Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Сахарный диабет 1 типа у детей
Список литературы
Поставить закладку
Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association / R.A. Insel [et al.] // Diabetes Care. – 2015. – Vol. 38. – № 10. – P. 1964-1974.
Seroconversion to Multiple Islet Autoantibodies and Risk of Progression to Diabetes in Children / A.G. Ziegler [et al.] // JAMA. – 2013. – Vol. 309. – № 23. – P. 2473.
Epidemiology of acute diabetes complications (coma) according to the Federal Diabetes register of the Russian Federation (2013–2016) / A.Y. Mayorov [и др.] // Diabetes mellitus. – 2019. – Т. 21. – № 6. – С. 444-454.
Trends in the epidemiology of diabetic retinopathy in Russian Federation according to the Federal Diabetes Register (2013–2016) / D.V. Lipatov [и др.] // Diabetes mellitus. – 2018. – Т. 21. –№ 4. – С. 230-240.
Trends in the epidemiology of diabetic foot and lower limb amputations in Russian Federation according to the Federal Diabetes Register (2013–2016) / G.R. Galstyan [и др.] // Diabetes mellitus. – 2018. – Т. 21. – № 3. – С. 170-177.
Trends in the epidemiology of chronic kidney disease in Russian Federation according to the Federal Diabetes Register (2013–2016) / M.S. Shamkhalova [и др.] // Diabetes mellitus. – 2018. – Т. 21. – № 3. – С. 160-169.
Diabetes mellitus in children and adolescents according to the Federal diabetes registry in the Russian Federation: dynamics of major epidemiological characteristics for 2013–2016 / I.I. Dedov [и др.] // Diabetes mellitus. – 2018. – Т. 20. – № 6. – С. 392-402.
Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017 / I.I. Dedov [и др.] // Diabetes mellitus. – 2018. – Т. 21. – № 3. – С. 144-159.
ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents / E.J. Mayer-Davis [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 7-19.
American Diabetes Association. 2. Classification and Diagnosis of Diabetes:
Standards of Medical Care in Diabetes—2018
/ American Diabetes Association // Diabetes Care. – 2018. – Vol. 41. – № Supplement 1. – P. S13-S27.
World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation / World Health Organization, International Diabetes Federation. – 2006.
Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review / R.A. Watkins [et al.] // Translational Research: The Journal of Laboratory and Clinical Medicine. – 2014. – Vol. 164. – № 2. – P. 110-121.
Etiological Approach to Characterization of Diabetes Type: The SEARCH for Diabetes in Youth Study / D. Dabelea [et al.] // Diabetes Care. – 2011. – Vol. 34. – № 7. – P. 1628-1633.
ISPAD Clinical Practice Consensus Guidelines 2018: Type 2 diabetes mellitus in youth / P. Zeitler [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 28-46.
Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality / Writing Group for the DCCT/EDIC Research Group [et al.] // JAMA. – 2015. – Vol. 313. – № 1. – P. 45-53.
Effects of Prior Intensive Insulin Therapy and Risk Factors on Patient-Reported Visual Function Outcomes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Cohort / Writing Team for the DCCT/EDIC Research Group [et al.] // JAMA ophthalmology. – 2016. – Vol. 134. – № 2. – P. 137-145.
Hemoglobin A1c Levels and risk of severe hypoglycemia in children and young adults with type 1 diabetes from Germany and Austria: a trend analysis in a cohort of 37,539 patients between 1995 and 2012 / B. Karges [et al.] // PLoS medicine. – 2014. – Vol. 11. – № 10. – P. e1001742.
ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes / L.A. DiMeglio [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 105-114.
Avoidance of hypoglycemia restores hypoglycemia awareness by increasing beta-adrenergic sensitivity in type 1 diabetes / A. Fritsche [et al.] // Annals of Internal Medicine. – 2001. – Vol. 134. – № 9 Pt 1. – P. 729-736.
Both the frequency of HbA1c testing and the frequency of self-monitoring of blood glucose predict metabolic control: A multicentre analysis of 15 199 adult type 1 diabetes patients from Germany and Austria / A. Schwandt [et al.] // Diabetes/Metabolism Research and Reviews. – 2017. – Vol. 33. – № 7.
Reduced testing frequency for glycated hemoglobin, HbA1c, is associated with deteriorating diabetes control / O.J. Driskell [et al.] // Diabetes Care. – 2014. – Vol. 37. – № 10. – P. 2731-2737.
A randomised, open-labelstudy of insulin glargine or neutral protamine Hagedorn insulin in Chinese paediatric patients with type 1 diabetes mellitus / M. Liu [et al.] // BMC endocrine disorders. – 2016. – Vol. 16. – № 1. – P. 67.
Comparative trial between insulin glargine and NPH insulin in children and adolescents with type 1 diabetes mellitus / E. Schober [et al.] // Journal of pediatric endocrinology & metabolism: JPEM. – 2002. – Vol. 15. – № 4. – P. 369-376.
Pharmacokinetics, prandial glucose control, and safety of insulin glulisine in children and adolescents with type 1 diabetes / T. Danne [et al.] // Diabetes Care. – 2005. – Vol. 28. – № 9. – P. 2100-2105.
Comparable Efficacy and Safety of Insulin Glulisine and Insulin Lispro When Given as Part of a Basal–Bolus Insulin Regimen in a 26-Week Trial in Pediatric Patients with Type 1 Diabetes / A. Philotheou [et al.] // Diabetes Technology & Therapeutics. – 2011. – Vol. 13. – № 3. – P. 327-334.
Comparison of insulin lispro with regular human insulin for the treatment of type 1 diabetes in adolescents / J.H. Holcombe [et al.] // Clinical Therapeutics. – 2002. – Vol. 24. – № 4. – P. 629-638.
Post-prandial insulin lispro vs. human regular insulin in prepubertal children with Type 1 diabetes mellitus / S. Tupola [et al.] // Diabetic Medicine: A Journal of the British Diabetic Association. – 2001. – Vol. 18. – № 8. – P. 654-658.
Effectiveness of postprandial Humalog in toddlers with diabetes / K.S. Rutledge [et al.] // Pediatrics. – 1997. – Vol. 100. – № 6. – P. 968-972.
Insulin Lispro Lowers Postprandial Glucose in Prepubertal Children With Diabetes / L.C. Deeb [et al.] // PEDIATRICS. – 2001. – Vol. 108. – № 5. – P. 1175-1179.
Efficacy and safety of a fixed combination of insulin degludec/insulin aspart in children and adolescents with type 1 diabetes: A randomized trial / T. Battelino [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – № 7. – P. 1263-1270.
Switching From Glargine to Degludec: The Effect on Metabolic Control and Safety During 1- Year of Real Clinical Practice in Children and Adolescents With Type 1 Diabetes / B. Predieri [и др.] // Frontiers in Endocrinology. – 2018. – Т. 9. – С. 462.
The rate of hyperglycemia and ketosis with insulin degludec‐based treatment compared with insulin detemir in pediatric patients with type 1 diabetes: An analysis of data from two randomized trials / N. Thalange [et al.] // Pediatric Diabetes. – 2019. – Vol. 20. – № 3. – P. 314-320.
Insulin degludec in combination with bolus insulin aspart is safe and effective in children and adolescents with type 1 diabetes: IDeg effective and safe in pediatric T1D / N. Thalange [et al.] // Pediatric Diabetes. – 2015. – Vol. 16. – № 3. – P. 164-176.
Insulin detemir is characterized by a consistent pharmacokinetic profile across age-groups in children, adolescents, and adults with type 1 diabetes / T. Danne [et al.] // Diabetes Care. – 2003. – Vol. 26. – № 11. – P. 3087-3092.
Insulin detemir compared with NPH insulin in children and adolescents with Type 1 diabetes / K.J. Robertson [et al.] // Diabetic Medicine: A Journal of the British Diabetic Association. – 2007. – Vol. 24. – № 1. – P. 27-34.
ISPAD Clinical Practice Consensus Guidelines 2018: Insulin treatment in children and adolescents with diabetes / T. Danne [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 115-135.
Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group // The Journal of Pediatrics. – 1994. – Vol. 125. – № 2. – P. 177-188.
Impact of diabetes and its treatment on cognitive function among adolescents who participated in the Diabetes Control and Complications Trial / G. Musen [et al.] // Diabetes Care. – 2008. – Vol. 31. – № 10. – P. 1933-1938.
Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT) / N.H. White [et al.] // The Journal of Pediatrics. – 2001. – Vol. 139. – № 6. – P. 804-812.
Effects of Prior Intensive Insulin Therapy on Cardiac Autonomic Nervous System Function in Type 1 Diabetes Mellitus: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) / R. Pop-Busui [et al.] // Circulation. – 2009. – Vol. 119. – № 22. – P. 2886-2893.
Efficacy and Safety of Rapid-Acting Insulin Analogs in Special Populations with Type 1 Diabetes or Gestational Diabetes: Systematic Review and Meta-Analysis / K. Nørgaard [et al.] // Diabetes Therapy. – 2018. – Vol. 9. – № 3. – P. 891-917.
Reduced hypoglycemic episodes and improved glycemic control in children with type 1 diabetes using insulin glargine and neutral protamine Hagedorn insulin / H.P. Chase [et al.] // The Journal of Pediatrics. – 2003. – Vol. 143. – № 6. – P. 737-740.
Техника инъекций и инфузии при лечении сахарного диабета. Методическое руководство. / Майоров А.Ю. [и др.]. – Москва: ООО «АРТИНФО», 2018. – 64 с.
New Insulin Delivery Recommendations / A.H. Frid [et al.] // Mayo Clinic Proceedings. – 2016. – Vol. 91. – № 9. – P. 1231-1255.
Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants / K.M. Miller [et al.] // Diabetes Care. – 2013. – Vol. 36. – № 7. – P. 2009-2014.
Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes / R. Ziegler [et al.] // Pediatric Diabetes. – 2011. – Vol. 12. – № 1. – P. 11-17.
20 Years of Pediatric Benchmarking in Germany and Austria: Age-Dependent Analysis of Longitudinal Follow-Up in 63,967 Children and Adolescents with Type 1 Diabetes / B. Bohn [et al.] // PloS One. – 2016. – Vol. 11. – № 8. – P. e0160971.
The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial / T. Battelino [et al.] // Diabetologia. – 2012. – Vol. 55. – № 12. – P. 3155-3162.
Measures of Glycemic Variability in Type 1 Diabetes and the Effect of Real-Time Continuous Glucose Monitoring / A.H. El-Laboudi [et al.] // Diabetes Technology & Therapeutics. – 2016. – Vol. 18. – № 12. – P. 806-812.
Sensor-Augmented Pump Therapy for A1C Reduction (STAR 3) Study: Results from the 6- month continuation phase / R.M. Bergenstal [et al.] // Diabetes Care. – 2011. – Vol. 34. – № 11. – P. 2403-2405.
ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes education in children and adolescents / H. Phelan [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 75-83.
Psychological interventions to improve glycaemic control in patients with type 1 diabetes: systematic review and meta-analysis of randomised controlled trials / K. Winkley [et al.] // BMJ (Clinical research ed.). – 2006. – Vol. 333. – № 7558. – P. 65.
Effects of educational and psychosocial interventions for adolescents with diabetes mellitus: a systematic review / S.E. Hampson [et al.] // Health Technology Assessment (Winchester, England). – 2001. – Vol. 5. – № 10. – P. 1-79.
DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with Type 1 diabetes: dose adjustment for normal eating (DAFNE) randomized controlled trial / DAFNE Study Group // Diabetic Medicine: A Journal of the British Diabetic Association. – 2003. – Vol. 20 Suppl 3. – P. 4-5.
Continuous subcutaneous insulin infusion vs. multiple daily injections in children with type 1 diabetes: a systematic review and meta-analysis of randomized control trials / E. Pańkowska [et al.] // Pediatric Diabetes. – 2009. – Vol. 10. – № 1. – P. 52-58.
Continuous subcutaneous insulin infusion versus multiple daily injections in individuals with type 1 diabetes: a systematic review and meta-analysis / K. Benkhadra [et al.] // Endocrine. – 2017. – Vol. 55. – № 1. – P. 77-84.
Pickup, J.C. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion / J.C. Pickup, A.J. Sutton // Diabetic medicine: a journal of the British Diabetic Association. – 2008. – Vol. 25. – № 7. – P. 765-774.
The Calculating Boluses on Multiple Daily Injections (CBMDI) study: A randomized controlled trial on the effect on metabolic control of adding a bolus calculator to multiple daily injections in people with type 1 diabetes / M.D.R. Vallejo-Mora [et al.] // Journal of Diabetes. – 2017. – Vol. 9. – № 1. – P. 24-33.
Bolus Calculator Reduces Hypoglycemia in the Short Term and Fear of Hypoglycemia in the Long Term in Subjects with Type 1 Diabetes (CBMDI Study) / M.D.R. Vallejo Mora [et al.] // Diabetes Technology & Therapeutics. – 2017. – Vol. 19. – № 7. – P. 402-409.
Use of an insulin bolus advisor improves glycemic control in multiple daily insulin injection (MDI) therapy patients with suboptimal glycemic control: first results from the ABACUS trial / R. Ziegler [et al.] // Diabetes Care. – 2013. – Vol. 36. – № 11. – P. 3613-3619.
Use of an automated bolus calculator in MDI-treated type 1 diabetes: the BolusCal Study, a randomized controlled pilot study / S. Schmidt [et al.] // Diabetes Care. – 2012. – Vol. 35. – № 5. – P. 984-990.
The effect of using the insulin pump bolus calculator compared to standard insulin dosage calculations in patients with type 1 diabetes mellitus - systematic review / A. Ramotowska [et al.] // Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association. – 2013. – Vol. 121. – № 5. – P. 248-254.
A Minority of Patients with Type 1 Diabetes Routinely Downloads and Retrospectively Reviews Device Data / J.C. Wong [et al.] // Diabetes Technology & Therapeutics. – 2015. – Vol. 17. – № 8. – P. 555-562.
Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study / R.H. Slover [et al.] // Pediatric Diabetes. – 2012. – Vol. 13. – № 1. – P. 6-11.
Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial / T.T. Ly [et al.] // JAMA. – 2013. – Vol. 310. – № 12. – P. 1240-1247.
Reduction in Hypoglycemia With the Predictive Low-Glucose Management System: A Long- term Randomized Controlled Trial in Adolescents With Type 1 Diabetes / M.B. Abraham [et al.] // Diabetes Care. – 2018. – Vol. 41. – № 2. – P. 303-310.
Prevention of Hypoglycemia With Predictive Low Glucose Insulin Suspension in Children With Type 1 Diabetes: A Randomized Controlled Trial / T. Battelino [et al.] // Diabetes Care. – 2017. – Vol. 40. – № 6. – P. 764-770.
ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies / J.L. Sherr [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 302-325.
ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes education in children and adolescents / H. Phelan [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 75-83.
Błazik, M. The effect of bolus and food calculator Diabetics on glucose variability in children with type 1 diabetes treated with insulin pump: the results of RCT / M. Błazik, E. Pańkowska // Pediatric Diabetes. – 2012. – Vol. 13. – № 7. – P. 534-539.
Effect of Continuous Glucose Monitoring on Hypoglycemia in Type 1 Diabetes / T. Battelino [et al.] // Diabetes Care. – 2011. – Vol. 34. – № 4. – P. 795-800.
Pickup, J.C. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data / J.C. Pickup, S.C. Freeman, A.J. Sutton // BMJ (Clinical research ed.). – 2011. – Vol. 343. – P. d3805.
Sensor-augmented insulin pump therapy: results of the first randomized treat-to-target study / I.B. Hirsch [et al.] // Diabetes Technology & Therapeutics. – 2008. – Vol. 10. – № 5. – P. 377- 383.
Use of the GlucoWatch biographer in children with type 1 diabetes / H.P. Chase [et al.] // Pediatrics. – 2003. – Vol. 111. – № 4 Pt 1. – P. 790-794.
A pilot study of the continuous glucose monitoring system: clinical decisions and glycemic control after its use in pediatric type 1 diabetic subjects / F.R. Kaufman [et al.] // Diabetes Care. – 2001. – Vol. 24. – № 12. – P. 2030-2034.
Ludvigsson, J. Continuous subcutaneous glucose monitoring improved metabolic control in pediatric patients with type 1 diabetes: a controlled crossover study / J. Ludvigsson, R. Hanas // Pediatrics. – 2003. – Vol. 111. – № 5 Pt 1. – P. 933-938.
ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes / C.E. Smart [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 136- 154.
Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus / J.I. Mann [et al.] // Nutrition, metabolism, and cardiovascular diseases: NMCD. – 2004. – Vol. 14. – № 6. – P. 373-394.
Association of diet with glycated hemoglobin during intensive treatment of type 1 diabetes in the Diabetes Control and Complications Trial / L.M. Delahanty [et al.] // The American Journal of Clinical Nutrition. – 2009. – Vol. 89. – № 2. – P. 518-524.
Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era / K.J. Bell [et al.] // Diabetes Care. – 2015. – Vol. 38. – № 6. – P. 1008-1015.
Nansel, T.R. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes / T.R. Nansel, L.M. Lipsky, A. Liu // The American Journal of Clinical Nutrition. – 2016. – Vol. 104. – № 1. – P. 81-87.
Increasing the protein quantity in a meal results in dose-dependent effects on postprandial glucose levels in individuals with Type 1 diabetes mellitus / M.A. Paterson [et al.] // Diabetic Medicine: A Journal of the British Diabetic Association. – 2017. – Vol. 34. – № 6. – P. 851-854.
Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children With Type 1 Diabetes, and the Effect Is Additive / C.E.M. Smart [et al.] // Diabetes Care. – 2013. – Vol. 36. – № 12. – P. 3897-3902.
Pańkowska, E. Does the Fat-Protein Meal Increase Postprandial Glucose Level in Type 1 Diabetes Patients on Insulin Pump: The Conclusion of a Randomized Study / E. Pańkowska, M. Błazik, L. Groele // Diabetes Technology & Therapeutics. – 2012. – Vol. 14. – № 1. – P. 16-22.
Lessons from the Hvidoere International Study Group on childhood diabetes: be dogmatic about outcome and flexible in approach: Hvidoere group studies / F. Cameron [et al.] // Pediatric Diabetes. – 2013. – Vol. 14. – № 7. – P. 473-480.
Physical activity interventions in children and young people with Type 1 diabetes mellitus: a systematic review with meta-analysis / H. Quirk [et al.] // Diabetic Medicine: A Journal of the British Diabetic Association. – 2014. – Vol. 31. – № 10. – P. 1163-1173.
A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy / F. MacMillan [et al.] // Pediatric Diabetes. – 2014. – Vol. 15. – № 3. – P. 175-189.
Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis / M. Nocon [et al.] // European Journal of Cardiovascular Prevention and Rehabilitation: Official Journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology. – 2008. – Vol. 15. – № 3. – P. 239-246.
Riddell, M.C. Type 1 Diabetes and Vigorous Exercise: Applications of Exercise Physiology to Patient Management / M.C. Riddell, B.A. Perkins // Canadian Journal of Diabetes. – 2006. – Vol. 30. – № 1. – P. 63-71.
ISPAD Clinical Practice Consensus Guidelines 2018: Exercise in children and adolescents with diabetes / P. Adolfsson [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 205-226.
Eating problems in adolescents with Type 1 diabetes: a systematic review with meta- analysis / V. Young [et al.] // Diabetic Medicine: A Journal of the British Diabetic Association. – 2013. – Vol. 30. – № 2. – P. 189-198.
Depression and adherence to treatment in diabetic children and adolescents: a systematic review and meta-analysis of observational studies / C. Kongkaew [et al.] // European Journal of Pediatrics. – 2014. – Vol. 173. – № 2. – P. 203-212.
ISPAD Clinical Practice Consensus Guidelines 2018: The delivery of ambulatory diabetes care to children and adolescents with diabetes / C. Pihoker [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 84-104.
Microvascular complications assessment in adolescents with 2- to 5-yr duration of type 1 diabetes from 1990 to 2006 / Y.H. Cho [et al.] // Pediatric Diabetes. – 2011. – Vol. 12. – № 8. – P. 682-689.
ISPAD Clinical Practice Consensus Guidelines 2018: Microvascular and macrovascular complications in children and adolescents / K.C. Donaghue [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 262-274.
Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association / J.L. Chiang [et al.] // Diabetes Care. – 2018. – Vol. 41. – № 9. – P. 2026-2044.
Martinez‐Zapata M. J. et al. Anti‐vascular endothelial growth factor for proliferative diabetic retinopathy //Cochrane Database of Systematic Reviews. – 2014. – №. 11..
Simunovic, M. P., & Maberley, D. A. L. (2015). ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR THERAPY FOR PROLIFERATIVE DIABETIC RETINOPATHY. Retina, 35(10), 1931–1942. doi:10.1097/iae.0000000000000723.
Angiotensin converting enzyme inhibitor therapy to decrease microalbuminuria in normotensive children with insulin-dependent diabetes mellitus / J. Cook [et al.] // The Journal of Pediatrics. – 1990. – Vol. 117. – № 1. – P. 39-45.
Enalapril reduces microalbuminuria in young normotensive Type 1 (insulin-dependent) diabetic patients irrespective of its hypotensive effect / S. Rudberg [et al.] // Diabetologia. – 1990. – Vol. 33. – № 8. – P. 470-476.
American Diabetes Association. 10. Microvascular Complications and Foot Care:
Standards of Medical Care in Diabetes—2018
/ American Diabetes Association // Diabetes Care. – 2018. – Vol. 41. – № Supplement 1. – P. S105-S118.
A double-blind, placebo-controlled, dose-response study of the effectiveness and safety of lisinopril for children with hypertension / B. Soffer [et al.] // American Journal of Hypertension. – 2003. – Vol. 16. – № 10. – P. 795-800.
Cardiovascular and Renal Outcomes of Renin–Angiotensin System Blockade in Adult Patients with Diabetes Mellitus: A Systematic Review with Network Meta-Analyses / F. Catalá- López [et al.] // PLOS Medicine. – 2016. – Vol. 13. – № 3. – P. e1001971.
Finn, B.P. Supraventricular tachycardia as a complication of severe diabetic ketoacidosis in an adolescent with new-onset type 1 diabetes / B.P. Finn, B. Fraser, S.M. O’Connell // BMJ Case Reports. – 2018. – P. bcr-2017-222861.
ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state / J.I. Wolfsdorf [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 155-177.
ISPAD Clinical Practice Consensus Guidelines 2018: Assessment and management of hypoglycemia in children and adolescents with diabetes / M.B. Abraham [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 178-192.
Tinti, D. Mini-doses of glucagon to prevent hypoglycemia in children with type 1 diabetes refusing food: a case series / D. Tinti, I. Rabbone // Acta Diabetologica. – 2019.
Thyroid autoimmunity in Type 1 diabetes: systematic review and meta-analysis / C.B. Shun [et al.] // Diabetic Medicine: A Journal of the British Diabetic Association. – 2014. – Vol. 31. – № 2. – P. 126-135.
Lee, J.Y. Prognostic value of acoustic structure quantification in patients with Hashimoto’s thyroiditis / J.Y. Lee, H.S. Hong, C.-H. Kim // European Radiology. – 2019. – Vol. 29. – № 11. – P. 5971-5980.
ISPAD Clinical Practice Consensus Guidelines 2018: Other complications and associated conditions in children and adolescents with type 1 diabetes / F.H. Mahmud [et al.] // Pediatric Diabetes. – 2018. – Vol. 19. – P. 275-286.
Screening for Celiac Disease in Type 1 Diabetes: A Systematic Review / A. Pham-Short [et al.] // PEDIATRICS. – 2015. – Vol. 136. – № 1. – P. e170-e176.
Elkabbany Z. A. et al. Transient elastography as a noninvasive assessment tool for hepatopathies of different etiology in pediatric type 1 diabetes mellitus //Journal of Diabetes and its Complications. – 2017. – Т. 31. – №. 1. – С. 186-194..
Для продолжения работы требуется
Регистрация
Предыдущая страница
Следующая страница
Оглавление
Список сокращений
Термины и определения
Сахарный диабет 1 типа у детей
+
Список литературы
Приложение А1. Состав рабочей группы по разработке и пересмотру клинических рекомендаций
Приложение А2. Методология разработки клинических рекомендаций
Приложение Б. Алгоритмы действий врача
Приложение В. Информация для пациента
Приложение Г1-ГN. Шкалы оценки, вопросники и другие оценочные инструменты состояния пациента, приведенные в клинических рекомендациях
+
Данный блок поддерживает скрол*