25. Brachtl G., Sahakyan K., Denk U., Girbl T., Alinger B., Hofbauer S.W. et al. Differential bone marrow homing capacity of VLA-4 and CD38 high expressing chronic lymphocytic leukemia cells // PLoS. One. 2011. Vol. 6, N 8. Article ID e23758.
26. Gattei V., Bulian P., Del Principe M.I., Zucchetto A., Maurillo L., Buccisano F. et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia // Blood. 2008. Vol. 111, N 2. P. 865–873.
27. Baumann T., Delgado J., Santacruz R., Martinez-Trillos A., Rozman M., Aymerich M. et al. CD49d (ITGA4) expression is a predictor of time to first treatment in patients with chronic lymphocytic leukaemia and mutated IGHV status // Br. J. Haematol. 2016. Vol. 172, N 1. P. 48–55.
28. Bulian P., Shanafelt T.D., Fegan C., Zucchetto A., Cro L., Nuckel H. et al. CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia // J. Clin. Oncol. 2014. Vol. 32, N 9. P. 897–904.
29. Shanafelt T.D., Geyer S.M., Bone N.D., Tschumper R.C., Witzig T.E., Nowakowski G.S. et al. CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential // Br. J. Haematol. 2008. Vol. 140, N 5. P. 537–546.
30. Sivina M., Hartmann E., Vasyutina E., Boucas J.M., Breuer A., Keating M.J. et al. Stromal cells modulate TCL1 expression, interacting AP-1 components and TCL1-targeting micro-RNAs in chronic lymphocytic leukemia // Leukemia. 2012. Vol. 26, N 8. P. 1812–1820.
31. Mangolini M., Gotte F., Moore A., Ammon T., Oelsner M., Lutzny-Geier G. et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia // Nat. Commun. 2018. Vol. 9, N 1. Article ID 3839.
32. Nwabo Kamdje A.H., Bassi G., Pacelli L., Malpeli G., Amati E., Nichele I. et al. Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy // Blood Cancer J. 2012. Vol. 2, N 5. P. e73.
33. Jitschin R., Braun M., Qorraj M., Saul D., Le Blanc K., Zenz T. et al. Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling // Blood. 2015. Vol. 125, N 22. P. 3432–3436.
34. Marquez M.E., Hernandez-Uzcategui O., Cornejo A., Vargas P., Da Costa O. Bone marrow stromal mesenchymal cells induce down regulation of CD20 expression on B-CLL: implications for rituximab resistance in CLL // Br. J. Haematol. 2015. Vol. 169, N 2. P. 211–218.
35. Lutzny G., Kocher T., Schmidt-Supprian M., Rudelius M., Klein-Hitpass L., Finch A.J. et al. Protein kinase C-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo // Cancer Cell. 2013. Vol. 23, N 1. P. 77–92.
36. Paggetti J., Haderk F., Seiffert M., Janji B., Distler U., Ammerlaan W. et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts // Blood. 2015. Vol. 126, N 9. P. 1106–1117.
37. Ding W., Knox T.R., Tschumper R.C., Wu W., Schwager S.M., Boysen J.C. et al. Platelet-derived growth factor (PDG-F)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch // Blood. 2010. Vol. 116, N 16. P. 2984–2993.
38. Gehrke I., Gandhirajan R.K., Poll-Wolbeck S.J., Hallek M., Kreuzer K.A. Bone marrow stromal cell-derived vascular endothelial growth factor (VEGF) rather than chronic lymphocytic leukemia (CLL) cell-derived VEGF is essential for the apoptotic resistance of cultured CLL cells // Mol. Med. 2011. Vol. 17, N 7–8. P. 619–627.
39. Tsukada N., Burger J.A., Zvaifler N.J., Kipps T.J. Distinctive features of «nurse-like» cells that differentiate in the context of chronic lymphocytic leukemia // Blood. 2002. Vol. 99, N 3. P. 1030–1037.
40. Giannoni P., Pietra G., Travaini G., Quarto R., Shyti G., Benelli R. et al. Chronic lymphocytic leukemia nurse-like cells express hepatocyte growth factor receptor (c-MET) and indoleamine 2,3-dioxygenase and display features of immunosuppressive type 2 skewed macrophages // Haematologica. 2014. Vol. 99, N 6. P. 1078–1087.
41. Burkle A., Niedermeier M., Schmitt-Graff A., Wierda W.G., Keating M.J., Burger J.A. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia // Blood. 2007. Vol. 110, N 9. P. 3316–3325.
42. Nishio M., Endo T., Tsukada N., Ohata J., Kitada S., Reed J.C. et al. Nurse-like cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha // Blood. 2005. Vol. 106, N 3. P. 1012–1020.
43. Endo T., Nishio M., Enzler T., Cottam H.B., Fukuda T., James D.F. et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway // Blood. 2007. Vol. 109, N 2. P. 703–710.
44. Burger J.A., Quiroga M.P., Hartmann E., Burkle A., Wierda W.G., Keating M.J. et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurse-like cell cocultures and after BCR stimulation // Blood. 2009. Vol. 113, N 13. P. 3050–3058.
45. Mittal A.K., Chaturvedi N.K., Rai K.J., Gilling-Cutucache C.E., Nordgren T.M., Moragues M. et al. Chronic lymphocytic leukemia cells in a lymph node microenvironment depict molecular signature associated with an aggressive disease // Mol. Med. 2014. Vol. 20. P. 290–301.
46. Binder M., Lechenne B., Ummanni R., Scharf C., Balabanov S., Trusch M. et al. Stereotypical chronic lymphocytic leukemia B-cell receptors recognize survival promoting antigens on stromal cells // PLoS One. 2010. Vol. 5, N 12. Article ID e15992.
47. Hacken E.T., Gounari M., Back J.W., Shimanovskaya E., Scarfo L., Kim E. et al. Calreticulin as a novel B-cell receptor antigen in chronic lymphocytic leukemia // Haematologica. 2017. Vol. 102, N 10. P. e394–e396.