Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Сахарный диабет 1 типа у детей
Список литературы
Поставить закладку
Дедов И.И., Кураева Т.Л., Петеркова В.А. Сахарный диабет у детей и подростков. Москва: ГЭОТАР-Медиа, 2013. 271 p.
Insel R.A. et al. Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association // Diabetes Care. 2015. Vol. 38, № 10. P. 1964–1974.
Ziegler A.G. et al. Seroconversion to Multiple Islet Autoantibodies and Risk of Progression to Diabetes in Children // JAMA. 2013. Vol. 309, № 23. P. 2473.
International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: International Diabetes Federation, 2021.
Mayer-Davis E.J. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents // Pediatr. Diabetes. 2018. Vol. 19. P. 7–19.
Александрова Г.А. et al. Общая заболеваемость детского населения России (0 – 14 лет) в 2019 году. Статистические материалы. Часть VI. Москва: Департамент мониторинга, анализа и стратегического развития здравоохранения Минздрава России, ФГБУ «ЦНИИОИЗ» Минздрава России, 2020.
Александрова Г.А. et al. Заболеваемость детского населения России (0 – 14 лет) в 2019 году с диагнозом, установленным впервые в жизни. Статистические материалы. Часть V. Москва: Департамент мониторинга, анализа и стратегического развития здравоохранения Минздрава России, ФГБУ «ЦНИИОИЗ» Минздрава России, 2020.
Александрова Г.А. et al. Заболеваемость детского населения России (15 – 17 лет) в 2019 году с диагнозом, установленным впервые в жизни. Статистические материалы. Часть IX. Москва: Департамент мониторинга, анализа и стратегического развития здравоохранения Минздрава России, ФГБУ «ЦНИИОИЗ» Минздрава России, 2020.
Александрова Г.А. et al. Общая заболеваемость детского населения России (15 – 17 лет) в 2019 году. Статистические материалы. Часть Х. Москва: Департамент мониторинга, анализа и стратегического развития здравоохранения Минздрава России, ФГБУ «ЦНИИОИЗ» Минздрава России, 2020.
Дедов И.И., Шестакова М.В., Викулова О.К. Эпидемиология сахарного диабета в Российской Федерации: клинико-статистический анализ по данным Федерального регистра сахарного диабета. 2017. Vol. 1, № 20. P. 13–41.
Дедов И.И. et al. Сахарный диабет у детей и подростков по данным Федерального регистра Российской Федерации: динамика основных эпидемиологических характеристик за 2013-2016 гг. // Сахарный Диабет. 2017. Vol. 20, № 6. P. 392–402.
World Health Organization. Classification of diabetes mellitus. 2019.
American Diabetes Association. 2. Classification and Diagnosis of Diabetes:
Standards of Medical Care in Diabetes—2021
// Diabetes Care. 2021. Vol. 44, № Supplement 1. P. S15–S33.
World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. 2006.
American Diabetes Association. 2. Classification and Diagnosis of Diabetes:
Standards of Medical Care in Diabetes—2018
// Diabetes Care. 2018. Vol. 41, № Supplement 1. P. S13–S27.
Watkins R.A. et al. Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review // Transl. Res. J. Lab. Clin. Med. 2014. Vol. 164, № 2. P. 110–121.
Dabelea D. et al. Etiological Approach to Characterization of Diabetes Type: The SEARCH for Diabetes in Youth Study // Diabetes Care. 2011. Vol. 34, № 7. P. 1628–1633.
Zeitler P. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Type 2 diabetes mellitus in youth // Pediatr. Diabetes. 2018. Vol. 19. P. 28–46.
Ziegler R. et al. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes // Pediatr. Diabetes. 2011. Vol. 12, № 1. P. 11–17.
DiMeglio L.A. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 105–114.
Battelino T. et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range // Diabetes Care. 2019. Vol. 42, № 8. P. 1593–1603.
Writing Group for the DCCT/EDIC Research Group et al. Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality // JAMA. 2015. Vol. 313, № 1. P. 45–53.
Writing Team for the DCCT/EDIC Research Group et al. Effects of Prior Intensive Insulin Therapy and Risk Factors on Patient-Reported Visual Function Outcomes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Cohort // JAMA Ophthalmol. 2016. Vol. 134, № 2. P. 137–145.
Karges B. et al. Hemoglobin A1c Levels and risk of severe hypoglycemia in children and young adults with type 1 diabetes from Germany and Austria: a trend analysis in a cohort of 37,539 patients between 1995 and 2012 // PLoS Med. 2014. Vol. 11, № 10. P. e1001742.
Beck R.W. et al. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials // Diabetes Care. 2019. Vol. 42, № 3. P. 400–405.
Ranjan A.G. et al. Improved Time in Range Over 1 Year Is Associated With Reduced Albuminuria in Individuals With Sensor-Augmented Insulin Pump–Treated Type 1 Diabetes // Diabetes Care. 2020. Vol. 43, № 11. P. 2882–2885.
Fritsche A. et al. Avoidance of hypoglycemia restores hypoglycemia awareness by increasing beta- adrenergic sensitivity in type 1 diabetes // Ann. Intern. Med. 2001. Vol. 134, № 9 Pt 1. P. 729–736.
Liu M. et al. A randomised, open-labelstudy of insulin glargine or neutral protamine Hagedorn insulin in Chinese paediatric patients with type 1 diabetes mellitus // BMC Endocr. Disord. 2016. Vol. 16, № 1. P. 67.
Schober E. et al. Comparative trial between insulin glargine and NPH insulin in children and adolescents with type 1 diabetes mellitus // J. Pediatr. Endocrinol. Metab. JPEM. 2002. Vol. 15, № 4. P. 369–376.
Danne T. et al. Pharmacokinetics, prandial glucose control, and safety of insulin glulisine in children and adolescents with type 1 diabetes // Diabetes Care. 2005. Vol. 28, № 9. P. 2100–2105.
Philotheou A. et al. Comparable Efficacy and Safety of Insulin Glulisine and Insulin Lispro When Given as Part of a Basal–Bolus Insulin Regimen in a 26-Week Trial in Pediatric Patients with Type 1 Diabetes // Diabetes Technol. Ther. 2011. Vol. 13, № 3. P. 327–334.
Holcombe J.H. et al. Comparison of insulin lispro with regular human insulin for the treatment of type 1 diabetes in adolescents // Clin. Ther. 2002. Vol. 24, № 4. P. 629–638.
Tupola S. et al. Post-prandial insulin lispro vs. human regular insulin in prepubertal children with Type 1 diabetes mellitus // Diabet. Med. J. Br. Diabet. Assoc. 2001. Vol. 18, № 8. P. 654–658.
Rutledge K.S. et al. Effectiveness of Postprandial Humalog in Toddlers With Diabetes // PEDIATRICS. 1997. Vol. 100, № 6. P. 968–972.
Deeb L.C. et al. Insulin Lispro Lowers Postprandial Glucose in Prepubertal Children With Diabetes // PEDIATRICS. 2001. Vol. 108, № 5. P. 1175–1179.
Battelino T. et al. Efficacy and safety of a fixed combination of insulin degludec/insulin aspart in children and adolescents with type 1 diabetes: A randomized trial // Pediatr. Diabetes. 2018. Vol. 19, № 7. P. 1263–1270.
Predieri B. et al. Switching From Glargine to Degludec: The Effect on Metabolic Control and Safety During 1-Year of Real Clinical Practice in Children and Adolescents With Type 1 Diabetes // Front. Endocrinol. 2018. Vol. 9. P. 462.
Thalange N. et al. The rate of hyperglycemia and ketosis with insulin degludec‐based treatment compared with insulin detemir in pediatric patients with type 1 diabetes: An analysis of data from two randomized trials // Pediatr. Diabetes. 2019. Vol. 20, № 3. P. 314–320.
Thalange N. et al. Insulin degludec in combination with bolus insulin aspart is safe and effective in children and adolescents with type 1 diabetes: IDeg effective and safe in pediatric T1D // Pediatr. Diabetes. 2015. Vol. 16, № 3. P. 164–176.
Danne T. et al. Insulin detemir is characterized by a consistent pharmacokinetic profile across age- groups in children, adolescents, and adults with type 1 diabetes // Diabetes Care. 2003. Vol. 26, № 11. P. 3087–3092.
Robertson K.J. et al. Insulin detemir compared with NPH insulin in children and adolescents with Type 1 diabetes // Diabet. Med. J. Br. Diabet. Assoc. 2007. Vol. 24, № 1. P. 27–34.
Fath M. et al. Faster-acting insulin aspart provides faster onset and greater early exposure vs insulin aspart in children and adolescents with type 1 diabetes mellitus: FATH et al . // Pediatr. Diabetes. 2017. Vol. 18, № 8. P. 903–910.
Bode B.W. et al. Efficacy and Safety of Fast-Acting Insulin Aspart Compared With Insulin Aspart, Both in Combination With Insulin Degludec, in Children and Adolescents With Type 1 Diabetes: The onset 7 Trial // Diabetes Care. 2019. Vol. 42, № 7. P. 1255–1262.
Danne T. et al. Efficacy and Safety of Insulin Glargine 300 Units/mL (Gla-300) Versus Insulin Glargine 100 Units/mL (Gla-100) in Children and Adolescents (6-17 years) With Type 1 Diabetes: Results of the EDITION JUNIOR Randomized Controlled Trial // Diabetes Care. 2020. Vol. 43, № 7. P. 1512–1519.
Дедов И.И. et al. Проект рекомендаций Российской ассоциации эндокринологов по применению биосимиляров инсулина. 2021. Vol. 24, № 1. P. 76–79.
Danne T. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Insulin treatment in children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 115–135.
Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group // J. Pediatr. 1994. Vol. 125, № 2. P. 177–188.
Musen G. et al. Impact of diabetes and its treatment on cognitive function among adolescents who participated in the Diabetes Control and Complications Trial // Diabetes Care. 2008. Vol. 31, № 10. P. 1933–1938.
White N.H. et al. Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT) // J. Pediatr. 2001. Vol. 139, № 6. P. 804–812.
Pop-Busui R. et al. Effects of Prior Intensive Insulin Therapy on Cardiac Autonomic Nervous System Function in Type 1 Diabetes Mellitus: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) // Circulation. 2009. Vol. 119, № 22. P. 2886–2893.
Nørgaard K. et al. Efficacy and Safety of Rapid-Acting Insulin Analogs in Special Populations with Type 1 Diabetes or Gestational Diabetes: Systematic Review and Meta-Analysis // Diabetes Ther. 2018. Vol. 9, № 3. P. 891–917.
Chase H.P. et al. Reduced hypoglycemic episodes and improved glycemic control in children with type 1 diabetes using insulin glargine and neutral protamine Hagedorn insulin // J. Pediatr. 2003. Vol. 143, № 6. P. 737–740.
Frid A.H. et al. New Insulin Delivery Recommendations // Mayo Clin. Proc. 2016. Vol. 91, № 9. P. 1231–1255.
Birkebaek N.H. et al. A 4-mm Needle Reduces the Risk of Intramuscular Injections Without Increasing Backflow to Skin Surface in Lean Diabetic Children and Adults // Diabetes Care. 2008. Vol. 31, № 9. P. e65.
Майоров А.Ю. et al. Техника инъекций и инфузии при лечении сахарного диабета. Методическое руководство. Москва: ООО «АРТИНФО», 2018. 64 p.
Birkebaek N.H. et al. A 4-mm needle reduces the risk of intramuscular injections without increasing backflow to skin surface in lean diabetic children and adults // Diabetes Care. 2008. Vol. 31, № 9. P. e65.
Hofman P.L. et al. Defining the ideal injection techniques when using 5-mm needles in children and adults // Diabetes Care. 2010. Vol. 33, № 9. P. 1940–1944.
Frid A.H. et al. New Insulin Delivery Recommendations // Mayo Clin. Proc. 2016. Vol. 91, № 9. P. 1231–1255.
Lo Presti D., Ingegnosi C., Strauss K. Skin and subcutaneous thickness at injecting sites in children with diabetes: ultrasound findings and recommendations for giving injection // Pediatr. Diabetes. 2012. Vol. 13, № 7. P. 525–533.
Zabaleta-del-Olmo E. et al. Safety of the reuse of needles for subcutaneous insulin injection: A systematic review and meta-analysis // Int. J. Nurs. Stud. 2016. Vol. 60. P. 121–132.
Pańkowska E. et al. Continuous subcutaneous insulin infusion vs. multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials // Pediatr. Diabetes. 2009. Vol. 10, № 1. P. 52–58.
Benkhadra K. et al. Continuous subcutaneous insulin infusion versus multiple daily injections in individuals with type 1 diabetes: a systematic review and meta-analysis // Endocrine. 2017. Vol. 55, № 1. P. 77–84.
Pickup J.C., Sutton A.J. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta- analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion // Diabet. Med. J. Br. Diabet. Assoc. 2008. Vol. 25, № 7. P. 765–774.
Vallejo-Mora M.D.R. et al. The Calculating Boluses on Multiple Daily Injections (CBMDI) study: A randomized controlled trial on the effect on metabolic control of adding a bolus calculator to multiple daily injections in people with type 1 diabetes // J. Diabetes. 2017. Vol. 9, № 1. P. 24–33.
Vallejo Mora M.D.R. et al. Bolus Calculator Reduces Hypoglycemia in the Short Term and Fear of Hypoglycemia in the Long Term in Subjects with Type 1 Diabetes (CBMDI Study) // Diabetes Technol. Ther. 2017. Vol. 19, № 7. P. 402–409.
Ziegler R. et al. Use of an insulin bolus advisor improves glycemic control in multiple daily insulin injection (MDI) therapy patients with suboptimal glycemic control: first results from the ABACUS trial // Diabetes Care. 2013. Vol. 36, № 11. P. 3613–3619.
Schmidt S. et al. Use of an automated bolus calculator in MDI-treated type 1 diabetes: the BolusCal Study, a randomized controlled pilot study // Diabetes Care. 2012. Vol. 35, № 5. P. 984–990.
Ramotowska A. et al. The effect of using the insulin pump bolus calculator compared to standard insulin dosage calculations in patients with type 1 diabetes mellitus - systematic review // Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2013. Vol. 121, № 5. P. 248– 254.
Wong J.C. et al. A Minority of Patients with Type 1 Diabetes Routinely Downloads and Retrospectively Reviews Device Data // Diabetes Technol. Ther. 2015. Vol. 17, № 8. P. 555–562.
Slover R.H. et al. Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study // Pediatr. Diabetes. 2012. Vol. 13, № 1. P. 6–11.
Ly T.T. et al. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial // JAMA. 2013. Vol. 310, № 12. P. 1240–1247.
Abraham M.B. et al. Reduction in Hypoglycemia With the Predictive Low-Glucose Management System: A Long-term Randomized Controlled Trial in Adolescents With Type 1 Diabetes // Diabetes Care. 2018. Vol. 41, № 2. P. 303–310.
Battelino T. et al. Prevention of Hypoglycemia With Predictive Low Glucose Insulin Suspension in Children With Type 1 Diabetes: A Randomized Controlled Trial // Diabetes Care. 2017. Vol. 40, № 6. P. 764–770.
Sherr J.L. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies // Pediatr. Diabetes. 2018. Vol. 19. P. 302–325.
Phelan H. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes education in children and adolescents // Pediatr. Diabetes. 2018. Vol. 19. P. 75–83.
Błazik M., Pańkowska E. The effect of bolus and food calculator Diabetics on glucose variability in children with type 1 diabetes treated with insulin pump: the results of RCT // Pediatr. Diabetes. 2012. Vol. 13, № 7. P. 534–539.
Miller K.M. et al. Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants // Diabetes Care. 2013. Vol. 36, № 7. P. 2009–2014.
Ziegler R. et al. Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes // Pediatr. Diabetes. 2011. Vol. 12, № 1. P. 11–17.
Bohn B. et al. 20 Years of Pediatric Benchmarking in Germany and Austria: Age-Dependent Analysis of Longitudinal Follow-Up in 63,967 Children and Adolescents with Type 1 Diabetes // PloS One. 2016. Vol. 11, № 8. P. e0160971.
Battelino T. et al. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial // Diabetologia. 2012. Vol. 55, № 12. P. 3155–3162.
El-Laboudi A.H. et al. Measures of Glycemic Variability in Type 1 Diabetes and the Effect of Real- Time Continuous Glucose Monitoring // Diabetes Technol. Ther. 2016. Vol. 18, № 12. P. 806–812.
Bergenstal R.M. et al. Sensor-Augmented Pump Therapy for A1C Reduction (STAR 3) Study: Results from the 6-month continuation phase // Diabetes Care. 2011. Vol. 34, № 11. P. 2403–2405.
Piona C. et al. Non-adjunctive flash glucose monitoring system use during summer-camp in children with type 1 diabetes: The free-summer study // Pediatr. Diabetes. 2018. Vol. 19, № 7. P. 1285– 1293.
Campbell F.M. et al. Outcomes of using flash glucose monitoring technology by children and young people with type 1 diabetes in a single arm study // Pediatr. Diabetes. 2018. Vol. 19, № 7. P. 1294–1301.
Hásková A. et al. Real-time CGM Is Superior to Flash Glucose Monitoring for Glucose Control in Type 1 Diabetes: The CORRIDA Randomized Controlled Trial // Diabetes Care. 2020. Vol. 43, № 11. P. 2744–2750.
Laptev D.N. et al. The use of Flash glucose monitoring in children with type 1 diabetes mellitus in real clinical practice // Diabetes Mellit. 2021. Vol. 24, № 6. P. 504–510.
Петеркова В.А. et al. Оценка эффективности амбулаторного наблюдения детей и подростков с сахарным диабетом 1-го типа при регулярном использовании профессионального непрерывного мониторинга уровня глюкозы // Проблемы эндокринологии. 2020. Vol. 66, № 1. P. 14–22.
Pickup J.C., Freeman S.C., Sutton A.J. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data // BMJ. 2011. Vol. 343. P. d3805.
Battelino T. et al. Effect of Continuous Glucose Monitoring on Hypoglycemia in Type 1 Diabetes // Diabetes Care. 2011. Vol. 34, № 4. P. 795–800.
Hirsch I.B. et al. Sensor-augmented insulin pump therapy: results of the first randomized treat-to- target study // Diabetes Technol. Ther. 2008. Vol. 10, № 5. P. 377–383.
Chase H.P. et al. Use of the GlucoWatch biographer in children with type 1 diabetes // Pediatrics. 2003. Vol. 111, № 4 Pt 1. P. 790–794.
Kaufman F.R. et al. A pilot study of the continuous glucose monitoring system: clinical decisions and glycemic control after its use in pediatric type 1 diabetic subjects // Diabetes Care. 2001. Vol. 24, № 12. P. 2030–2034.
Ludvigsson J., Hanas R. Continuous subcutaneous glucose monitoring improved metabolic control in pediatric patients with type 1 diabetes: a controlled crossover study // Pediatrics. 2003. Vol. 111, № 5 Pt 1. P. 933–938.
Boucher S.E. et al. Effect of 6 months’ flash glucose monitoring in adolescents and young adults with type 1 diabetes and suboptimal glycaemic control: managing diabetes in a “flash” randomised controlled trial protocol // BMC Endocr. Disord. 2019. Vol. 19, № 1. P. 50.
Heinemann L. et al. Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): a multicentre, randomised controlled trial // The Lancet. 2018. Vol. 391, № 10128. P. 1367–1377.
van Beers C.A.J. et al. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): a randomised, open-label, crossover trial // Lancet Diabetes Endocrinol. 2016. Vol. 4, № 11. P. 893–902.
Choudhary P. et al. Real-Time Continuous Glucose Monitoring Significantly Reduces Severe Hypoglycemia in Hypoglycemia-Unaware Patients With Type 1 Diabetes // Diabetes Care. 2013. Vol. 36, № 12. P. 4160–4162.
DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with Type 1 diabetes: dose adjustment for normal eating (DAFNE) randomized controlled trial // Diabet. Med. J. Br. Diabet. Assoc. 2003. Vol. 20 Suppl 3. P. 4–5.
Hampson S.E. et al. Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review // Health Technol. Assess. Winch. Engl. 2001. Vol. 5, № 10. P. 1–79.
Smart C.E. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 136–154.
Mann J.I. et al. Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus // Nutr. Metab. Cardiovasc. Dis. NMCD. 2004. Vol. 14, № 6. P. 373–394.
Delahanty L.M. et al. Association of diet with glycated hemoglobin during intensive treatment of type 1 diabetes in the Diabetes Control and Complications Trial // Am. J. Clin. Nutr. 2009. Vol. 89, № 2. P. 518–524.
Bell K.J. et al. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era // Diabetes Care. 2015. Vol. 38, № 6. P. 1008–1015.
Nansel T.R., Lipsky L.M., Liu A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes // Am. J. Clin. Nutr. 2016. Vol. 104, № 1. P. 81–87.
Paterson M.A. et al. Increasing the protein quantity in a meal results in dose-dependent effects on postprandial glucose levels in individuals with Type 1 diabetes mellitus // Diabet. Med. J. Br. Diabet. Assoc. 2017. Vol. 34, № 6. P. 851–854.
Smart C.E.M. et al. Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children With Type 1 Diabetes, and the Effect Is Additive // Diabetes Care. 2013. Vol. 36, № 12. P. 3897–3902.
Pańkowska E., Błazik M., Groele L. Does the Fat-Protein Meal Increase Postprandial Glucose Level in Type 1 Diabetes Patients on Insulin Pump: The Conclusion of a Randomized Study // Diabetes Technol. Ther. 2012. Vol. 14, № 1. P. 16–22.
Cameron F. et al. Lessons from the Hvidoere International Study Group on childhood diabetes: be dogmatic about outcome and flexible in approach: Hvidoere group studies // Pediatr. Diabetes. 2013. Vol. 14, № 7. P. 473–480.
Quirk H. et al. Physical activity interventions in children and young people with Type 1 diabetes mellitus: a systematic review with meta-analysis // Diabet. Med. J. Br. Diabet. Assoc. 2014. Vol. 31, № 10. P. 1163–1173.
MacMillan F. et al. A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy // Pediatr. Diabetes. 2014. Vol. 15, № 3. P. 175–189.
Nocon M. et al. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis // Eur. J. Cardiovasc. Prev. Rehabil. Off. J. Eur. Soc. Cardiol. Work. Groups Epidemiol. Prev. Card. Rehabil. Exerc. Physiol. 2008. Vol. 15, № 3. P. 239–246.
Riddell M.C., Perkins B.A. Type 1 Diabetes and Vigorous Exercise: Applications of Exercise Physiology to Patient Management // Can. J. Diabetes. 2006. Vol. 30, № 1. P. 63–71.
Adolfsson P. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Exercise in children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 205–226.
Young V. et al. Eating problems in adolescents with Type 1 diabetes: a systematic review with meta-analysis // Diabet. Med. J. Br. Diabet. Assoc. 2013. Vol. 30, № 2. P. 189–198.
Kongkaew C. et al. Depression and adherence to treatment in diabetic children and adolescents: a systematic review and meta-analysis of observational studies // Eur. J. Pediatr. 2014. Vol. 173, № 2. P. 203–212.
Шашель В.А., Черняк И.Ю. Комплексное восстановительное лечение детей, больных сахарным диабетом 1-го типа, в санаторно-курортных условиях. 2011. № 4. P. 30–32.
Лагунова et al. State of the adaptive-compensatory mechanisms in children with type 1 diabetes mellitus and its changes after sanatorium-resort treatment // J. New Med. Technol. EJournal. 2014. Vol. 8, № 1. P. 0–0.
Pihoker C. et al. ISPAD Clinical Practice Consensus Guidelines 2018: The delivery of ambulatory diabetes care to children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 84–104.
Shah A.C., Badawy S.M. Telemedicine in Pediatrics: Systematic Review of Randomized Controlled Trials // JMIR Pediatr. Parent. 2021. Vol. 4, № 1. P. e22696.
Lee S.W.H., Ooi L., Lai Y.K. Telemedicine for the Management of Glycemic Control and Clinical Outcomes of Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Studies // Front. Pharmacol. 2017. Vol. 8. P. 330.
Faruque L.I. et al. Effect of telemedicine on glycated hemoglobin in diabetes: a systematic review and meta-analysis of randomized trials // Can. Med. Assoc. J. 2017. Vol. 189, № 9. P. E341–E364.
Cho Y.H. et al. Microvascular complications assessment in adolescents with 2- to 5-yr duration of type 1 diabetes from 1990 to 2006 // Pediatr. Diabetes. 2011. Vol. 12, № 8. P. 682–689.
Donaghue K.C. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Microvascular and macrovascular complications in children and adolescents // Pediatr. Diabetes. 2018. Vol. 19. P. 262– 274.
Chiang J.L. et al. Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association // Diabetes Care. 2018. Vol. 41, № 9. P. 2026–2044.
Sivaprasad S. et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial // Lancet Lond. Engl. 2017. Vol. 389, № 10085. P. 2193–2203.
Stahl A. et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomised controlled trial // Lancet Lond. Engl. 2019. Vol. 394, № 10208. P. 1551–1559.
Дедов И.И., Шестакова М.В. Осложнения сахарного диабета: лечение и профилактика. Москва: МИА, 2017. 743 p.
de Boer I.H., DCCT/EDIC Research Group. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. // Diabetes Care. 2014. Vol. 37, № 1. P. 24–30.
Fox C.S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. // Lancet. 2012. Vol. 380, № 9854. P. 1662–1673.
National Kidney Foundation. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease // Kidney Int Suppl. 2013. Vol. 3, № 1. P. 1–150.
Stevens P.E., Levin A., Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline // Ann. Intern. Med. 2013. Vol. 158, № 11. P. 825–830.
Schwartz G.J. et al. New equations to estimate GFR in children with CKD // J. Am. Soc. Nephrol. JASN. 2009. Vol. 20, № 3. P. 629–637.
Schwartz G.J., Work D.F. Measurement and estimation of GFR in children and adolescents // Clin. J. Am. Soc. Nephrol. CJASN. 2009. Vol. 4, № 11. P. 1832–1843.
Copeland K.C. et al. Characteristics of Adolescents and Youth with Recent-Onset Type 2 Diabetes: The TODAY Cohort at Baseline // J. Clin. Endocrinol. Metab. 2011. Vol. 96, № 1. P. 159– 167.
TODAY Study Group. Rapid Rise in Hypertension and Nephropathy in Youth With Type 2 Diabetes: The TODAY clinical trial // Diabetes Care. 2013. Vol. 36, № 6. P. 1735–1741.
American Diabetes Association. 10. Microvascular Complications and Foot Care:
Standards of Medical Care in Diabetes—2018
// Diabetes Care. 2018. Vol. 41, № Supplement 1. P. S105–S118.
Cook J. et al. Angiotensin converting enzyme inhibitor therapy to decrease microalbuminuria in normotensive children with insulin-dependent diabetes mellitus // J. Pediatr. 1990. Vol. 117, № 1. P. 39–45.
Rudberg S. et al. Enalapril reduces microalbuminuria in young normotensive Type 1 (insulin- dependent) diabetic patients irrespective of its hypotensive effect // Diabetologia. 1990. Vol. 33, № 8. P. 470–476.
Soffer B. et al. A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of lisinopril for children with hypertension // Am. J. Hypertens. 2003. Vol. 16, № 10. P. 795– 800.
Catalá-López F. et al. Cardiovascular and Renal Outcomes of Renin–Angiotensin System Blockade in Adult Patients with Diabetes Mellitus: A Systematic Review with Network Meta-Analyses // PLOS Med. / ed. Taal M.W. 2016. Vol. 13, № 3. P. e1001971.
Finn B.P., Fraser B., O’Connell S.M. Supraventricular tachycardia as a complication of severe diabetic ketoacidosis in an adolescent with new-onset type 1 diabetes // BMJ Case Rep. 2018. P. bcr- 2017-222861.
Wolfsdorf J.I. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state // Pediatr. Diabetes. 2018. Vol. 19. P. 155–177.
Abraham M.B. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Assessment and management of hypoglycemia in children and adolescents with diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 178–192.
Tinti D., Rabbone I. Mini-doses of glucagon to prevent hypoglycemia in children with type 1 diabetes refusing food: a case series // Acta Diabetol. 2019.
Shun C.B. et al. Thyroid autoimmunity in Type 1 diabetes: systematic review and meta-analysis // Diabet. Med. J. Br. Diabet. Assoc. 2014. Vol. 31, № 2. P. 126–135.
Mahmud F.H. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Other complications and associated conditions in children and adolescents with type 1 diabetes // Pediatr. Diabetes. 2018. Vol. 19. P. 275–286.
Pham-Short A. et al. Screening for Celiac Disease in Type 1 Diabetes: A Systematic Review // PEDIATRICS. 2015. Vol. 136, № 1. P. e170–e176.
Dong C. et al. Clinical Assessment of Differential Diagnostic Methods in Infants with Cholestasis due to Biliary Atresia or Non-Biliary Atresia // Curr. Med. Sci. 2018. Vol. 38, № 1. P. 137–143.
Для продолжения работы требуется
Регистрация
Предыдущая страница
Следующая страница
Оглавление
Список сокращений
Термины и определения
Сахарный диабет 1 типа у детей
+
Список литературы
Приложение А1. Состав рабочей группы по разработке и пересмотру клинических рекомендаций
Приложение А2. Методология разработки клинических рекомендаций
Приложение А3. Справочные материалы, включая соответствие показаний к применению и противопоказаний, способов применения и доз лекарственных препаратов, инструкции по применению лекарственного препарата
Приложение Б. Алгоритмы действий врача
Приложение В. Информация для пациента
Приложение Г1-ГN. Шкалы оценки, вопросники и другие оценочные инструменты состояния пациента, приведенные в клинических рекомендациях
Данный блок поддерживает скрол*