Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

9. Список литературы

  1. Федеральный закон от 21.11.2011 N 323-ФЗ (ред. от 03.04.2017) "Об основах охраны здоровья граждан в Российской Федерации"
  2. Singer M., Deutschman C.S., Seymour C.W. et al. The Third International Consensus defnitions for sepsis and septic shock (Sepsis-3)// JAMA. – 2016. – Vol. 315, №8. – P. 801-810.
  3. Сепсис: классификация клинико-диагностическая концепция и лечение. 4-е издание, дополненное и переработанное. Под ред. Б.Р. Гельфанда. — М.: ООО «МИА-МЕД», 2017. - 408 с.;
  4. WHO. Sepsis: key facts. April 19, 2018. https://www.who.int/news-room/ fact-sheets/detail/sepsis (accessed Nov 28, 2019)
  5. Vincent J-L Dear SIRS, I’m sorry to say that. I don’t like you. Crit Care Med 1997; 25:1765- 1768
  6. Napolitano LM. Sepsis 2018: definitions and guideline changes. Surg Infect (Larchmt). 2018;19: 117- 125
  7. Martin G., Mannino D., Eaton S. et al. Epidemiology of sepsis in the United States from 1979 through 2000.NEJM 2003; 348:1546-1554
  8. Руднов В.А., Бельский Д.В., Дехнич А.В. и др. Исследовательская группа РИОРИТа. Распространенность инфекций в отделениях реанимации России//Клиническая Микробиология и Антимикробная Химиотерапия. 2011; 13(4):294 -303
  9. Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med 2016; 193(3): 259-72.
  10. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlapbach LJ, Reinhart K, Kissoon N. The global burden of paediatric and neonatal sepsis: a systematic review. The Lancet Respiratory medicine 2018; 6(3): 223-30
  11. Global report on the epidemiology and burden of sepsis: current evidence, identifying gaps and future directions. Geneva: World Health Organization; 2020
  12. Vincent J-L. Highlighting the huge global burden of sepsis, Anaesthesia Critical Care & Pain Medicine, Volume 39, Issue 2, 2020, Pages 171-172
  13. Imaeda, T., Nakada, Ta., Takahashi, N. et al. Trends in the incidence and outcome of sepsis using data from a Japanese nationwide medical claims database-the Japan Sepsis Alliance (JaSA) study group-Crit Care 25, 338 (2021). https://doi.org/10.1186/s13054-021-03762-8
  14. Yan T.et al. Hospital-acquired lower respiratory tract infections among high risk hospitalized patients in a tertiary care teaching hospital in China: An economic burden analysis// Journal of Infection and Public Health 11 (2018) 507–513
  15. Torio CM (AHRQ), Andrews RM (AHRQ). National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. HCUP Statistical Brief #160. August 2013. Agency for Healthcare Research and Quality.
  16. Vincent J-L, Rello J., Marshall J. et al. International study on the prevalence and outcome of infection in ICU. J A M A, 2009, vol.302, 2323- 2329. Pmid 19952319.
  17. Melamed A. The burden of sepsis-associated mortality in USA from 1999 to 2005: an analysis of multiple-cause-of-death date. Crit Care 2009; 13: R28
  18. Vincent JL, Sakr Y, Singer M, et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA. 2020;323(15):1478-1487. doi:10.1001/jama.2020.2717
  19. Flaatten H. Epidemiology of sepsis in Norway in 1999.Crit Care 2004;8:180-184
  20. Козлов Р.С. Азизов И.С., Дехнич А.В., Иванчик Н.В., Кузьменков А.Ю., Мартинович А.А., Микотина А.В., Сухорукова М.В., Трушин И.В., Эйдельштейн М.В. In vitro чувствительность к биапенему и другим карбапенемам клинических изолятов Pseudomonas aeruginosa, Acinetobacter spp. и представителей порядка Enterobacterales, выделенных у госпитализированных пациентов в различных регионах России. Клиническая микробиология и антимикробная химиотерапия. 2021; 23(3):280 - 291. DOI: 10.36488/cmac.2021.3.280-291.
  21. Кузьменков А.Ю., Виноградова А.Г., Трушин И.В., Эдельштейн М.В., Авраменко А.А., Дехнич А.В., Козлов Р.С. АMRmap – система мониторинга антибиотикорезистентности в России//Клиническая микробиология и антимикробная химиотерапия. 2021; 23(2):198-204. 10.36488/cmac.2021.2.198-204
  22. Karlsson S., Varpula M., Ruokonen E. et al. Incidence, treatment and outcome of severe sepsis in ICU- treated adults in Finland: Finnsepsis study. Intensive Care Med 2007;33: 435-443.
  23. van Gestel A., Bakker J., Veraart CP. Et al. Prevalence and incidence of severe sepsis in Dutch ICU. Crit Care 2004; 8:153-162.
  24. Bernajo-Martin JF., de Lejantaza D., Rello G. et al. Th1 and Th17 hypercytokinemia as early host response segnature in severe pandemic influenza. Crit Care 2009; 13: R201.
  25. Bernajo-Martin JF., Atevala G., de Lejantaza D., et al. Persistance of proinflammatory response after severe respiratory syncytial virus disease in children. J Allergy Clin Immunol 2007; 119:1547-1550.
  26. Cameron C., Cameron M., Bernajo-Martin JF. Et al. Gene expression annalysis of host innate immune response during lethal H5N1infection in ferrets J Virol 2008; 82:11308 -11317.
  27. Cameron M., Bernajo-Martin JF., Danesh A. Human pathogenesis of severe acute respiratory syndrome (SARS). 2008; 133:13-19
  28. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med. 2020; 382:727–33.
  29. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy. JAMA. 2020;323:1545
  30. Б.А.Джантемиров, М.Б.Темрезов, А.С.Джанкезов. Сепсис. Теория и клиническая практика. Клинические лекции.-сИз-во «Эстен Медикал». - СПб.-2021.- 182 с.
  31. Guillermo Ortiz-Ruiz, Carmelo Dueñas-Castell. Sepsis. - 2018.- 3 еd., -171 p. -Springer, New York, DOI: https://doi.org/10.1007/978-1-4939-7334-7;
  32. Bone R.С. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. // Critical Care Medicine1996; vol. 24, P. 163-72
  33. Deitch E.A., Vincent J.-l.., Windsor A. Sepsis and multiple organ dysfunction: a multidisciplinary approach. W.B. Saunders; 2002.
  34. Matics T.J., Sanchez-Pinto L.N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children. JAMA Pediatr., 2017, vol. 171, pp. e172352
  35. Singer M., De Santis V., Vitale D. et al. Multiorgan failure is an adptive, endorine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 2004; 364:545-548.
  36. Wunderink R., Waterer G. Genetics of sepsis and pneumonia. Curr Opin Care 2003; 9:384-389.
  37. Sorensen TI., Nielsen GG., Andersen PK. Et al. Genetic and environmental influence on premature deathin audult adoptees. NEJM 1988; 318:727-732.
  38. Seymour CW, Liu VX, Iwashyna TJ et al (2016) Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):762–774.
  39. Fernando SM, Tran A, Taljaard M et al (2018) Prognostic accuracy of the quick sequential organ failure assessment for mortality in patients with suspected infection: a systematic review and meta- analysis. Ann Intern Med 168(4):266–275$
  40. Herwanto V, Shetty A, Nalos M et al (2019) Accuracy of quick sequential organ failure assessment score to predict sepsis mortality in 121 studies including 1,716,017 individuals: a systematic review and meta-analysis. Crit Care Explor. 1(9):e 00434
  41. Serafim R, Gomes JA, Salluh J et al (2018) A comparison of the Quick-SOFA and systemic inflammatory response syndrome criteria for the diagnosis of sepsis and prediction of mortality: a systematic review and meta-analysis. Chest 153(3):646–655$
  42. Cinel I, Kasapoglu US, Gul F et al (2020) The initial resuscitation of septic shock. J Crit Care 57:108– 117
  43. Evans L., Rhodes A., Alhazzani W., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Critical Care Medicine. 2021; 49: e1063-e1143. doi: 10.1097/CCM.0000000000005337
  44. Samsudin I, Vasikaran SD. Clinical Utility and Measurement of Procalcitonin. Clin Biochem Rev. 2017;38(2):59-68
  45. Schuetz P, Beishuizen A, Broyles M, Ferrer R, Gavazzi G, Gluck EH, González Del Castillo J, Jensen JU, Kanizsai PL, Kwa ALH, Krueger S, Luyt CE, Oppert M, Plebani M, Shlyapnikov SA, Toccafondi G, Townsend J, Welte T, Saeed K. Procalcitonin (PCT)-guided antibiotic stewardship: an international experts consensus on optimized clinical use. Clin Chem Lab Med. 2019;57(9):1308-1318
  46. Meisner M. Pathobiochemistry and clinical use of procalcitonin. Clin Chim Acta. 2002;323:17–29
  47. Bassetti S, Tschudin-Sutter S, Egli A, Osthoff M. Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur J Intern Med. 2022: S0953-6205(22)00039-5
  48. Egi M, Ogura H, Yatabe T. et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Journal of Intensive Care (2021) 9:53 doi.org/10.1186/s40560- 021-00555-7
  49. Brouwer MC, Tunkel AR, McKhann GM 2nd, Van De Beek D. Brain abscess. N. Engl. J. Med. 2014; 371: 447–56
  50. Maroldi R, Farina D, Ravanelli M, Lombardi D, Nicolai P. Emergency Imaging Assessment of Deep Neck Space Infections. Semin Ultrasound CT MR. 2012; 33: 432–42.
  51. Jolles H, Henry DA, Roberson JP, Cole TJ, Spratt JA. Mediastinitis following median sternotomy: CT findings. Radiology. 1996 Nov;201(2):463-6.
  52. Doddoli C, Trousse D, Avaro JP, Djourno XB, Giudicelli R, Fuentes P, Thomas P. [Acute mediastinitis except in a context of cardiac surgery. Rev Pneumol Clin. 2010;66(1):71-80
  53. Li JS, Sexton DJ, Mick N, et al. Proposed Modifications to the Duke Criteria for the Diagnosis of Infective Endocarditis. Clin. Infect. Dis. 2000; 30: 633–8
  54. Habib G, Lancellotti P, Antunes MJ, et al. ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC)Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European As. Eur. Heart J. 2015; 2015: 3075–128
  55. Mayumi T, Yoshida M, Tazuma S, et al. The Practice Guidelines for Primary Care of Acute Abdomen 2015. Jpn. J. Radiol. 2016; 34: 80–115
  56. Kiriyama S, Kozaka K, Takada T, et al. Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholangitis (with videos). J. Hepatobiliary Pancreat. Sci.2018; 25: 17–30
  57. Багненко С.Ф., Савелло В.Е., Гольцов В.Р. Лучевая диагностика заболеваний поджелудочной железы: панкреатит острый / Лучевая диагностика и терапия в гастроэнтерологии: национальное руководство (гл. ред. тома Г.Г.Кармазановский). –М.: ГЭОТАР- Медиа, 2014. – С. 349-365.
  58. Leppäniemi A, Tolonen M, Tarasconi A, et al. 2019 WSES guidelines for the management of severe acute pancreatitis. World J Emerg Surg.2019; 14:27
  59. Wagenlehner FM, Lichtenstern C, Rolfes C, et al. Diagnosis and management for urosepsis. Int. J. Urol. 2013; 20: 963–70
  60. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin. Infect. Dis. 2014; 59: 147–59
  61. FerradaP. Image-based resuscitation of the hypotensive patient with cardiac ultrasound. An evidence-based review Journal of Trauma and Acute Care Surgery: March 2016 - Volume 80 - Issue 3 - p 511-518 doi: 10.1097/TA.0000000000000941.
  62. Яковлев С.В., Журавлева М.В., Проценко Д.Н., Белобородов В.Б., Брико Н.И., Брусина Е.Б., Гусаров В.Г., Елисеева Е.В., Замятин М.Н., Зырянов С.К., Кукес В.Г., Попов Д.А., Сидоренко С.В., Суворова М.П. Программа СКАТ (стратегия контроля антимикробной терапии) при оказании стационарной медицинской помощи. Методические рекомендации для лечебно- профилактических учреждений Москвы. Хирургия. Приложение к журналу Consilium Medicum. 2017. № 1. С. 15-51
  63. Kirm TJ, Weinstein MP. Update on blood cultures: how to obtain, process, report, and interpret. Clin Microbiol Infect. 2013;19(6):513-520
  64. Peri AM, Stewart A, Hume A, Irwin A, Harris PNA. New Microbiological Techniques for the Diagnosis of Bacterial Infections and Sepsis in ICU Including Point of Care. Curr Infect Dis Rep. 2021;23(8):12;
  65. Белобородов В.Б., Голощапов О.В., Гусаров В.Г., Дехнич А.В., Замятин М.Н., Зубарева Н.А., Зырянов С.К., Камышова Д.А., Климко Н.Н., Козлов Р.С., Кулабухов В.В., Петрушин М.А., Полушин Ю.С., Попов Д.А., Руднов В.А., Сидоренко С.В., Соколов Д.В., Шлык И.В., Эйдельштейн М.В., Яковлев С.В. Методические рекомендации Российской некоммерческой общественной организации «Ассоциация анестезиологов-реаниматологов», Межрегиональной общественной организации «Альянс клинических химиотерапевтов и микробиологов», Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии  (МАКМАХ),  общественной  организации  «Российский  Сепсис  Форум» «Диагностика и антимикробная терапия инфекций, вызванных полирезистентными штаммами микроорганизмов» (обновление 2022 г.). Вестник анестезиологии и реаниматологии. 2022;19(2):84-114.
  66. Schorr C, Odden A, Evans L et al (2016) Implementation of a multicenter performance improvement program for early detection and treatment of severe sepsis in general medical–surgical wards. J Hosp Med 11(S1):S32–S39
  67. Damiani E, Donati A, Serafini G et al (2015) Effect of performance improvement programs on compliance with sepsis bundles and mortality: a systematic review and meta‑analysis of observational studies. PLoS One 10(5):e0125827
  68. Simon Lambden, Pierre Francois Laterre, Mitchell M. Levy and Bruno Francois. The SOFA score— development, utility and challenges of accurate assessment in clinical trials//Critical Care (2019) 23:374. https://doi.org/10.1186/s13054-019-2663-7;
  69. Khie Chen Lie, Chuen-Yen Lau, Nguyen Van Vinh Chau, T. Eoin West, Direk Limmathurotsakul. Utility of SOFA score, management and outcomes of sepsis in Southeast Asia: a multinational multicenter prospective observational study//Journal of Intensive Care (2018) 6:9. https://doi.org/10.1186/s40560-018-0279-7
  70. Lambden S., Laterre P.F., Levy M.M., Francois B. The SOFA score—development, utility and challenges of accurate assessment in clinical trials //Crit Care 23, 374 (2019). https://doi.org/10.1186/s13054-019-2663-7,
  71. Астафьева М.Н., Руднов В.А., Кулабухов В.В., Багин В.А., Зубарева Н.А., Трибулёв М.А., Мухачева С.Ю. Использование шкалы qSOFA в прогнозе исхода у пациентов с сепсисом в ОРИТ (результаты российского многоцентрового исследования РИСЭС) // Вестник анестезиологии и реаниматологии. 2018;15(5):22-29. https://doi.org/10.21292/2078-5658-2018- 15-5-22-29
  72. Kaur B, Kaur S, Yaddanapudi LN et al (2019) Comparison between invasive and noninvasive blood pressure measurements in critically ill patients receiving inotropes. Blood Press Monit 24(1):24–29.
  73. Lehman LW, Saeed M, Talmor D et al (2013) Methods of blood pressure measurement in the ICU. Crit Care Med 41(1):34–40.
  74. Riley LE, Chen GJ, Latham HE (2017) Comparison of noninvasive blood pressure monitoring with invasive arterial pressure monitoring in medical ICU patients with septic shock. Blood Press Monit 22(4):202–207
  75. Vincent J (2019) Arterial, central venous, and pulmonary artery catheters. In: JE P (ed) Critical care medicine: principles and diagnosis and management in the adult, 5th edn. Elsevier, Philadelphia, pp 40–49
  76. LeDoux D, Astiz ME, Carpati CM et al (2000). Effects of perfusion pressure on tissue perfusion in septic shock // Crit Care Med 28(8):2729–2732
  77. Connors AF Jr, Speroff T, Dawson NV, et al: The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 1996; 276:889–897 414.
  78. Iberti TJ, Fischer EP, Leibowitz AB, et al: A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA 1990; 264:2928–2932
  79. Osman D, Richard C, Warszawski J, Anguel N, et al; French Pulmonary Artery Catheter Study Group: Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2003; 290:2713–2720
  80. Wheeler AP, Bernard GR, Thompson BT, et al: Pulmonary artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354(21):2213–2224
  81. Harvey S, Harrison DA, Singer M, et al; PAC-Man study collaboration: Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 2005; 366:472–477
  82. Shah MR, Hasselblad V, Stevenson LW, et al: Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 2005; 294:1664–1670
  83. Levy B (2006) Lactate and shock state: the metabolic view. Curr Opin Crit Care 12(4):315–321
  84. Gu WJ, Zhang Z, Bakker J (2015) Early lactate clearance‑guided therapy in patients with sepsis: a meta‑analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med 41(10):1862–1863;
  85. Simpson SQ, Gaines M, Hussein Y et al (2016) Early goal‑directed therapy for severe sepsis and septic shock: a living systematic review. J Crit Care 36:43–48, SSC-2021
  86. Cecconi M, Hernandez G, Dunser M et al (2019) Fluid administration for acute circulatory dysfunction using basic monitoring: narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med 45(1):21–32;
  87. Lara B, Enberg L, Ortega M et al (2017) Capillary refill time during fluid resuscitation in patients with sepsis‑related hyperlactatemia at the emergency department is related to mortality. PLoS One 12(11):e0188548
  88. Hernandez G, Ospina‑Tascon GA, Damiani LP et al (2019) Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28‑day mortality among patients with septic shock: the ANDROMEDA‑SHOCK Randomized Clinical Trial. JAMA 321(7):654–664
  89. Andrews B, Semler MW, Muchemwa L et al (2017) Effect of an early resuscitation protocol on in‑hospital mortality among adults with sepsis and hypotension: a randomized clinical trial. JAMA 318(13):1233–1240,
  90. Shrestha GS, Dunser M, Mer M (2017) The forgotten value of the clinical examination to individualize and guide fluid resuscitation in patients with sepsis. Crit Care 21(1):306
  91. Fleischmann-Struzek C, Mellhammar L, Rose N. et al (2020) Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis // Intensive Care Med 46(8):1552–1562
  92. Cherpanath TG, Hirsch A, Geerts BF et al (2016) Predicting fluid responsiveness by passive leg raising: a systematic review and meta‑analysis of 23 clinical trials. Crit Care Med 44(5):981–991
  93. Misango D, Pattnaik R, Baker T et al (2017) Haemodynamic assessment and support in sepsis and septic shock in resource‑limited settings. Trans R Soc Trop Med Hyg 111(11):483–489
  94. Armstrong BA, Betzold RD, May AK. Sepsis and Septic Shock Strategies// Surg. Clin. North. Am. 2017;97(6):1339-1379. doi:10.1016/j.suc.2017.07.003.; Patel A, Nunnally ME. The Septic patient\\ Anesthesiol. Clin. 2020; 38(4): 889-899. doi: 10.1016/j.anclin.2020.08.004.
  95. Heming N, Azabou E., Cazaumayou X et al. Sepsis in the critically ill patient: current and emerging management strategies\\ Expert Review of Anti-infective Therapy. 2021; 19(5) :635-647. doi: 10.1080/14787210.2021.1846522.
  96. De Waele J, De Bus L. How to treat infections in a surgical intensive care unit\\BMC. Infect. Dis. 2014;14:193. doi: 10.1186/1471-2334-14-193
  97. Zhou X, Su LX, Zhang JH et al. Rules of anti-infection therapy for sepsis and septic shock\\ Chin Med J (Engl). 2019;132(5):589-596. doi: 10.1097/CM9.0000000000000101
  98. De Waele JJ. Early source control in sepsis. Langenbeck’s Arch. Surg. 2010; 395: 489–94
  99. Bloos F, Ruddel H, Thomas-Ruddel D et al MEDUSA study group. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: A cluster randomized trial. Intensive Care Med. 2017; 43:1602–1612.
  100. Kim H, Chung SP, Choi SH et al (2019) Impact of timing to source control in patients with septic shock: a prospective multi-center observational study. J Crit Care 53:176–182.
  101. Martinez ML, Ferrer R, Torrents E et al (2017) Impact of Source Control in Patients With Severe Sepsis and Septic Shock. Crit Care Med 45(1):11–19
  102. Azuhata T, Kinoshita K, Kawano D et al (2014) Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal perforation with associated septic shock. Crit Care 18(3):R87.
  103. Bloos F, Thomas-Ruddel D, Ruddel H et al (2014) Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study. Crit Care 18(2):R42
  104. Buck DL, Vester-Andersen M, Moller MH (2013) Surgical delay is a critical determinant of survival in perforated peptic ulcer. Br J Surg 100(8):1045–1049.
  105. Chao WN, Tsai CF, Chang HR et al (2013) Impact of timing of surgery on outcome of Vibrio vulnificus-related necrotizing fasciitis. Am J Surg 206(1):32–39.
  106. Karvellas CJ, Abraldes JG, Zepeda-Gomez S et al (2016) The impact of delayed biliary decompression and anti-microbial therapy in 260 patients with cholangitis-associated septic shock. Aliment Pharmacol Ther 44(7):755–766.
  107. Moss RL, Musemeche CA, Kosloske AM (1996) Necrotizing fasciitis in children: prompt recognition and aggressive therapy improve survival. J Pediatr Surg 31(8):1142–1146.
  108. Wong CH, Chang HC, Pasupathy S et al (2003) Necrotizing fasciitis: clinical presentation, microbiology, and determinants of mortality. J Bone Joint Surg Am 85(8):1454–1460
  109. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 45(3):486–552.
  110. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377.
  111. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E, Burry L, Cecconi M, Centofanti J, Coz Yataco A, De Waele J, Dellinger RP, Doi K, Du B, Estenssoro E, Ferrer R, Gomersall C, Hodgson C, Møller MH, Iwashyna T, Jacob S, Kleinpell R, Klompas M, Koh Y, Kumar A, Kwizera A, Lobo S, Masur H, McGloughlin S, Mehta S, Mehta Y, Mer M, Nunnally M, Oczkowski S, Osborn T, Papathanassoglou E, Perner A, Puskarich M, Roberts J, Schweickert W, Seckel M, Sevransky J, Sprung CL, Welte T, Zimmerman J, Levy M. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021 Nov;47(11):1181-1247. doi: 10.1007/s00134-021- 06506-y. Epub 2021 Oct 2. PMID: 34599691; PMCID: PMC8486643.
  112. Jimenez MF, Marshall JC, International Sepsis F (2001) Source control in the management of sepsis. Intensive Care Med 27(Suppl 1):S49-62
  113. Хирургические инфекции кожи и мягких тканей. Российские национальные рекомендации. 2-е переработанное и дополненное издание. Б.Р. Гельфанд и коллектив авторов. М, 2015.- 111 с.
  114. Острый парапроктит. Клинические рекомендации. Одобрено научно-практическим советом Министерства здравоохранения РФ,2021.- 29 с.
  115. Sartelli M, Guirao X, Hardcastle TC et al. 2018 WSES/SIS-E consensus conference: recommendations for the management of skin and soft-tissue infections. World J Emerg Surg. 2018;13:58.
  116. Sartelli M,Coccolini F, Kluger Y et al. WSES/GAIS/WSIS/SIS-E/AAST global clinical pathways for patients with skin and soft tissue infections. World J Emerg Surg. 2022;17(1):3.
  117. Sartelli et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intraabdominalinfections World J Emerg Surg (2017) 12:29.
  118. Острый перитонит. Национальные клинические рекомендации, 2017. - 91 с. http://xn---- 9sbdbejx7bdduahou3a5d.xn--p1ai/upload/nkr_peritonit_ispr_1-3.pdf
  119. Inukai, K., Usui, A., Yamada, M. et al. Open abdominal management for perforative peritonitis with septic shock: a retrospective analysis on usefulness of a standardized treatment protocol. Eur J Trauma Emerg Surg 47, 93–98 (2021).
  120. Дивертикулярная болезнь Клинические рекомендации, 2021. Одобрено Научно-практическим Советом Минздрава РФ- 48с.
  121. Острый холецистит. Клинические рекомендации, 2021. Одобрено Научно-практическим Советом Минздрава РФ- 58с.;
  122. Прободная язва. Клинические рекомендации, 2021. Одобрено Научно-практическим Советом Минздрава РФ- 54с.;
  123. Корольков, А.Ю. Критерии диагностики и лечебная тактика при остром холангите и билиарном сепсисе: взгляд с современных позиций. / А.Ю. Корольков, Д.Н. Попов, М.А. Китаева, А.О. Танцев // Вестник Российской Военно-Медицинской Академии. – 2019. - №1. - С. 40-43.
  124. Jean-Rémi Lavillegrand, Emmanuelle Mercier-Des-Rochettes, Elodie Baron, Frédéric Pène, Damien Contou, et al. Acute cholangitis in intensive care units: clinical, biological, microbiological spectrum and risk factors for mortality: a multicenter study. Critical Care, BioMed Central, 2021, 25 (1), pp.49.
  125. Ramchandani Mohan, Pal Partha and Nageshwar D. Endoscopic management of acute cholangitis as a result of common bile duct stones, Digestive Endoscopy 2017; 29 (Suppl. 2): 78–87;
  126. Острый панкреатит. Клинические рекомендации, 2020. Одобрено Научно-практическим Советом Минздрава РФ- 66 с.
  127. van Brunschot S, van Grinsven J, van Santvoort HC, et al. Endoscopic or surgical step-up approach for infected necrotizing pancreatitis: a multicentre randomised trial. Lancet 2018; 391: 51–8.
  128. Hollemans RA, Bakker OJ, Boermeester MA, et al. Superiority of step-up approach vs open necrosectomy in longterm follow-up of patients with necrotizing pancreatitis. Gastroenterology 2019; 156: 1016–26.
  129. Sinonquel P, Laleman W, Wilmer A. Advances in acute pancreatitis. Curr Opin Crit Care. 2021 1;27(2):193-200. doi: 10.1097/MCC.0000000000000806
  130. Клинические рекомендации по диагностике и лечению воспалительных заболеваний позвоночника и спинного мозга, 14.10.2015, Красноярск, Ассоциация нейрохирургов России
  131. Отит средний острый Клинические рекомендации, 2021. Одобрено Научно-практическим Советом Минздрава РФ- 49 с.
  132. Паратонзиллярный абсцесс. Клинические рекомендации, 2021. Одобрено Научно- практическим Советом Минздрава РФ- 45 с;
  133. Смирнова Н. А. Диагностика, лечение и прогнозирование сепсиса у больных гнойно- воспалительными заболеваниями лор-органов: дис. – Научно-исслед. клинич. ин-т оториноларингологии, 2015;
  134. Вennett, S., Meghji, S., Syeda, F., & Bhat, N. (2021). Neurological Complications of Acute Rhinosinusitis:   Meningitis.   Allergy   &   Rhinology,   12,   215265672199625. doi:10.1177/2152656721996258;
  135. Turhal G, Eraslan S, Kaya İ, Midilli R, Karcı B, Göde S. Procalcitonin Levels in Chronic Rhinosinusitis //Turk Arch Otorhinolaryngol. 2019 Sep;57(3):113-116. doi: 10.5152/tao.2019.4343. Epub 2019 Sep 1. PMID: 31620691;
  136. Пальчун В. Оториноларингология. Национальное руководство. ГЭОТАР-Медиа 2020. 1012 с.
  137. Akopov A., Egorov V., Furak J. Bacterial lung infections. In: ESTS textbook of Thoracic Surgery. Ed. J.Kuzdzal.- Krakow, 2014.- P.517-521;
  138. Григорьев Е. Г. Острый абсцесс и гангрена легкого / Е. Г. Григорьев, В. И. Капорский // Лекции по госпитальной хирургии : в 3-х томах / под ред. Е.Г. Григорьева. – Иркутск: Иркутский научный центр хирургии и травматологии, 2016. – С. 94-111;
  139. Эмпиема плевры. Клиника, диагностика, лечение / Е. А. Цеймах, А. В. Левин, А. М. Самуйленков [и др.]; ФАЗСР РФ; ГОУ ВПО АГМУ. – Барнаул: Алтайский государственный медицинский университет Министерства здравоохранения Российской Федерации, 2006. – 49 с;
  140. Абакумов М.М. Медиастинит. Медицинская книга, 2020.- 296 с.
  141. Инфекционный эндокардит и инфекция внутрисердечных устройств//Российские клинические рекомендации. - 2021. - https://cr.minzdrav.gov.ru/recomend/54_2;
  142. Nagpal A, Sohail M, Steckelberg JM. Prosthetic valve endocarditis: state of the heart. Clin Invest 2012;2:803–17;
  143. Funakoshi S, Kaji S, Yamamuro A, et al. Impact of early surgery in the active phase on long-term outcomes in left-sided native valve infective endocarditis. J Thorac Cardiovasc Surg 2011;142: 836– 42;
  144. Lalani T, Chu VH, Park LP, et al. In-hospital and 1–year mortality in patients undergoing early surgery for prosthetic valve endocarditis. JAMA Intern Med 2013;173:1495–504;
  145. Attaran S, Chukwuemeka A, Punjabi PP, et al. Do all patients with prosthetic valve endocarditis need surgery? Interact Cardiovasc Thorac Surg 2012;15:1057–61;
  146. Athan E, Chu VH, Tattevin P, et al. Clinical characteristics and outcome of infective endocarditis involving implantable cardiac devices. JAMA 2012;307:1727–35;
  147. Ye X. Incidence and costs of bleeding-related complications in French hospitals following surgery for various diagnoses. BMC health services research. 2013;13:1:186;
  148. Dohmen PM, Gabbieri D, Weymann A, et al. Reduction in surgical site infection in patients treated with microbial sealant prior to coronary artery bypass graft surgery: a case-control study. J Hosp Infect 2009;72:119–26;
  149. Grauhan O, Navasardyan A, Tutkun B, et al. Effect of surgical incision management on wound infections in a poststernotomy patient population. Int Wound J 2014;11(Suppl 1):6–9;
  150. Kowalewski M, Pawliszak W, Zaborowska K, et al. Gentamicin-collagen sponge reduces the risk of sternal wound infections after heart surgery: metaanalysis. J Thorac Cardiovasc Surg 2015;149:1631– 40.e6
  151. Националльные клинические рекомендации «Острый пиелонефрит», российское общество урологов, 2019; Урология. Российские клинические рекомендации / под ред. Ю. Г. Аляева, П. В. Глыбочко, Д. Ю. Пушкаря. — М. : ГЭОТАР- Медиа, 2016. — 496 с.
  152. Solomkin JS, Mazuski JE, Bradley JS et al. Diagnosis and management of complicated intra- abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis.2010; 50(2):133–164 .
  153. Mermel LA, Allon M, Bouza E et al (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis 49(1):1–45.
  154. Lorente L, Martin MM, Vidal P et al (2014) Should central venous catheter be systematically removed in patients with suspected catheter related infection? Crit Care 18(5):564
  155. Rothrock S.G., Cassidy D.D., Barneck M., et al. Outcome of immediate versus early antibiotics in severe sepsis and septic shock: a systematic review and meta-analysis. Annals of Emergency Medicine. 2020; 76(4):427-441.
  156. Ferrer R, Artigas A, Suarez D, et al.; Edusepsis Study Group. Effectiveness of treatments for severe sepsis: A prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009; 180:861– 866.
  157. Kalil AC, Johnson DW, Lisco SJ, et al. Early goal-directed therapy for sepsis: A novel solution for discordant survival outcomes in clinical trials. Crit Care Med. 2017; 45:607–614.
  158. Branch-Elliman W, O’Brien W, Strymish J, et al. Association of duration and type of surgical prophylaxis with antimicrobial-associated adverse events. JAMA Surg. 2019; 154:590–598.
  159. Teshome BF, Vouri SM, Hampton N, et al. Duration of exposure to antipseudomonal β-lactam antibiotics in the critically ill and development of new resistance. Pharmacotherapy. 2019; 39:261– 270.
  160. Tamma PD, Avdic E, Li DX, et al. Association of adverse events with antibiotic use in hospitalized patients. JAMA Intern Med. 2017; 177:1308–1315.
  161. Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017; 376:2235–2244
  162. Liu VX, Fielding-Singh V, Greene JD, et al. The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med. 2017; 196:856–863
  163. Peltan ID, Brown SM, Bledsoe JR, et al. ED door-to-antibiotic time and long-term mortality in sepsis. Chest. 2019; 155:938–946
  164. Rothrock SG, Cassidy DD, Barneck M, et al. Outcome of immediate versus early antibiotics in severe sepsis and septic shock: A systematic review and meta-analysis. Ann Emerg Med. 2020; 76:427–441.
  165. Ko BS, Choi SH, Kang GH, et al.; Korean Shock Society (KoSS) Investigators. Time to antibiotics and the outcome of patients with septic shock: A propensity score analysis. Am J Med. 2020; 133:485– 491.e4.
  166. Abe T, Kushimoto S, Tokuda Y, et al.; JAAM FORECAST group. Implementation of earlier antibiotic administration in patients with severe sepsis and septic shock in Japan: A descriptive analysis of a prospective observational study. Crit Care. 2019; 23:360.
  167. Gaieski DF, Mikkelsen ME, Band RA, et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010; 38:1045–1053.
  168. Ryoo SM, Kim WY, Sohn CH, et al. Prognostic value of timing of antibiotic administration in patients with septic shock treated with early quantitative resuscitation. Am J Med Sci. 2015; 349:328–333
  169. Puskarich MA, Trzeciak S, Shapiro NI, et al.; Emergency Medicine Shock Research Network (EMSHOCKNET). Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med. 2011; 39:2066– 2071.
  170. Weinberger J, Rhee C, Klompas M. A critical analysis of the literature on time-to-antibiotics in suspected sepsis. J Infect Dis. 2020; 222(Suppl 2):S110–S118
  171. Alam N, Oskam E, Stassen PM, et al.; PHANTASi Trial Investigators and the ORCA (Onderzoeks Consortium Acute Geneeskunde) Research Consortium the Netherlands. Prehospital antibiotics in the ambulance for sepsis: A multicentre, open label, randomised trial. Lancet Respir Med. 2018; 6:40–50
  172. Gasch O, Camoez M, Dominguez MA, et al.; REIPI/GEIH Study Groups. Predictive factors for mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infection: Impact on outcome of host, microorganism and therapy. Clin Microbiol Infect. 2013; 19:1049–1057.
  173. Gasch O, Camoez M, Domínguez MA, et al.; REIPI/GEIH Study Groups. Predictive factors for early mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2013; 68:1423–1430.
  174. Lodise TP, McKinnon PS, Swiderski L, et al. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003; 36:1418–1423.
  175. Paul M, Kariv G, Goldberg E, et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2010; 65:2658– 2665.
  176. Schramm GE, Johnson JA, Doherty JA, et al. Methicillin-resistant Staphylococcus aureus sterile-site infection: The importance of appropriate initial antimicrobial treatment. Crit Care Med. 2006; 34:2069–2074.
  177. Griffin AT, Peyrani P, Wiemken TL, et al. Empiric therapy directed against MRSA in patients admitted to the intensive care unit does not improve outcomes in community-acquired pneumonia. Infection. 2013; 41:517–523.
  178. Gómez J, García-Vázquez E, Baños R, et al. Predictors of mortality in patients with methicillin- resistant Staphylococcus aureus (MRSA) bacteraemia: The role of empiric antibiotic therapy. Eur J Clin Microbiol Infect Dis. 2007; 26:239–245.
  179. Fang CT, Shau WY, Hsueh PR, et al. Early empirical glycopeptide therapy for patients with methicillin-resistant Staphylococcus aureus bacteraemia: Impact on the outcome. J Antimicrob Chemother. 2006; 57:511–519.
  180. Yoon YK, Park DW, Sohn JW, et al. Effects of inappropriate empirical antibiotic therapy on mortality in patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia: A propensity-matched analysis. BMC Infect Dis. 2016; 16:331.
  181. Kim SH, Park WB, Lee KD, et al. Outcome of inappropriate initial antimicrobial treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2004; 54:489–497.
  182. Khatib R, Saeed S, Sharma M, et al. Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Kett DH, Cano E, Quartin AA, et al.; Improving Medicine through Pathway Assessment of Critical Therapy of Hospital-Acquired Pneumonia (IMPACT-HAP) Investigators. Implementation of guidelines for management of possible multidrug-resistant pneumonia in intensive care: An observational, multicentre cohort study. Lancet Infect Dis. 2011; 11:181–189
  183. Rhee C, Kadri SS, Dekker JP, et al.; CDC Prevention Epicenters Program. Prevalence of antibiotic- resistant pathogens in culture-proven sepsis and outcomes associated with inadequate and broad- spectrum empiric antibiotic use. JAMA Netw Open. 2020; 3:e202899
  184. Sjövall F, Perner A, Hylander Møller M. Empirical mono- versus combination antibiotic therapy in adult intensive care patients with severe sepsis - a systematic review with meta-analysis and trial sequential analysis. J Infect. 2017; 74:331–344.
  185. Brunkhorst FM, Oppert M, Marx G, et al.; German Study Group Competence Network Sepsis (SepNet). Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis- related organ dysfunction in patients with severe sepsis: A randomized trial. JAMA. 2012; 307:2390– 2399.
  186. Мониторинг антибиотикорезистентности с использованием платформы AMRcloud. Практическое руководство. Под ред. член-кор. РАН Р.С. Козлова; отв.ред. А.Г. Виноградова, А.Ю. Кузьменков, И.В. Труши – Смоленск: СГМУ, 2021 – 160 с. ISBN 978-5-9903685-9-0/
  187. Rottier WC, Bamberg YR, Dorigo-Zetsma JW, et al. Predictive value of prior colonization and antibiotic use for third-generation cephalosporin-resistant enterobacteriaceae bacteremia in patients with sepsis. Clin Infect Dis. 2015; 60:1622–1630
  188. Alevizakos M, Karanika S, Detsis M, et al. Colonisation with extended-spectrum β-lactamase- producing Enterobacteriaceae and risk for infection among patients with solid or haematological malignancy: A systematic review and meta-analysis. Int J Antimicrob Agents. 2016; 48:647–654
  189. Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016; 62:e1– 50.
  190. Magill SS, Edwards JR, Bamberg W, et al.; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014; 370:1198–1208.
  191. Bassetti M, Righi E, Ansaldi F, et al. A multicenter study of septic shock due to candidemia: Outcomes and predictors of mortality. Intensive Care Med. 2014; 40:839–845.
  192. Kollef M, Micek S, Hampton N, et al. Septic shock attributed to Candida infection: Importance of empiric therapy and source control. Clin Infect Dis. 2012; 54:1739–1746.
  193. Garey KW, Rege M, Pai MP, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: A multi-institutional study. Clin Infect Dis. 2006; 43:25–31. Marriott DJ, Playford EG, Chen S, et al.; Australian Candidaemia Study. Determinants of mortality in non- neutropenic ICU patients with candidaemia. Crit Care. 2009; 13:R115
  194. Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: A potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005; 49:3640–3645.
  195. Timsit JF, Azoulay E, Schwebel C, et al.; EMPIRICUS Trial Group. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, candida colonization, and multiple organ failure: The EMPIRICUS randomized clinical trial. JAMA. 2016; 316:1555–1564.
  196. Freifeld AG, Bow EJ, Sepkowitz KA, et al.; Infectious Diseases Society of America. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011; 52:e56–e93.
  197. Taplitz RA, Kennedy EB, Bow EJ, et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America Clinical Practice Guideline Update. J Clin Oncol. 2018; 36:1443–1453.
  198. Goncalves-Pereira J, Povoa P (2011) Antibiotics in critically ill patients:a systematic review of the pharmacokinetics of beta-lactams. Crit Care 15(5):R206. Mohd Hafiz AA, Staatz CE, Kirkpatrick CM et al (2012) Continuous infusion vs. bolus dosing: implications for beta-lactam antibiotics. MinervaAnestesiol 78(1):94–104230
  199. Roberts JA, Abdul-Aziz MH, Davis JS et al (2016) Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 194(6):681–691.
  200. Vardakas KZ, Voulgaris GL, Maliaros A et al (2018) Prolonged versus short-term intravenous infusion of antipseudomonal beta-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis 18(1):108–120
  201. De Waele JJ, Lipman J, Carlier M et al (2015) Subtleties in practical application of prolonged infusion of beta-lactam antibiotics. Int J Antimicrob Agents 45(5):461–463
  202. Lipman J, Brett SJ, De Waele JJ et al (2019) A protocol for a phase 3 multicentre randomised controlled trial of continuous versus intermittent beta-lactam antibiotic infusion in critically ill patients with sepsis: BLING III. Crit Care Resusc 21(1):63–68
  203. Roberts JA, Abdul-Aziz MH, Lipman J et al (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14(6):498–509.
  204. Veiga RP, Paiva JA (2018) Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit Care 22(1):233
  205. Nelson NR, Morbitzer KA, Jordan JD et al (2019) The impact of capping creatinine clearance on achieving therapeutic vancomycin concentrations in neurocritically ill patients with traumatic brain injury. Neurocrit Care 30(1):126–131.
  206. Gregoire N, Marchand S, Ferrandiere M et al (2019) Population pharmacokinetics of daptomycin in critically ill patients with various degrees of renal impairment. J Antimicrob Chemother 74(1):117– 125.
  207. Ulldemolins M, Roberts JA, Rello J et al (2011) The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50(2):99–110.
  208. Roberts JA, Joynt G, Lee A, et al (2020) The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational SMARRT Study. Clin Infect Dis 72(8):1369–1378
  209. Bougle A, Dujardin O, Lepere V et al (2019) PHARMECMO: Therapeutic drug monitoring and adequacy of current dosing regimens of antibiotics in patients on Extracorporeal Life Support. Anaesth Crit Care Pain Med 38(5):493–497.
  210. Cheng V, Abdul-Aziz MH, Roberts JA et al (2019) Overcoming barriers to optimal drug dosing during ECMO in critically ill adult patients. Expert Opin Drug Metab Toxicol 15(2):103–112
  211. Guilhaumou R, Benaboud S, Bennis Y et al (2019) Optimization of the treatment with beta-lactam antibiotics in critically ill patientsguidelines from the French Society of Pharmacology and Therapeutic (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and theFrench Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d’Anesthesie et Reanimation-SFAR). Crit Care 23(1):104
  212. Wong G, Taccone F, Villois P et al (2020) beta-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J Antimicrob Chemother 75(2):429–433
  213. Fleuren LM, Roggeveen LF, Guo T et al (2019) Clinically relevant pharmacokinetic knowledge on antibiotic dosing among intensive care professionals is insufficient: a cross- sectional study. Crit Care 23(1):185
  214. Ehmann L, Zoller M, Minichmayr IK et al (2019) Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis. Int J Antimicrob Agents 54(3):309–317
  215. Williams P, Beall G, Cotta MO et al (2020) Antimicrobial dosing in critical care: a pragmatic adult dosing nomogram. Int J Antimicrob Agents 55(2):105837
  216. Arulkumaran N, Routledge M, Schlebusch S et al (2020) Antimicrobialassociated harm in critical care: a narrative review. Intensive Care Med 46(2):225–235
  217. Tabah A, Bassetti M, Kollef MH et al (2020) Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med 46(2):245–265
  218. Leone M, Bechis C, Baumstarck K et al (2014) De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med 40(10):1399–1408
  219. De Bus L, Depuydt P, Steen J, et al (2020) Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: the DIANA study. Intensive Care Med 46(7):1404–1417
  220. Fernandez-Lazaro CI, Brown KA, Langford BJ et al (2019) Late-career physicians prescribe longer courses of antibiotics. Clin Infect Dis 69(9):1467–1475.
  221. Wald-Dickler N, Spellberg B (2019) Short-course antibiotic therapyreplacing constantine units with “Shorter Is Better.” Clin Infect Dis 69(9):1476–1479
  222. Klompas M, Calandra T, Singer M (2018) Antibiotics for sepsis-finding the equilibrium. JAMA 320(14):1433–1434
  223. Prescott HC, Iwashyna TJ (2019) Improving sepsis treatment by embracing diagnostic uncertainty. Ann Am Thorac Soc 16(4):426–429
  224. Kalil AC, Metersky ML, Klompas M et al (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American Thoracic Society. Clin Infect Dis 63(5):e61–e111.
  225. Vaughn VM, Flanders SA, Snyder A et al (2019) Excess antibiotic treatment duration and adverse events in patients hospitalized with pneumonia: a multihospital cohort study. Ann Intern Med 171(3):153–163
  226. Eliakim-Raz N, Yahav D, Paul M et al (2013) Duration of antibiotic treatment for acute pyelonephritis and septic urinary tract infection—7 days or less versus longer treatment: systematic review and meta- analysis of randomized controlled trials. J Antimicrob Chemother 68(10):2183–2191
  227. Yahav D, Franceschini E, Koppel F et al (2019) Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled Trial. Clin Infect Dis 69(7):1091–1098
  228. Sawyer RG, Claridge JA, Nathens AB et al (2015) Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med 372(21):1996–2005
  229. Fernandez-Lazaro CI, Brown KA, Langford BJ et al (2019) Late-career physicians prescribe longer courses of antibiotics. Clin Infect Dis 69(9):1467–1475
  230. Corona A, Bertolini G, Ricotta AM et al (2003) Variability of treatment duration for bacteraemia in the critically ill: a multinational survey. J Antimicrob Chemother 52(5):849– 852
  231. Minderhoud TC, Spruyt C, Huisman S et al (2017) Microbiological outcomes and antibiotic overuse in Emergency Department patients with suspected sepsis. Neth J Med 75(5):196–203
  232. Klein Klouwenberg PM, Cremer OL, van Vught LA et al (2015) Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care 19:319
  233. Tidswell R, Parker T, Brealey D, et al (2020) Sepsis–the broken code how accurately is sepsis being diagnosed? J Infect 81(6):e31–e32
  234. Chen C, Kollef MH. Targeted fluid minimization following initial resuscitation in septic shock: A pilot study. Chest. 2015; 148:1462–1469
  235. Corl KA, Prodromou M, Merchant RC, et al. The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS): A randomized pilot study. Crit Care Med. 2019; 47:951–959.
  236. Hjortrup PB, Haase N, Bundgaard H, et al.; CLASSIC Trial Group; Scandinavian Critical Care Trials Group. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: The CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016; 42:1695–1705.
  237. Macdonald SPJ, Keijzers G, Taylor DM, et al.; REFRESH trial investigators. Restricted fluid resuscitation in suspected sepsis associated hypotension (REFRESH): A pilot randomised controlled trial. Intensive Care Med. 2018; 44:2070–2078.
  238. Semler MW, Janz DR, Casey JD, et al. Conservative fluid management after sepsis resuscitation: A pilot randomized trial. J Int Care Med. 2019; 35:1374–1382
  239. Rowan KM, Angus DC, Bailey M, et al. Early, goal-directed therapy for septic shock - A patient-level meta-analysis. N Engl J Med. 2017; 376:2223–2234
  240. Marik P.E., Lemson J. Fluid responsiveness: An evolution of our understanding/ // Br J Anaesth.- 2014.- Vol. 112.- P. 620–622
  241. Marik P., Belomo R. A rational approach to fluid therapy in sepsis//Br. J. Anaesth. – 2015.
  242. Samoni S. [et al.] Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording/ // Critical Care. – 2016.- 20:95
  243. Rochwerg B, Alhazzani W, Sindi A, et al.; Fluids in Sepsis and Septic Shock Group. Fluid resuscitation in sepsis: A systematic review and network meta-analysis. Ann Intern Med. 2014; 161:347–355].
  244. Semler MW, Self WH, Wanderer JP, et al.; SMART Investigators and the Pragmatic Critical Care Research Group. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018; 378:829–839.
  245. Brown RM, Wang L, Coston TD, et al. Balanced crystalloids versus saline in sepsis. A secondary analysis of the SMART clinical trial. Am J Respir Crit Care Med. 2019; 200:1487–1495.
  246. Kuttab HI, Lykins JD, Hughes MD, et al. Evaluation and predictors of fluid resuscitation in patients with severe sepsis and septic shock. Crit Care Med. 2019; 47:1582–1590
  247. Delaney, Anthony P. Dan, Arina; McCaffrey, John MD,; Finfer, Simon. The role of albumin as a resuscitation fluid for patients with sepsis: A systematic review and meta-analysis*, Critical Care Medicine: February 2011 - Volume 39 - Issue 2 - p 386-391.
  248. Wiedermann C., Joannidis M. Albumin Replacement in Severe Sepsis or Septic Shock .N Engl J Med 2014; 371:83-84
  249. Martin GS, Bassett P. Crystalloids vs. colloids for fluid resuscitation in the intensive care unit: A systematic review and meta-analysis. J Crit Care. 2019; 50:144–154.
  250. Park CHL, de Almeida JP, de Oliveira GQ, et al. Lactated Ringer’s versus 4% albumin on lactated Ringer’s in early sepsis therapy in cancer patients: A pilot single-center randomized trial. Crit Care Med. 2019; 47:e798–e805.
  251. Kakaei FHS, Asheghvatan A, Zarrintan S, et al. Albumin as a resuscitative fluid in patients with severe sepsis: A randomized clinical trial. Adv Biosci Clin Med. 2017; 5:9–16.
  252. Vincent JL, De Backer D, Wiedermann CJ. Fluid management in sepsis: The potential beneficial effects of albumin. J Crit Care. 2016 Oct;35:161-7.
  253. Deutschman C. S., Tracey K.J. Sepsis: current dogma and new perspectives/ // Immunity.- 2014.- Vol.40 (4).- P. 463-475
  254. Rochwerg B, Alhazzani W, Gibson A et al (2015) Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta‑analysis. Intensive Care Med 41(9):1561–1571
  255. Moeller C, Fleischmann C, Thomas‑Rueddel D et al (2016) How safe is gelatin? A systematic review and meta‑analysis of gelatin‑containing plasma expanders vs crystalloids and albumin. J Crit Care 35:75–83
  256. Annane D, Siami S, Jaber S et al (2013) Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310(17):1809–1817
  257. Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Eng J Med. 1999; 340:409–417.
  258. Holst LB, Haase N, Wetterslev J, et al.; TRISS Trial Group; Scandinavian Critical Care Trials Group. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014; 371:1381–1391.
  259. Hirano Y, Miyoshi Y, Kondo Y, et al. Liberal versus restrictive red blood cell transfusion strategy in sepsis or septic shock: A systematic review and meta-analysis of randomized trials. Crit Care. 2019; 23:262.
  260. Bergamin FS, Almeida JP, Landoni G, et al. Liberal versus restrictive transfusion strategy in critically ill oncologic patients: The transfusion requirements in critically ill oncologic patients randomized controlled trial. Crit Care Med. 2017; 45:766–773
  261. ANDROMEDA-SHOCK Randomized Clinical Trial.” JAMA vol. 321,7 (2019): 654-664;
  262. Ospina-Tascón GA, Hernandez G, Alvarez I, et al. Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis. Crit Care. 2020 Feb 14; 24 (1):52
  263. Gordon AC, Perkins GD, Singer M et al (2016) Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med 375(17):1638–1648
  264. Bhattacharjee S, Soni KD, Maitra S et al (2017) Levosimendan does not provide mortality beneft over dobutamine in adult patients with septic shock: a meta-analysis of randomized controlled trials. J Clin Anesth 39:67–72
  265. Belletti A., Benedetto U., Biondi-Zoccai G., Leggieri C., Silvani P., Angelini G.D., Zangrillo A., Landoni G.-The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials, Journal of Critical Care, Volume 37, 2017, Pages 91-98
  266. Meng JB, Hu MH, Lai ZZ, et al. Levosimendan Versus Dobutamine in Myocardial Injury Patients with Septic Shock: A Randomized Controlled Trial. Med Sci Monit. 2016;22:1486- 1496. Published 2016 May 3. doi:10.12659/msm.898457/
  267. Liu D.H., Ning Y.L., Lei, Yan Y.Y., Chen J., Liu Y.Y., Lin X.F., Yang Zh.Q., Xian Sh.X., Chen W.T. Levosimendan versus dobutamine for sepsis-induced cardiac dysfunction: a systematic review and meta-analysis (2021)//https://www.nature.com/articles/s41598-021- 99716-9
  268. Liu ZM, Chen J, Kou Q et al (2018) Terlipressin versus norepinephrine as infusion in patients with septic shock: a multicentre, randomised, double-blinded trial. Intensive Care Med 44(11):1816–182567
  269. Asfar P, Meziani F, Hamel JF et al (2014) High versus low blood‑pressure target in patients with septic shock. N Engl J Med 370(17):1583–1593
  270. Hylands M, Moller MH, Asfar P et al (2017) A systematic review of vasopressor blood pressure targets in critically ill adults with hypotension. Can J Anaesth 64(7):703–715
  271. Lamontagne F, Meade MO, Hebert PC et al (2016) Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med 42(4):542–550;
  272. Lamontagne F, Richards‑Belle A, Thomas K et al (2020) Effect of reduced exposure to vasopressors on 90‑day mortality in older critically ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA 323(10):938–949
  273. Avni T, Lador A, Lev S et al (2015) Vasopressors for the treatment of septic shock: systematic review and meta‑analysis. PLoS One 10(8):e0129305
  274. Regnier B, Safran D, Carlet J et al (1979) Comparative haemodynamic effects of dopamine and dobutamine in septic shock. Intensive Care Med 5(3):115–120
  275. Girardis M, Busani S, Damiani E et al (2016) Effect of Conservative vs conventional oxygentherapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA 316(15):1583–1589.
  276. Investigators I-R, the A, New Zealand Intensive Care Society Clinical Trials G et al (2020) Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med 382(11):989– 998.
  277. Panwar R, Hardie M, Bellomo R et al (2016) Conservative versus liberal oxygenation targets for mechanically ventilated patients. A pilot multicenter randomized controlled trial. Am J Respir Crit Care Med 193(1):43–51.
  278. Chu DK, Kim LH, Young PJ et al (2018) Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 391(10131):1693–1705.
  279. Barrot L, Asfar P, Mauny F et al (2020) Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med 382(11):999–1008.
  280. Mauri T, Turrini C, Eronia N et al (2017) Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 195(9):1207–1215.
  281. Frat JP, Thille AW, Mercat A et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372(23):2185–2196.
  282. Fleischmann C, Scherag A, Adhikari NK et al (2016) Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 193(3):259–272.
  283. Ni YN, Luo J, Yu H et al (2018) The effect of high-flow nasal cannula in reducing the mortality and the rate of endotracheal intubation when used before mechanical ventilation compared with conventional oxygentherapy and noninvasive positive pressure ventilation. A systematic review and meta-analysis. Am J Emerg Med 36(2):226–233.
  284. Ou X, Hua Y, Liu J et al (2017) Effect of high-flow nasal cannula oxygen therapy in adults with acute hypoxemic respiratory failure: a metaanalysis of randomized controlled trials. CMAJ 189(7):E260– E267.
  285. Rochwerg B, Granton D, Wang DX et al (2019) High-flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: author’s reply. Intensive Care Med 45(8):1171
  286. Demoule A, Chevret S, Carlucci A et al (2016) Changing use of noninvasive ventilation in critically ill patients: trends over 15 years in francophone countries. Intensive Care Med 42(1):82–92.
  287. Demoule A, Girou E, Richard JC et al (2006) Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med 32(11):1756–1765.
  288. Bellani G, Laffey JG, Pham T et al (2017) Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med 195(1):67–77.
  289. Antonelli M, Conti G, Rocco M et al (1998) A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med 339(7):429–435.
  290. Honrubia T, Garcia Lopez FJ, Franco N et al (2005) Noninvasive vs conventional mechanical ventilation in acute respiratory failure: a multicenter, randomized controlled trial. Chest 128(6):3916– 3924.
  291. Tonelli R, Fantini R, Tabbi L et al (2020) Early inspiratory effort assessment by esophageal manometry predicts noninvasive ventilation outcome in de novo respiratory failure. A pilot study. Am J Respir Crit Care Med 202(4):558–567.
  292. Brower RG, Matthay MA, Acute Respiratory Distress Syndrome N et al (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308.
  293. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protectiveventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–354 426.
  294. Brochard L, Roudot-Thoraval F, Roupie E et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158(6):1831–1838.
  295. Brower RG, Shanholtz CB, Fessler HE et al (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27(8):1492–1498.
  296. Force ADT, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23):2526–2533.
  297. Brower RG, Matthay MA, Acute Respiratory Distress Syndrome N et al (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308.
  298. Eichacker PQ, Gerstenberger EP, Banks SM et al (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166(11):1510–1514.
  299. Burns KEA, Adhikari NK, Slutsky AS et al (2011) Pressure and volume limited ventilation for the ventilatory management of patients with acute lung injury: a systematic review and meta-analysis. PLoS One 6(1):e14623.
  300. Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P (2009) Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med 151(8):566–576
  301. Marini JJ, Gattinoni L (2004) Ventilatory management of acute respiratory distress syndrome: a consensus of two. Crit Care Med 32(1):250–255. Tobin MJ (2000) Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med 342(18):1360–1361
  302. Hager DN, Krishnan JA, Hayden DL et al (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172(10):1241–1245.
  303. Checkley W, Brower R, Korpak A et al (2008) Effects of a clinical trial on mechanical ventilation practices in patients with acute lung injury. Am J Respir Crit Care Med 177(11):1215–1222.
  304. Bernard GR, Artigas A, Brigham KL et al (1994) The American-European Consensus Conference on ARDS definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149(3Pt 1):818–824.
  305. Papazian L, Aubron C, Brochard L et al (2019) Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care 9(1):69.
  306. Laffey JG, Bellani G, Pham T et al (2016) Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med 42(12):1865–1876.
  307. Villar J, Martin-Rodriguez C, Dominguez-Berrot AM et al (2017) A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lungprotective ventilation. Crit Care Med 45(5):843–850.
  308. Brower RG, Lanken PN, MacIntyre N et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336.
  309. Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive endexpiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645.
  310. Mercat A, Richard JC, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):646–655.
  311. Kacmarek RM, Villar J, Sulemanji D et al (2016) Open lung approach for the acute respiratory distress syndrome: a pilot randomized controlled trial. Crit Care Med 44(1):32–42.
  312. Briel M, Meade M, Mercat A et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303(9):865–873.
  313. Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive endexpiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645.
  314. Mercat A, Richard JC, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):646–655. Goligher EC, Kavanagh BP, Rubenfeld GD et al (2014) Oxygenation response to positive end- expirato
  315. pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med 190(1):70–76
  316. Amato MB, Barbas CS, Medeiros DM et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152(6 Pt 1):1835–1846.
  317. Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354(17):1775–1786.
  318. Beitler JR, Sarge T, Banner-Goodspeed VM et al (2019) Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 321(9):846–857.
  319. Talmor D, Sarge T, Malhotra A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20):2095–2104.
  320. Turbil E, Galerneau LM, Terzi N et al (2019) Positive-end expiratory pressure titration and transpulmonary pressure: the EPVENT 2 trial. J Thorac Dis 11(Suppl 15):S2012–S2017.
  321. Serpa Neto A, Cardoso SO, Manetta JA et al (2012) Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 308(16):1651–1659.
  322. Pipeling MR, Fan E (2010) Therapies for refractory hypoxemia in acute respiratory distress syndrome. JAMA 304(22):2521–2527.
  323. Cavalcanti AB, Suzumura ÉA, Laranjeira LN et al (2017) Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 318(14):1335–1345
  324. Hodgson CL, Cooper DJ, Arabi Y et al (2019) Maximal recruitment open lung ventilation in acute respiratory distress syndrome (PHARLAP). A phase II, multicenter randomized controlled clinical trial. Am J Respir Crit Care Med 200(11):1363–1372.
  325. Fan E, Wilcox ME, Brower RG et al (2008) Recruitment maneuvers for acute lung injury a systematic review. Am J Respir Crit Care Med 178(11):1156–1163
  326. Munshi L, Del Sorbo L, Adhikari NKJ et al (2017) Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc 14(Supplement_4):S280-s8.
  327. Jolliet P, Bulpa P, Chevrolet JC (1998) Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndrome. Crit Care Med 26(12):1977–1985.
  328. Lamm WJ, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150(1):184–193.
  329. Stocker R, Neff T, Stein S et al (1997) Prone postioning and low-volume pressure-limited ventilation improve survival in patients with severe ARDS. Chest 111(4):1008–1017.
  330. Gattinoni L, Tognoni G, Pesenti A et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345(8):568–573.
  331. Guerin C, Gaillard S, Lemasson S et al (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 292(19):2379–2387.
  332. Klessig HT, Geiger HJ, Murray MJ et al (1992) A National Survey on the practice patterns of anesthesiologist intensivists in the use of musclerelaxants. Crit Care Med 20(9):1341–1345.
  333. Murray MJ, Cowen J, DeBlock H et al (2002) Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med 30(1):142–156.
  334. Hansenflaschen JH, Brazinsky S, Basile C et al (1991) USE OF sedating drugs and neuromuscular blocking-agents in patients requiring mechanical ventilation for respiratory-failure—a National Survey. JAMA 266(20):2870–2875.
  335. Forel JM, Roch A, Marin V et al (2006) Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med 34(11):2749– 2757.
  336. Gainnier M, Roch A, Forel JM et al (2004) Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med 32(1):113–119.
  337. Papazian L, Forel JM, Gacouin A et al (2010) Neuromuscular blockersin early acute respiratory distress syndrome. N Engl J Med 363(12):1107–1116.
  338. Alhazzani W, Alshahrani M, Jaeschke R et al (2013) Neuromuscular blocking agents in acute respiratory distress syndrome: a systematicreview and meta-analysis of randomized controlled trials. Crit Care 17(2):R43.
  339. Guervilly C, Bisbal M, Forel JM et al (2017) Effects of neuromuscular blockers on transpulmonary pressures in moderate to severe acute respiratory distress syndrome. Intensive Care Med 43(3):408– 418.
  340. Lyu G, Wang X, Jiang W et al (2014) Clinical study of early use of neuromuscular blocking agents in patients with severe sepsis and acute respiratory distress syndrome.
  341. National Heart L, Blood Institute PCTN, Moss M et al (2019) Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med 380(21):1997–2008
  342. Alhazzani W, Belley-Cote E, Moller MH, et al (2020) Neuromuscular blockade in patients with ARDS: a rapid practice guideline. Intensive Care Med.
  343. Tarazan N, Alshehri M, Sharif S et al (2020) Neuromuscular blocking agents in acute respiratory distress syndrome: updated systematic review and meta-analysis of randomized trials. Intensive Care Med Exp 8(1):61.
  344. Ballard N, Robley L, Barrett D et al (2006) Patients’ recollections of therapeutic paralysis in the intensive care unit. Am J Crit Care 15(1):86–94.
  345. Johnson KL, Cheung RB, Johnson SB et al (1999) Therapeutic paralysis of critically ill trauma patients: perceptions of patients and their family members. Am J Crit Care 8(1):490–498.
  346. Munshi L, Walkey A, Goligher E et al (2019) Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med 7(2):163–172.
  347. Combes A, Hajage D, Capellier G et al (2018) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 378(21):1965–1975.
  348. Peek GJ, Mugford M, Tiruvoipati R et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374(9698):1351–1363
  349. Munshi L, Walkey A, Goligher E et al (2019) Venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis. Lancet Respir Med 7(2):163–172.
  350. Klein DJ, Foster D, Walker PM, Bagshaw SM, Mekonnen H, Antonelli M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018 Dec;44(12):2205-2212. doi: 10.1007/s00134- 018-5463-7. Epub 2018 Nov 23. PMID: 30470853; PMCID: PMC6280819.
  351. Fujimori, K., Tarasawa, K. & Fushimi, K. Effectiveness of polymyxin B hemoperfusion for sepsis depends on the baseline SOFA score: a nationwide observational study. Ann. Intensive Care 11, 141 (2021). https://doi.org/10.1186/s13613-021-00928-z
  352. Snow, T. A. C., Littlewood, S., Corredor, C., Singer, M., & Arulkumaran, N. (2020). Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Purification, 1–11.
  353. Zha J, Li C, Cheng G, et al. The efficacy of renal replacement therapy strategies for septic-acute kidney injury: a PRISMA-compliant network meta-analysis. Medicine (Baltimore) 2019; 98(16):e15257. doi: 10.1097/MD.0000000000015257,
  354. Zhao Y, Chen Y. Effect of renal replacement therapy modalities on renal recovery and mortality for acute kidney injury: A PRISMA-compliant systematic review and meta-analysis. Semin Dial. 2020;33(2):127–132. doi: 10.1111/sdi.12861.
  355. Clinical          Practice         Guidelines         for         Acute         Kidney         Injury    2012. http://www.kdigo.org/clinical_practice_guidelines/AKI.php.
  356. Rabindranath K, Adams J, Macleod AM, et al. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev 2007: CD003773.
  357. Ye Z, Wang Y, Ge L, Guyatt GH, Collister D, Alhazzani W, Bagshaw SM, Belley-Cote EP, Fang F, Hou L, Kolb P, Lamontagne F, Oczkowski S, Pyne L, Rabbat C, Scaum M, Najafabadi BT, Tangamornsuksan W, Wald R, Wang Q, Walsh M, Yao L, Zeng L, Algarni AM, Couban RJ, Alexander PE, Rochwerg B. Comparing Renal Replacement Therapy Modalities in Critically Ill Patients With Acute Kidney Injury: A Systematic Review and Network Meta-Analysis. Crit Care Explor. 2021 May.
  358. Davenport A. Continuous renal replacement therapies in patients with acute neurological injury. Semin Dial 2009; 22: 165–168
  359. Bagshaw SM, Peets AD, Hameed M, et al. Dialysis Disequilibrium Syndrome: brain death following hemodialysis for metabolic acidosis and acute renal failure–a case report. BMC Nephrol 2004; 5: 9.
  360. Lin CM, Lin JW, Tsai JT, et al. Intracranial pressure fluctuation during hemodialysis in renal failure patients with intracranial hemorrhage. Acta Neurochir Suppl 2008; 101: 141–144.
  361. Murugan R, Kerti SJ, Chang CH, et al. Association of Net Ultrafiltration Rate With Mortality Among Critically Ill Adults With Acute Kidney Injury Receiving Continuous Venovenous Hemodiafiltration: A Secondary Analysis of the Randomized Evaluation of Normal vs Augmented Level (RENAL) of Renal Replacement Therapy Trial. JAMA Netw Open. 2019;2(6):e195418. doi:10.1001/jamanetworkopen.2019.5418;
  362. Murugan R, Kerti S, J, Chang C, -C, H, Gallagher M, Neto A, S, Clermont G, Ronco C, Palevsky P, M, Kellum J, A, Bellomo R: Association between Net Ultrafiltration Rate and Renal Recovery among Critically Ill Adults with Acute Kidney Injury Receiving Continuous Renal Replacement Therapy: An Observational Cohort Study. Blood Purif 2022;51:397-409. doi: 10.1159/000517281.
  363. Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–133. doi: 10.1056/NEJMoa1603017,
  364. Barbar SD, Clere-Jehl R, Bourredjem A, et al. Timing of renal-replacement therapy in patients with acute   kidney   injury   and   sepsis. N   Engl   J   Med. 2018;379(15):1431–1442. doi: 10.1056/NEJMoa1803213. ,
  365. Investigators S-A, Canadian Critical Care Trials G, Australian et al. Timing of Initiation of Renal- Replacement  Therapy  in  Acute  Kidney  Injury. N  Engl  J  Med. 2020;383(3):240–251. doi: 10.1056/NEJMoa2000741
  366. Clinical    Practice    Guidelines    for    Acute    Kidney    Injury    2012. http://www.kdigo.org/clinical_practice_guidelines/AKI.php.
  367. Rygård SL, Butler E, Granholm A, et al. Low-dose corticosteroids for adult patients with septic shock: A systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018; 44:1003–1016
  368. Sprung, Charles L. MD; Brezis, Mayer MD; Goodman, Serge MD, PhD; Weiss, Yoram G. MD Corticosteroid therapy for patients in septic shock: Some progress in a difficult decision, Critical Care Medicine: March 2011 - Volume 39 - Issue 3 - p 571-574.
  369. Wong, H. R., Cvijanovich, N. Z., Anas, N., Allen, G. L., Thomas, N. J., Bigham, M. T., Weiss, S. L., Fitzgerald, J., Checchia, P. A., Meyer, K., Shanley, T. P., Quasney, M., Hall, M., Gedeit, R., Freishtat, R. J., Nowak, J., Shekhar, R. S., Gertz, S., Dawson, E., Howard, K., … Lindsell, C. J. (2015). Developing a clinically feasible personalized medicine approach to pediatric septic shock. American journal of respiratory and critical care medicine, 191(3), 309–315.
  370. Annane D, Renault A, Brun-Buisson C, et al.; CRICS-TRIGGERSEP Network. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018; 378:809–818.
  371. Marik P.E. Corticosteroids for septic shock: what to do now? J Emerg Crit Care Med 2018;2:34.
  372. Kreymann K.G., de Heer G., Nierhaus A., Kluge S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med. 2007 Dec;35(12):2677-85.
  373. Arabi YM, Al-Hameed F, Burns KEA, et al.; Saudi Critical Care Trials Group. Adjunctive intermittent pneumatic compression for venous thromboprophylaxis. N Engl J Med. 2019; 380:1305–1315.
  374. The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–1297.
  375. Детушева Е.В. и соавт. «Чувствительность нозокомиальных штаммов K. pneumoniae, P. aeruginosa, A. baumannii и P. mirabilis к антисептику на основе хлоргексидина» Клин микробиол антимикроб химиотер 2015, Том 17, № 1, с.57-66.
  376. Universal ICU Decolonization: An Enhanced Protocol. AHRQ Publication No. 13-0052-EF. Rockville, MD: Agency for Healthcare Research and Quality; September 2013
  377. Shah, Hena N.; Schwartz, Jennifer L.; Luna, Gaye; Cullen, Deborah L. «Bathing With 2% Chlorhexidine Gluconate» Critical Care Nursing Quarterly, Volume 39, Number 1, January/March 2016, pp. 42-50(9);
  378. Mohr NM, Wessman BT, Bassin B et al (2020) Boarding of critically ill patients in the emergency department. Crit Care Med 48(8):1180–1187.
  379. Cardoso LT, Grion CM, Matsuo T et al (2011) Impact of delayed admission to intensive care units on mortality of critically ill patients: a cohort study. Crit Care 15(1):R28.
  380. Groenland CNL, Termorshuizen F, Rietdijk WJR et al (2019) emergency department to icu time is associated with hospital mortality: a registry analysis of 14,788 patients from six University Hospitals in The Netherlands. Crit Care Med 47(11):1564–1571.
  381. Harris S, Singer M, Sanderson C et al (2018) Impact on mortality of prompt admission to critical care for deteriorating ward patients: an instrumental variable analysis using critical care bed strain. Intensive Care Med 44(5):606–615.
  382. Levin PD, Idrees S, Sprung CL et al (2012) Antimicrobial use in the ICU: indications and accuracy— an observational trial. J Hosp Med 7(9):672–678;
  383. Heffner AC, Horton JM, Marchick MR et al (2010) Etiology of illness in patients with severe sepsis admitted to the hospital from the emergency department. Clin Infect Dis 50(6):814–820/
  384. Parker T, Brealey D, et al (2020) Sepsis–the broken code how accurately is sepsis being diagnosed? J Infect 81(6):e31–e32.
  385. Wo´jcik B., Superata J,. Nguyen H.B., Szyguła Z. Exploration of Different Rehabilitation Routes for Sepsis Survivors with Monitoring of Health Status and Quality of Life: RehaSep Trial Protocol //Adv Ther (2019) 36:2968–2978 https://doi.org/10.1007/s12325-019-01047-9;
  386. Zhang K, Mao X, Fang Q, Jin Y, Cheng B, Xie G, Li H, Yu L, Zhu T, Wang H, Liu X, Zhang Y, Jin Y, Zhang N, Lou T, Fang XM. Impaired long-term quality of life in survivors of severe sepsis : Chinese multicenter study over 6 years.//Anaesthesist. 2013 Dec;62(12):995-1002. doi: 10.1007/s00101-013- 2257-8.
  387. Granja C, Dias C, Costa-Pereira A, Sarmento A. Quality of life of survivors from severe sepsis and septic shock may be similar to that of others who survive critical illness.Crit Care. 2004 Apr;8(2):R91- 8. doi: 10.1186/cc2818. Epub 2004 Feb 20.
  388. Ya-Xiao Su, Lei Xu, Xin-Jing Gao, Zhi-Yong Wang , Xing Lu, Cheng-Fen Yin. Long-term quality of life after sepsis and predictors of quality of life in survivors with sepsis // Chinese Journal of Traumatology/ Volume 21, Issue 4, August 2018, Pages 216-223/ https://doi.org/10.1016/j.cjtee.2018.05.001
  389. Sakai Y, Yamamoto S, Karasawa T, Sato M, Nitta K, et al. (2022) Effects of early rehabilitation in sepsis patients by a specialized physical therapist in an emergency center on the return to activities of daily  living  independence:  A  retrospective  cohort  study.  PLOS  ONE  17(3): e0266348. https://doi.org/10.1371/journal.pone.0266348.

Для продолжения работы требуется Регистрация
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
9. Список литературы
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу

Оглавление

Данный блок поддерживает скрол*