14.1. Метаболизм эритроцитов
Эритроциты - высокоспециализированные клетки, которые переносят кислород от легких к тканям и диоксид углерода, образующийся при метаболизме, из тканей к альвеолам легких. В результате дифференцировки эритроциты теряют ядро, рибосомы, митохондрии, эндоплазматический ретикулум. Эти клетки имеют только плазматическую мембрану и цитоплазму. Они не содержат ядра, поэтому неспособны к самовоспроизведению и репарации, возникающих в них повреждений. Двояковогнутая форма эритроцитов имеет большую площадь поверхности по сравнению с клетками сферической формы такого же размера. Это облегчает газообмен между клеткой и внеклеточной средой. Вместе с тем такая форма и особенности строения цитоскелета и плазматической мембраны обеспечивают большую пластичность эритроцитов при прохождении ими мелких капилляров.
Метаболизм глюкозы в эритроцитах представлен анаэробным гликолизом и пентозофосфатным путем превращения глюкозы. Эти процессы обусловливают сохранение структуры и функций гемоглобина, целостность клеточной мембраны и образование энергии для работы ионных насосов.
1. Гликолиз обеспечивает энергией работу транспортных АТФаз, а также протекающие с затратой АТФ гексокиназную и фосфофруктокиназную реакции гликолиза. NADH, образующийся в ходе анаэробного гликолиза, является коферментом метгемоглобинредуктазы, катализирующей восстановление метгемоглобина в гемоглобин. Кроме того, в эритроцитах присутствует фермент бисфосфоглицератмутаза, превращающий промежуточный метаболит этого процесса 1,3-бисфосфоглицерат в 2,3-бисфосфоглицерат. Образующийся только в эритроцитах 2,3-бисфосфоглицерат служит важным аллостерическим регулятором связывания кислорода с гемоглобином. На окислительном этапе пентозофосфатного пути превращения глюкозы образуется NADPH, участвующий в восстановлении глутатиона. Последний используется в антиоксидантной защите эритроцитов (рис. 14.1).
Рис. 14.1. Образование и обезвреживание активных форм кислорода в эритроцитах: 1 - источник супероксидного аниона в эритроцитах - спонтанное окисление Fe2+ в геме гемоглобина; 2 - супероксиддисмутаза превращает супероксидный анион в пероксид водорода и О2; 3 - пероксид водорода расщепляется каталазой или глутатионпероксидазой; 4 - глутатионредуктаза восстанавливает окисленный глутатион; 5 - на окислительном этапе пентозофосфатного пути превращения глюкозы образуется NADPH, необходимый для восстановления глутатиона; 6 - в глицеральде-гидфосфатдегидрогеназной реакции гликолиза образуется NADH, участвующий в восстановлении железа метгемоглобина метгемоглобинредуктазной системой