002121. 305. Busund R., Koukline V., Utrobin U., Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002 Oct;28(10):1434-9. doi: 10.1007/s00134-002-1410-7 306. Rimmer E., Houston B.L., Kumar A. et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2014 Dec 20;18(6):699. doi: 10.1186/s13054-014-0699-2 307. Keith P.D., Wells A.H., Hodges J. et al. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: a single-center experience. Critical Care. 2020 Aug 24;24(1):518. doi.org/10.1186/s13054-020-03241-6 308. David S., Russell L., Castro P., van de Louw A. et al. Research priorities for therapeutic plasma exchange in critically ill patients. Intensive Care Med Exp. 2023 May 8;11(1):26. https://doi.org/10.1186/s40635-023-00510-w. 309. Белкин А. А., Алашеев А. М., Белкин В. А., Белкина Ю. Б. и соавт. Реабилитация в отделении реанимации и интенсивной терапии (РеабИТ). Методические рекомендации Союза реабилитологов России и Федерации анестезиологов и реаниматологов. Вестник интенсивной терапии им. А. И. Салтанова. 2022;2:7–40. https://doi.org/10.21320/1818- 474X-2022-2-7-40 310. Rhee C., Yu T., Wang R., Kadri S.S. et al. Association Between Implementation of the Severe Sepsis and Septic Shock Early Management Bundle Performance Measure and Outcomes in Patients With Suspected Sepsis in US Hospitals. JAMA Netw Open 2021 Dec 1;4(12):e2138596 doi: 10.1001/jamanetworkopen.2021.38596 311. Madushani R.W.M.A., Patel V., Loftus T., Ren Y. et al. Early Biomarker Signatures in Surgical Sepsis. J Surg Res. 2022 Sep;277:372-383. doi: 10.1016/j.jss.2022.04.052 312. van Engelen T.S.R., Wiersinga W.J., Scicluna B.P., van der Poll T. Biomarkers in Sepsis. Crit Care Clin. 2018 Jan;34(1):139-152. doi: 10.1016/j.ccc.2017.08.010 313. Varis E., Pettilä V., Poukkanen M., Jakob S.M. et al. Evolution of Blood Lactate and 90-Day Mortality in Septic Shock. A Post Hoc Analysis of the FINNAKI Study. Shock. 2017 May;47(5):574-581. doi: 10.1097/SHK.0000000000000772 314. Yu B., Tian H., Hu Z., Zhao C. et al. Comparison of the effect of fluid resuscitation as guided either by lactate clearance rate or by central venous oxygen saturation in patients with sepsis . 74 Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2013 Oct;25(10):578-83. doi: 10.3760/cma.j.issn.2095-4352.2013.10.002 315. Seymour C.W., Liu V.X., Iwashyna T. J., Brunkhorst F. M. et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):762-74. doi: 10.1001/jama.2016.0288 316. Ghanpur R., Santamaria J, Dixon B. Plastic blood gas syringes and measurement error in central venous oxygen saturations. Shock. 2016 Sep;46(3):287-9. doi: 10.1097/SHK.0000000000000622 317. Vogler J., Hart L., Holmes S., Sciarretta J.D., Davis J.M. Rapid Source-Control Laparotomy: Is There a Mortality Benefit in Septic Shock? Surg Infect (Larchmt). 2018 Feb/Mar;19(2):225- 229. doi: 10.1089/sur.2017.191 318. Ordoñez C.A., Parra M., Garcia A.F., Rodriguez F. et al. Damage Control Surgery may be a Safe Option for Severe Non Trauma Peritonitis Management: Proposal of a New Decision Making Algorithm. World J Surg. 2021 Apr;45(4):1043-1052. DOI:10.1007/s00268-020- 05854-y 319. Демко А. Е., Шляпников С. А., Батыршин И. М., Осипов А. В. и соавт. Применение тактики «Damage control» в лечении пациентов с распространенным перитонитом и септическим шоком. Вестник хирургии. 2021;180 (6): 74–77. DOI: 10.24884/0042-4625- 2021-180-6-74-79

Для продолжения работы требуется Регистрация
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
Список литературы
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу

Оглавление

Данный блок поддерживает скрол*