Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы

  1. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39(2 Suppl 1):S1-266
  2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 2013;3:1-150
  3. Tsai WC, Wu HY, Peng YS et al. Risk Factors for Development and Progression of Chronic Kidney Disease: A Systematic Review and Exploratory Meta-Analysis. Medicine (Baltimore) 2016;95(11):e3013. doi: 10.1097/MD.0000000000003013
  4. Shen Y, Cai R, Sun J et al. Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: a systematic review and meta-analysis. Endocrine 2017;55(1):66-76. doi: 10.1007/s12020-016-1014-6
  5. Chang AR, Grams ME, Ballew SH et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ 2019;364:k5301. doi: 10.1136/bmj.k5301
  6. Nitsch D, Grams M, Sang Y et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 2013;346:f324. doi: 10.1136/bmj.f324
  7. See EJ, Jayasinghe K, Glassford N et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int 2019;95(1):160-172. doi: 10.1016/j.kint.2018.08.036
  8. Rashidbeygi E, Safabakhsh M, Delshad Aghdam S et al. Metabolic syndrome and its components are related to a higher risk for albuminuria and proteinuria: Evidence from a meta-analysis on 10,603,067 subjects from 57 studies. Diabetes Metab Syndr 2019;13(1):830-843. doi: 10.1016/j.dsx.2018.12.006
  9. Xia J, Wang L, Ma Z et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol Dial Transplant 2017;32(3):475-487. doi: 10.1093/ndt/gfw452
  10. Garofalo C, Borrelli S, Pacilio M et al. Hypertension and Prehypertension and Prediction of Development of Decreased Estimated GFR in the General Population: A Meta-analysis of Cohort Studies. Am J Kidney Dis 2016;67(1):89-97. doi: 10.1053/j.ajkd.2015.08.027
  11. Shang W, Li L, Ren Y et al. History of kidney stones and risk of chronic kidney disease: a meta-analysis. PeerJ 2017;5:e2907. doi: 10.7717/peerj.2907
  12. Musso G, Gambino R, Tabibian JH et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med 2014;11(7):e1001680. doi: 10.1371/journal.pmed.1001680
  13. Mantovani A, Zaza G, Byrne CD et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism 2018;79:64-76. doi: 10.1016/j.metabol.2017.11.003
  14. Yu X, Yuan Z, Lu H et al. Relationship between birth weight and chronic kidney disease: evidence from systematics review and two-sample Mendelian randomization analysis. Hum Mol Genet 2020;29(13):2261-2274. doi: 10.1093/hmg/ddaa074
  15. Major RW, Cheng MRI, Grant RA et al. Cardiovascular disease risk factors in chronic kidney disease: A systematic review and meta-analysis. PLoS One 2018;13(3):e0192895. doi: 10.1371/journal.pone.0192895
  16. Xie X, Atkins E, Lv J et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 2016;387(10017):435-43. doi: 10.1016/S0140-6736(15)00805-3
  17. Zoungas S, Arima H, Gerstein HC et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol 2017;5(6):431-437. doi: 10.1016/S2213-8587(17)30104-3
  18. Palmer SC, Navaneethan SD, Craig JC et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev 2014;(5):CD007784. doi: 10.1002/14651858.CD007784.pub2
  19. Upadhyay A, Earley A, Lamont JL et al. Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med 2012;157(4):251-62. doi: 10.7326/0003-4819-157-4-201208210-00005
  20. Coca SG, Ismail-Beigi F, Haq N et al. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med 2012;172(10):761-9. doi: 10.1001/archinternmed.2011.2230
  21. Alizadeh S, Esmaeili H, Alizadeh M et al. Metabolic phenotypes of obese, overweight, and normal weight individuals and risk of chronic kidney disease: a systematic review and meta-analysis. Arch Endocrinol Metab 2019;63(4):427-437. doi: 10.20945/2359-3997000000149
  22. Navaneethan SD, Yehnert H, Moustarah F et al. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2009;4(10):1565-74. doi: 10.2215/CJN.02250409
  23. Schwasinger-Schmidt TE, Elhomsy G, Paull-Forney BG. Impact of a Community-Based Weight Loss Program on Renal Function. Cureus 2020;12(5):e8101. doi: 10.7759/cureus.8101
  24. Thomas G, Sehgal AR, Kashyap SR et al. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2011;6(10):2364-73. doi: 10.2215/CJN.02180311
  25. Staplin N, Haynes R, Herrington WG et al. Smoking and Adverse Outcomes in Patients With CKD: The Study of Heart and Renal Protection (SHARP). Am J Kidney Dis 2016;68(3):371-80. doi: 10.1053/j.ajkd.2016.02.052
  26. Bundy JD, Bazzano LA, Xie D, Cohan J et al. Self-Reported Tobacco, Alcohol, and Illicit Drug Use and Progression of Chronic Kidney Disease. Clin J Am Soc Nephrol 2018;13(7):993-1001. doi: 10.2215/CJN.11121017
  27. United States Renal Date System Report. https://www.usrds.org/annual-data-report/
  28. Смирнов АВ, Добронравов ВА, Каюков ИГ. Кардио-ренальный континуум: патогенетические основы превентивной нефрологии. Нефрология 2005;9(3):7-15
  29. Astor BC, Matsushita K, Gansevoort RT et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 2011;79(12):1331-40. doi: 10.1038/ki.2010.550
  30. Fox CS, Matsushita K, Woodward M et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 2012;380(9854):1662-73. doi: 10.1016/S0140-6736(12)61350-6
  31. Zhang W, He J, Zhang F et al. Prognostic role of C-reactive protein and interleukin-6 in dialysis patients: a systematic review and meta-analysis. J Nephrol 2013;26(2):243-53. doi: 10.5301/jn.5000169
  32. Li WJ, Chen XM, Nie XY et al. Cardiac troponin and C-reactive protein for predicting all-cause and cardiovascular mortality in patients with chronic kidney disease: a meta-analysis. Clinics (Sao Paulo) 2015;70(4):301-11. doi: 10.6061/clinics/2015(04)14
  33. Jing Z, Wei-jie Y, Nan Z et al. Hemoglobin targets for chronic kidney disease patients with anemia: a systematic review and meta-analysis. PLoS One 2012;7(8):e43655. doi: 10.1371/journal.pone.0043655
  34. Heinz J, Kropf S, Luley C, Dierkes J. Homocysteine-lowering therapy does not lead to reduction in cardiovascular outcomes in chronic kidney disease patients: a meta-analysis of randomised, controlled trials. Br J Nutr 2012;108(3):400-7. doi: 10.1017/S0007114511007033
  35. Coresh J, Heerspink HJL, Sang Y et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol 2019;7(2):115-127. doi: 10.1016/S2213-8587(18)30313-9
  36. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018;39(33):3021-3104. doi: 10.1093/eurheartj/ehy339
  37. Ponikowski P, Voors AA, Anker SD et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37(27):2129-2200. doi: 10.1093/eurheartj/ehw128
  38. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int Suppl 2012;2:337-414
  39. Hill NR, Fatoba ST, Oke JL et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 2016;11(7):e0158765. doi: 10.1371/journal.pone.0158765
  40. Смирнов АВ, Каюков ИГ, Есаян АМ и др. Превентивный подход в современной нефрологии. Нефрология 2004;8(3):7-14. doi: 10.24884/1561-6274-2004-8-3-7-14
  41. Бикбов БТ, Томилина НА. Состояние заместительной терапии больных с хронической почечной недостаточностью в Российской Федерации в 1998-2007 гг (Аналитический отчет по данным Российского регистра заместительной почечной терапии). Нефрология и диализ 2009;11(3):144-233
  42. Смирнов АВ, Седов ВМ, Лхаахуу Од-Эрдэнэ и др. Снижение скорости клубочковой фильтрации как независимый фактор риска сердечно-сосудистой болезни. Нефрология 2006;10(4):7-17
  43. Смирнов АВ, Добронравов ВА, Каюков ИГ и др. Эпидемиология и социально-экономические аспекты хронической болезни почек. Нефрология 2006;10(1):7-13
  44. Schieppati A, Remuzzi G. Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney Int Suppl 2005;(98):S7-S10. doi: 10.1111/j.1523-1755.2005.09801.x
  45. Bommer J. Prevalence and socio-economic aspects of chronic kidney disease. Nephrol Dial Transplant 2002;17 Suppl 11:8-12. doi: 10.1093/ndt/17.suppl_11.8
  46. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020;395(10225):709-733. doi: 10.1016/S0140-6736(20)30045-3
  47. Yang CW, Harris DCH, Luyckx VA et al. Global case studies for chronic kidney disease/end-stage kidney disease care. Kidney Int Suppl 2020;10(1):e24-e48. doi: 10.1016/j.kisu.2019.11.010
  48. Андрусев АМ, Перегудова НГ, Шинкарев МБ, Томилина НА. Заместительная почечная терапия хронической болезни почек 5 стадии в Российской Федерации 2016-2020 гг. Краткий отчет по данным Общеросийского Регистра заместительной почечной терапии Российского диализного общества. Нефрология и диализ 2022;24(4):555-565
  49. Смирнов АВ, Добронравов ВА, Бодур-Ооржак АШ и др. Эпидемиология и факторы риска хронических болезней почек: региональный уровень общей проблемы. Тер арх 2005;6:20-27
  50. Нефрология. Национальное руководство. Под ред. НА Мухина. ГЭОТАР-Медиа, 2009, 720 с
  51. National Center for Health Statistics. WHO Collaborating Centre for the WHO Family of International Classifications. https://www.who.int/classifications/icd/ICD-10%20Updates%202007.pdf
  52. Inker LA, Heerspink HJL, Tighiouart H et al. GFR Slope as a Surrogate End Point for Kidney Disease Progression in Clinical Trials: A Meta-Analysis of Treatment Effects of Randomized Controlled Trials. J Am Soc Nephrol 2019;30(9):1735-1745. doi: 10.1681/ASN.2019010007
  53. Heerspink HJL, Greene T, Tighiouart H et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol 2019;7(2):128-139. doi: 10.1016/S2213-8587(18)30314-0
  54. Yarnoff BO, Hoerger TJ, Simpson SK et al. The cost-effectiveness of using chronic kidney disease risk scores to screen for early-stage chronic kidney disease. BMC Nephrol 2017;18(1):85. doi: 10.1186/s12882-017-0497-6
  55. Galbraith LE, Ronksley PE, Barnieh LJ et al. The See Kidney Disease Targeted Screening Program for CKD. Clin J Am Soc Nephrol 2016;11(6):964-72. doi: 10.2215/CJN.11961115
  56. Manns B, Hemmelgarn B, Tonelli M et al. Population based screening for chronic kidney disease: cost effectiveness study. BMJ 2010;341:c5869. doi: 10.1136/bmj.c5869
  57. Boulware LE, Jaar BG, Tarver-Carr ME et al. Screening for proteinuria in US adults: a cost-effectiveness analysis. JAMA 2003;290(23):3101-14. doi: 10.1001/jama.290.23.3101
  58. Wu HY, Huang JW, Peng YS et al. Microalbuminuria screening for detecting chronic kidney disease in the general population: a systematic review. Ren Fail 2013;35(5):607-14. doi: 10.3109/0886022X.2013.779907
  59. Komenda P, Ferguson TW, Macdonald K et al. Cost-effectiveness of primary screening for CKD: a systematic review. Am J Kidney Dis 2014;63(5):789-97. doi: 10.1053/j.ajkd.2013.12.012
  60. Gheewala PA, Zaidi STR, Jose MD et al. Effectiveness of targeted screening for chronic kidney disease in the community setting: a systematic review. J Nephrol 2018;31(1):27-36. doi: 10.1007/s40620-017-0375-0
  61. Yang P, Zou H, Xiao B, Xu G. Comparative Efficacy and Safety of Therapies in IgA Nephropathy: A Network Meta-analysis of Randomized Controlled Trials. Kidney Int Rep 2018;3(4):794-803. doi: 10.1016/j.ekir.2018.03.006
  62. Sridharan K, Sivaramakrishnan G. Drug Therapies for Patients with IgA Nephropathy: A Network Meta-analysis of Randomized Clinical Trials. Curr Clin Pharmacol 2020;15(2):132-144. doi: 10.2174/1574884715666191223103914
  63. Zhang Z, Yang Y, Jiang SM, Li WG. Efficacy and safety of immunosuppressive treatment in IgA nephropathy: a meta-analysis of randomized controlled trials. BMC Nephrol 2019;20(1):333. doi: 10.1186/s12882-019-1519-3
  64. Zheng Q, Yang H, Liu W et al. Comparative efficacy of 13 immunosuppressive agents for idiopathic membranous nephropathy in adults with nephrotic syndrome: a systematic review and network meta-analysis. BMJ Open 2019;9(9):e030919. doi: 10.1136/bmjopen-2019-030919
  65. Chen Y, Schieppati A, Cai G et al. Immunosuppression for membranous nephropathy: a systematic review and meta-analysis of 36 clinical trials. Clin J Am Soc Nephrol 2013;8(5):787-96. doi: 10.2215/CJN.07570712
  66. Laurin LP, Nachman PH, Foster BJ. Calcineurin Inhibitors in the Treatment of Primary Focal Segmental Glomerulosclerosis: A Systematic Review and Meta-analysis of the Literature. Can J Kidney Health Dis 2017;4:2054358117692559. doi: 10.1177/2054358117692559
  67. Palmer SC, Tunnicliffe DJ, Singh-Grewal D et al. Induction and Maintenance Immunosuppression Treatment of Proliferative Lupus Nephritis: A Network Meta-analysis of Randomized Trials. Am J Kidney Dis 2017;70(3):324-336. doi: 10.1053/j.ajkd.2016.12.008
  68. Li Y, Xu S, Xu G. Comparison of Different Uses of Cyclophosphamide in Lupus Nephritis: A Meta-Analysis of Randomized Controlled Trials. Endocr Metab Immune Disord Drug Targets 2020;20(5):687-702. doi: 10.2174/1871530319666191107110420
  69. Hazlewood GS, Metzler C, Tomlinson GA et al. Non-biologic remission maintenance therapy in adult patients with ANCA-associated vasculitis: a systematic review and network meta-analysis. Joint Bone Spine 2014;81(4):337-41. doi: 10.1016/j.jbspin.2013.11.006
  70. Fabrizi F, Ganeshan SV, Lunghi G et al. Antiviral therapy of hepatitis C in chronic kidney diseases: meta-analysis of controlled clinical trials. J Viral Hepat 2008;15(8):600-6. doi: 10.1111/j.1365-2893.2008.00990.x
  71. Zhang T, Yang X, Zhang M, Zhou W, Jin Y, Zhou H, Zhou Y, Wang Q, Mou S. Effects of receiving renal biopsy on the prognosis of chronic kidney disease patients with impaired renal function. BMC Nephrol. 2023 Mar 15;24(1):56. doi: 10.1186/s12882-023-03097-2
  72. Lv J, Ehteshami P, Sarnak MJ et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ 2013;185(11):949-57. doi: 10.1503/cmaj.121468
  73. Нефрология. Клинические рекомендации. По ред. Шилов ЕМ, Смирнов АВ, Козловская НЛ. ГОЭТАР-Медиа, 202
  74. Malhotra R, Nguyen HA, Benavente O et al. Association Between More Intensive vs Less Intensive Blood Pressure Lowering and Risk of Mortality in Chronic Kidney Disease Stages 3 to 5: A Systematic Review and Meta-analysis. JAMA Intern Med 2017;177(10):1498-1505. doi: 10.1001/jamainternmed.2017.4377
  75. Zhang X, Xiang C, Zhou YH et al. Effect of statins on cardiovascular events in patients with mild to moderate chronic kidney disease: a systematic review and meta-analysis of randomized clinical trials. BMC Cardiovasc Disord 2014;14:19. doi: 10.1186/1471-2261-14-19
  76. Major RW, Cheung CK, Gray LJ, Brunskill NJ. Statins and Cardiovascular Primary Prevention in CKD: A Meta-Analysis. Clin J Am Soc Nephrol 2015;10(5):732-9. doi: 10.2215/CJN.07460714
  77. Ladhani M, Craig JC, Irving M et al. Obesity and the risk of cardiovascular and all-cause mortality in chronic kidney disease: a systematic review and meta-analysis. Nephrol Dial Transplant 2017;32(3):439-449. doi: 10.1093/ndt/gfw075
  78. Kovesdy CP, Matsushita K, Sang Y et al. Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis. Eur Heart J 2018;39(17):1535-1542. doi: 10.1093/eurheartj/ehy100
  79. Hu MK, Witham MD, Soiza RL. Oral Bicarbonate Therapy in Non-Haemodialysis Dependent Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. J Clin Med 2019;8(2):208. doi: 10.3390/jcm8020208
  80. Duranton F, Rodriguez-Ortiz ME, Duny Y et al. Vitamin D treatment and mortality in chronic kidney disease: a systematic review and meta-analysis. Am J Nephrol 2013;37(3):239-48. doi: 10.1159/000346846
  81. Li XH, Feng L, Yang ZH, Liao YH. Effect of active vitamin D on cardiovascular outcomes in predialysis chronic kidney diseases: A systematic review and meta-analysis. Nephrology (Carlton) 2015;20(10):706-714. doi: 10.1111/nep.12505
  82. Xu L, Wan X, Huang Z et al. Impact of vitamin D on chronic kidney diseases in non-dialysis patients: a meta-analysis of randomized controlled trials. PLoS One 2013;8(4):e61387. doi: 10.1371/journal.pone.0061387
  83. Liu X, Zhai T, Ma R et al. Effects of uric acid-lowering therapy on the progression of chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2018;40(1):289-297. doi: 10.1080/0886022X.2018.1456463
  84. Zhang YF, He F, Ding HH et al. Effect of uric-acid-lowering therapy on progression of chronic kidney disease: a meta-analysis. J Huazhong Univ Sci Technolog Med Sci 2014;34(4):476-481. doi: 10.1007/s11596-014-1302-4
  85. Lu R, Zhang Y, Zhu X et al. Effects of mineralocorticoid receptor antagonists on left ventricular mass in chronic kidney disease patients: a systematic review and meta-analysis. Int Urol Nephrol 2016;48(9):1499-509. doi: 10.1007/s11255-016-1319-7
  86. Wang XR, Zhang JJ, Xu XX, Wu YG. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2019;41(1):244-256. doi: 10.1080/0886022X.2019.1595646
  87. Bansal N, Katz R, Robinson-Cohen C et al. Absolute Rates of Heart Failure, Coronary Heart Disease, and Stroke in Chronic Kidney Disease: An Analysis of 3 Community-Based Cohort Studies. JAMA Cardiol 2017;2(3):314-318. doi: 10.1001/jamacardio.2016.4652
  88. Charytan DM, Wallentin L, Lagerqvist B et al. Early angiography in patients with chronic kidney disease: a collaborative systematic review. Clin J Am Soc Nephrol 2009;4(6):1032-43. doi: 10.2215/CJN.05551008
  89. Collier G, Greenan MC, Brady JJ et al. A study of the relationship between albuminuria, proteinuria and urinary reagent strips. Ann Clin Biochem 2009;46(Pt 3):247-9. doi: 10.1258/acb.2009.008189
  90. McTaggart MP, Newall RG, Hirst JA et al. Diagnostic accuracy of point-of-care tests for detecting albuminuria: a systematic review and meta-analysis. Ann Intern Med 2014;160(8):550-7. doi: 10.7326/M13-2331
  91. Kim Y, Park S, Kim MH et al. Can a semi-quantitative method replace the current quantitative method for the annual screening of microalbuminuria in patients with diabetes? Diagnostic accuracy and cost-saving analysis considering the potential health burden. PLoS One 2020;15(1):e0227694. doi: 10.1371/journal.pone.0227694
  92. White SL, Yu R, Craig JC et al. Diagnostic accuracy of urine dipsticks for detection of albuminuria in the general community. Am J Kidney Dis 2011;58(1):19-28. doi: 10.1053/j.ajkd.2010.12.026
  93. Park JI, Baek H, Kim BR, Jung HH. Comparison of urine dipstick and albumin:creatinine ratio for chronic kidney disease screening: A population-based study. PLoS One 2017;12(2):e0171106. doi: 10.1371/journal.pone.0171106
  94. Koeda Y, Tanaka F, Segawa T et al. Comparison between urine albumin-to-creatinine ratio and urine protein dipstick testing for prevalence and ability to predict the risk for chronic kidney disease in the general population (Iwate-KENCO study): a prospective community-based cohort study. BMC Nephrol 2016;17(1):46. doi: 10.1186/s12882-016-0261-3
  95. Usui T, Yoshida Y, Nishi H et al. Diagnostic accuracy of urine dipstick for proteinuria category in Japanese workers. Clin Exp Nephrol 2020;24(2):151-156. doi: 10.1007/s10157-019-01809-3
  96. Naruse M, Mukoyama M, Morinaga J et al. Usefulness of the quantitative measurement of urine protein at a community-based health checkup: a cross-sectional study. Clin Exp Nephrol 2020;24(1):45-52. doi: 10.1007/s10157-019-01789-4
  97. Wu HY, Peng YS, Chiang CK et al. Diagnostic performance of random urine samples using albumin concentration vs ratio of albumin to creatinine for microalbuminuria screening in patients with diabetes mellitus: a systematic review and meta-analysis.
  98. JAMA Intern Med 2014;174(7):1108-15. doi: 10.1001/jamainternmed.2014.1363
  99. Wu MT, Lam KK, Lee WC et al. Albuminuria, proteinuria, and urinary albumin to protein ratio in chronic kidney disease. J Clin Lab Anal 2012;26(2):82-92. doi: 10.1002/jcla.21487
  100. Kim SM, Lee CH, Lee JP et al. The association between albumin to creatinine ratio and total protein to creatinine ratio in patients with chronic kidney disease. Clin Nephrol 2012;78(5):346-52. doi: 10.5414/CN107507
  101. Atkins RC, Briganti EM, Zimmet PZ, Chadban SJ. Association between albuminuria and proteinuria in the general population: the AusDiab Study. Nephrol Dial Transplant 2003;18(10):2170-4. doi: 10.1093/ndt/gfg314
  102. Fisher H, Hsu CY, Vittinghoff E et al. Comparison of associations of urine protein-creatinine ratio versus albumin-creatinine ratio with complications of CKD: a cross-sectional analysis. Am J Kidney Dis 2013;62(6):1102-8. doi: 10.1053/j.ajkd.2013.07.013
  103. Methven S, MacGregor MS, Traynor JP et al. Comparison of urinary albumin and urinary total protein as predictors of patient outcomes in CKD. Am J Kidney Dis 2011;57(1):21-8. doi: 10.1053/j.ajkd.2010.08.009
  104. Weaver RG, James MT, Ravani P et al. Estimating Urine Albumin-to-Creatinine Ratio from Protein-to-Creatinine Ratio: Development of Equations using Same-Day Measurements. J Am Soc Nephrol 2020;31(3):591-601. doi: 10.1681/ASN.2019060605
  105. McFadden EC, Hirst JA, Verbakel JY et al. Systematic Review and Metaanalysis Comparing the Bias and Accuracy of the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration Equations in Community-Based Populations. Clin Chem 2018;64(3):475-485. doi: 10.1373/clinchem.2017.276683
  106. Levey AS, Stevens LA, Schmid CH et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150(9):604-12. doi: 10.7326/0003-4819-150-9-200905050-00006
  107. Stevens LA, Schmid CH, Greene T et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis 2010;56(3):486-95. doi: 10.1053/j.ajkd.2010.03.026
  108. Matsushita K, Mahmoodi BK, Woodward M et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012;307(18):1941-51. doi: 10.1001/jama.2012.3954
  109. Levey AS, Stevens LA. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis 2010;55(4):622-7. doi: 10.1053/j.ajkd.2010.02.337
  110. Zhang M, Cao X, Cai G et al. Clinical evaluation of serum cystatin C and creatinine in patients with chronic kidney disease: a meta-analysis. J Int Med Res 2013;41(4):944-55. doi: 10.1177/0300060513480922
  111. Qiu X, Liu C, Ye Y et al. The diagnostic value of serum creatinine and cystatin c in evaluating glomerular filtration rate in patients with chronic kidney disease: a systematic literature review and meta-analysis. Oncotarget 2017;8(42):72985-72999. doi: 10.18632/oncotarget.20271
  112. Wei L, Ye X, Pei X et al. Diagnostic accuracy of serum cystatin C in chronic kidney disease: a meta-analysis. Clin Nephrol 2015;84(2):86-94. doi: 10.5414/cn108525
  113. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002;40(2):221-6. doi: 10.1053/ajkd.2002.34487
  114. Inker LA, Schmid CH, Tighiouart H et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012;367(1):20-9. doi: 10.1056/NEJMoa1114248
  115. Miller WG, Myers GL, Ashwood ER et al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med 2005;129(3):297-304. doi: 10.1043/1543-2165(2005)129<297:CMSOTA>2.0.CO;2
  116. Piéroni L, Delanaye P, Boutten A et al. A multicentric evaluation of IDMS-traceable creatinine enzymatic assays. Clin Chim Acta 2011;412(23-24):2070-5. doi: 10.1016/j.cca.2011.07.012
  117. Lee ES, Collier CP, White CA. Creatinine Assay Attainment of Analytical Performance Goals Following Implementation of IDMS Standardization: Further Improvements Required. Can J Kidney Health Dis 2017;4:2054358117693353. doi: 10.1177/2054358117693353
  118. Stevens LA, Manzi J, Levey AS et al. Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 2007;50(1):21-35. doi: 10.1053/j.ajkd.2007.04.004
  119. Ou M, Song Y, Li S et al. LC-MS/MS Method for Serum Creatinine: Comparison with Enzymatic Method and Jaffe Method. PLoS One 2015;10(7):e0133912. doi: 10.1371/journal.pone.0133912
  120. Jones GRD. Creatinine assays – global progress on implementing IDMS traceability. Clin Chem Lab Med 2015;53(Special)Suppl:S1-1450
  121. Welch MJ, Cohen A, Hertz HS et al. Determination of serum creatinine by isotope dilution mass spectrometry as a candidate definitive method. Anal Chem 1986;58(8):1681-5. doi: 10.1021/ac00121a018
  122. Lawson N, Lang T, Broughton A et al. Creatinine assays: time for action? Ann Clin Biochem 2002;39(Pt 6):599-602. doi: 10.1177/000456320203900609
  123. Lamb EJ, Wood J, Stowe HJ et al. Susceptibility of glomerular filtration rate estimations to variations in creatinine methodology: a study in older patients. Ann Clin Biochem 2005;42(Pt 1):11-8. doi: 10.1258/0004563053026899
  124. Kuster N, Cristol JP, Cavalier E et al. Enzymatic creatinine assays allow estimation of glomerular filtration rate in stages 1 and 2 chronic kidney disease using CKD-EPI equation. Clin Chim Acta 2014;428:89-95. doi: 10.1016/j.cca.2013.11.002
  125. Soveri I, Berg UB, Björk J et al. Measuring GFR: a systematic review. Am J Kidney Dis 2014;64(3):411-24. doi: 10.1053/j.ajkd.2014.04.010
  126. Palmer SC, Gardner S, Tonelli M et al. Phosphate-Binding Agents in Adults With CKD: A Network Meta-analysis of Randomized Trials. Am J Kidney Dis 2016;68(5):691-702. doi: 10.1053/j.ajkd.2016.05.015
  127. Matsushita K, Coresh J, Sang Y et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol 2015;3(7):514-25. doi: 10.1016/S2213-8587(15)00040-6
  128. Herrera-Gómez F, Chimeno MM, Martín-García D et al. Cholesterol-Lowering Treatment in Chronic Kidney Disease: Multistage Pairwise and Network Meta-Analyses. Sci Rep 2019 Jun 20;9(1):8951. doi: 10.1038/s41598-019-45431-5
  129. Fishbane S, Spinowitz B. Update on Anemia in ESRD and Earlier Stages of CKD: Core Curriculum 2018. Am J Kidney Dis 2018;71(3):423-435. doi: 10.1053/j.ajkd.2017.09.026
  130. Locatelli F, Bárány P, Covic A et al. Kidney Disease: Improving Global Outcomes guidelines on anaemia management in chronic kidney disease: a European Renal Best Practice position statement. Nephrol Dial Transplant 2013;28(6):1346-59. doi: 10.1093/ndt/gft033
  131. Válka J, Čermák J. Differential diagnosis of anemia. Vnitr Lek 2018;64(5):468-475
  132. Archer NM, Brugnara C. Diagnosis of iron-deficient states. Crit Rev Clin Lab Sci 2015;52(5):256-72. doi: 10.3109/10408363.2015.1038744
  133. McCullough K, Bolisetty S. Ferritins in Kidney Disease. Semin Nephrol 2020;40(2):160-172. doi: 10.1016/j.semnephrol.2020.01.007
  134. Natoli JL, Boer R, Nathanson BH et al. Is there an association between elevated or low serum levels of phosphorus, parathyroid hormone, and calcium and mortality in patients with end stage renal disease? A meta-analysis. BMC Nephrol 2013;14:88. doi: 10.1186/1471-2369-14-88
  135. Pilz S, Iodice S, Zittermann A et al. Vitamin D status and mortality risk in CKD: a meta-analysis of prospective studies. Am J Kidney Dis 2011;58(3):374-82. doi: 10.1053/j.ajkd.2011.03.020
  136. Zhang Y, Darssan D, Pascoe EM et al. Vitamin D status and mortality risk among patients on dialysis: a systematic review and meta-analysis of observational studies. Nephrol Dial Transplant 2018;33(10):1742-1751. doi: 10.1093/ndt/gfy016
  137. Fan Y, Jin X, Jiang M, Fang N. Elevated serum alkaline phosphatase and cardiovascular or all-cause mortality risk in dialysis patients: A meta-analysis. Sci Rep 2017;7(1):13224. doi: 10.1038/s41598-017-13387-z
  138. McMahon EJ, Campbell KL, Bauer JD, Mudge DW. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev 2015;(2):CD010070. doi: 10.1002/14651858.CD010070.pub2
  139. Garofalo C, Borrelli S, Provenzano M et al. Dietary Salt Restriction in Chronic Kidney Disease: A Meta-Analysis of Randomized Clinical Trials. Nutrients 2018;10(6):732. doi: 10.3390/nu10060732
  140. Navaneethan SD, Shao J, Buysse J, Bushinsky DA. Effects of Treatment of Metabolic Acidosis in CKD: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 2019;14(7):1011-1020. doi: 10.2215/CJN.13091118
  141. Susantitaphong P, Sewaralthahab K, Balk EM et al. Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review. Am J Nephrol 2012;35(6):540-7. doi: 10.1159/000339329
  142. Su X, Xu B, Yan B et al. Effects of uric acid-lowering therapy in patients with chronic kidney disease: A meta-analysis. PLoS One 2017;12(11):e0187550. doi: 10.1371/journal.pone.0187550
  143. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int Suppl 2012;2:279-335
  144. Kidney Disease: Improving Global Outcomes (KDIGO) Lipid Work Group. KDIGO Clinical Practice Guideline for Lipid Management in Chronic Kidney Disease. Kidney Int Suppl 2013;3:259-305
  145. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2017;7(3):e1. doi: 10.1016/j.kisu.2017.10.001
  146. Moghazi S, Jones E, Schroepple J et al. Correlation of renal histopathology with sonographic findings. Kidney Int 2005;67(4):1515-1520. doi: 10.1111/j.1523-1755.2005.00230.x
  147. Page JE, Morgan SH, Eastwood JB et al. Ultrasound findings in renal parenchymal disease: comparison with histological appearances. Clin Radiol 1994;49(12):867-70. doi: 10.1016/s0009-9260(05)82877-6
  148. Vasbinder GB, Nelemans PJ, Kessels AG et al. Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Intern Med 2001 Sep;135(6):401-11. doi: 10.7326/0003-4819-135-6-200109180-00009
  149. Williams GJ, Macaskill P, Chan SF et al. Comparative accuracy of renal duplex sonographic parameters in the diagnosis of renal artery stenosis: paired and unpaired analysis. AJR Am J Roentgenol 2007;188(3):798-811. doi: 10.2214/AJR.06.0355
  150. Tan KT, van Beek EJ, Brown PW et al. Magnetic resonance angiography for the diagnosis of renal artery stenosis: a meta-analysis. Clin Radiol 2002;57(7):617-24. doi: 10.1053/crad.2002.0941
  151. James MT, Grams ME, Woodward M et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. Am J Kidney Dis 2015 Oct;66(4):602-12. doi: 10.1053/j.ajkd.2015.02.338
  152. McCullough PA, Bertrand ME, Brinker JA, Stacul F. A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol 2006;48(4):692-9. doi: 10.1016/j.jacc.2006.02.073
  153. Han XF, Zhang XX, Liu KM et al. Contrast-induced nephropathy in patients with diabetes mellitus between iso- and low-osmolar contrast media: A meta-analysis of full-text prospective, randomized controlled trials. PLoS One 2018;13(3):e0194330. doi: 10.1371/journal.pone.0194330
  154. From AM, Al Badarin FJ, McDonald FS et al. Iodixanol versus low-osmolar contrast media for prevention of contrast induced nephropathy: meta-analysis of randomized, controlled trials. Circ Cardiovasc Interv 2010;3(4):351-8. doi: 10.1161/CIRCINTERVENTIONS.109.917070
  155. Zhang J, Jiang Y, Rui Q et al. Iodixanol versus iopromide in patients with renal insufficiency undergoing coronary angiography with or without PCI. Medicine (Baltimore) 2018;97(18):e0617. doi: 10.1097/MD.0000000000010617
  156. Khan SU, Khan MU, Rahman H et al. A Bayesian network meta-analysis of preventive strategies for contrast-induced nephropathy after cardiac catheterization. Cardiovasc Revasc Med 2019;20(1):29-37. doi: 10.1016/j.carrev.2018.06.005
  157. Giacoppo D, Gargiulo G, Buccheri S et al. Preventive Strategies for Contrast-Induced Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Procedures: Evidence From a Hierarchical Bayesian Network Meta-Analysis of 124 Trials and 28 240 Patients. Circ Cardiovasc Interv 2017;10(5):e004383. doi: 10.1161/CIRCINTERVENTIONS.116.004383
  158. Su X, Xie X, Liu L et al. Comparative Effectiveness of 12 Treatment Strategies for Preventing Contrast-Induced Acute Kidney Injury: A Systematic Review and Bayesian Network Meta-analysis. Am J Kidney Dis 2017;69(1):69-77. doi: 10.1053/j.ajkd.2016.07.033
  159. Ma WQ, Zhao Y, Wang Y et al. Comparative efficacy of pharmacological interventions for contrast-induced nephropathy prevention after coronary angiography: a network meta-analysis from randomized trials. Int Urol Nephrol 2018;50(6):1085-1095. doi: 10.1007/s11255-018-1814-0
  160. Zhou X, Dai J, Xu Х et al. Comparative Efficacy of Statins for Prevention of Contrast-Induced Acute Kidney Injury in Patients With Chronic Kidney Disease: A Network Meta-Analysis. Angiology 2019;70(4):305-316. doi: 10.1177/0003319718801246
  161. Navarese EP, Gurbel PA, Andreotti F et al. Prevention of contrast-induced acute kidney injury in patients undergoing cardiovascular procedures-a systematic review and network meta-analysis. PLoS One 2017;12(2):e0168726. doi: 10.1371/journal.pone.0168726
  162. Jiang Y, Chen M, Zhang Y et al. Meta-analysis of prophylactic hydration versus no hydration on contrast-induced acute kidney injury. Coron Artery Dis 2017;28(8):649-657. doi: 10.1097/MCA.0000000000000514
  163. Woolen SA, Shankar PR, Gagnier JJ et al. Risk of Nephrogenic Systemic Fibrosis in Patients With Stage 4 or 5 Chronic Kidney Disease Receiving a Group II Gadolinium-Based Contrast Agent: A Systematic Review and Meta-analysis. JAMA Intern Med 2020;180(2):223-230. doi: 10.1001/jamainternmed.2019.5284
  164. Agarwal R, Brunelli SM, Williams K et al. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol Dial Transplant 2009;24(3):856-63. doi: 10.1093/ndt/gfn593
  165. Soulez G, Bloomgarden DC, Rofsky NM et al. Prospective Cohort Study of Nephrogenic Systemic Fibrosis in Patients With Stage 3-5 Chronic Kidney Disease Undergoing MRI With Injected Gadobenate Dimeglumine or Gadoteridol. AJR Am J Roentgenol 2015;205(3):469-78. doi: 10.2214/AJR.14.14268
  166. Attari H, Cao Y, Elmholdt TR et al. A Systematic Review of 639 Patients with Biopsy-confirmed Nephrogenic Systemic Fibrosis. Radiology 2019;292(2):376-386. doi: 10.1148/radiol.2019182916
  167. Bangash F, Agarwal R. Masked hypertension and white-coat hypertension in chronic kidney disease: a meta-analysis. Clin J Am Soc Nephrol 2009;4(3):656-64. doi: 10.2215/CJN.05391008
  168. Mojón A, Ayala DE, Piñeiro L et al. Comparison of ambulatory blood pressure parameters of hypertensive patients with and without chronic kidney disease. Chronobiol Int 2013;30(1-2):145-58. doi: 10.3109/07420528.2012.703083
  169. Gorostidi M, Sarafidis PA, de la Sierra A et al. Differences between office and 24-hour blood pressure control in hypertensive patients with CKD: A 5,693-patient cross-sectional analysis from Spain. Am J Kidney Dis 2013;62(2):285-94. doi: 10.1053/j.ajkd.2013.03.025
  170. Son HE, Ryu JY, Go S et al. Association of ambulatory blood pressure monitoring with renal outcome in patients with chronic kidney disease. Kidney Res Clin Pract 2020;39(1):70-80. doi: 10.23876/j.krcp.19.103
  171. Gabbai FB, Rahman M, Hu B et al. Relationship between ambulatory BP and clinical outcomes in patients with hypertensive CKD. Clin J Am Soc Nephrol 2012;7(11):1770-6. doi: 10.2215/CJN.11301111
  172. Minutolo R, Gabbai FB, Chiodini P et al. Reassessment of Ambulatory Blood Pressure Improves Renal Risk Stratification in Nondialysis Chronic Kidney Disease: Long-Term Cohort Study. Hypertension 2015;66(3):557-62. doi: 10.1161/HYPERTENSIONAHA.115.05820
  173. Артериальная гипертензия у взрослых. Клинические рекомендации. https://scardio.ru/content/Guidelines/Clinic_rek_AG_2020.pdf
  174. Grunwald JE, Pistilli M, Ying GS et al.  Retinopathy and the risk of cardiovascular disease in patients with chronic kidney disease (from the Chronic Renal Insufficiency Cohort study). Am J Cardiol 2015;116(10):1527-33. doi: 10.1016/j.amjcard.2015.08.015
  175. Kim Y, Cho JS, Cho WK et al. Retinopathy and left ventricular hypertrophy in patients with chronic kidney disease: Interrelationship and impact on clinical outcomes. Int J Cardiol 2017;249:372-376. doi: 10.1016/j.ijcard.2017.06.123
  176. Hwang HS, Kim SY, Hong YA et al. Clinical impact of coexisting retinopathy and vascular calcification on chronic kidney disease progression and cardiovascular events. Nutr Metab Cardiovasc Dis 2016;26(7):590-596. doi: 10.1016/j.numecd.2016.02.005
  177. Zhang A, Wang S, Li H et al. Aortic arch calcification and risk of cardiovascular or all-cause and mortality in dialysis patients: A meta-analysis. Sci Rep 2016;6:35375. doi: 10.1038/srep35375
  178. Niu Q, Hong Y, Lee CH et al. Abdominal aortic calcification can predict all-cause mortality and CV events in dialysis patients: A systematic review and meta-analysis. PLoS One 2018;13(9):e0204526. doi: 10.1371/journal.pone.0204526
  179. Rennenberg RJ, Kessels AG, Schurgers LJ et al. Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis. Vasc Health Risk Manag 2009;5(1):185-97. doi: 10.2147/vhrm.s4822
  180. Wang Z, Jiang A, Wei F, Chen H. Cardiac valve calcification and risk of cardiovascular or all-cause mortality in dialysis patients: a meta-analysis. BMC Cardiovasc Disord 2018;18(1):12. doi: 10.1186/s12872-018-0747-y
  181. Samad Z, Sivak JA, Phelan M et al. Prevalence and Outcomes of Left-Sided Valvular Heart Disease Associated With Chronic Kidney Disease. J Am Heart Assoc 2017;6(10):e006044. doi: 10.1161/JAHA.117.006044
  182. Marwick TH, Amann K, Bangalore S et al. Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2019;96(4):836-849. doi: 10.1016/j.kint.2019.06.025
  183. Payne J, Sharma S, De Leon D et al. Association of echocardiographic abnormalities with mortality in men with non-dialysis-dependent chronic kidney disease. Nephrol Dial Transplant 2012;27(2):694-700. doi: 10.1093/ndt/gfr282
  184. Hensen LCR, Goossens K, Delgado V et al. Prevalence of left ventricular systolic dysfunction in pre-dialysis and dialysis patients with preserved left ventricular ejection fraction. Eur J Heart Fail 2018;20(3):560-568. doi: 10.1002/ejhf.1077
  185. Unger ED, Dubin RF, Deo R et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 2016;18(1):103-12. doi: 10.1002/ejhf.445
  186. Panoulas VF, Sulemane S, Konstantinou K et al. Early detection of subclinical left ventricular myocardial dysfunction in patients with chronic kidney disease. Eur Heart J Cardiovasc Imaging 2015;16(5):539-48. doi: 10.1093/ehjci/jeu229
  187. Krishnasamy R, Isbel NM, Hawley CM et al. Left Ventricular Global Longitudinal Strain (GLS) Is a Superior Predictor of All-Cause and Cardiovascular Mortality When Compared to Ejection Fraction in Advanced Chronic Kidney Disease. PLoS One 2015;10(5):e0127044. doi: 10.1371/journal.pone.0127044
  188. Masson P, Webster AC, Hong M et al. Chronic kidney disease and the risk of stroke: a systematic review and meta-analysis. Nephrol Dial Transplant 2015;30(7):1162-9. doi: 10.1093/ndt/gfv009
  189. Bucur RC, Panjwani DD, Turner L et al. Low bone mineral density and fractures in stages 3-5 CKD: an updated systematic review and meta-analysis. Osteoporos Int 2015;26(2):449-58. doi: 10.1007/s00198-014-2813-3
  190. Jamal SA, Hayden JA, Beyene J. Low bone mineral density and fractures in long-term hemodialysis patients: a meta-analysis. Am J Kidney Dis 2007;49(5):674-81. doi: 10.1053/j.ajkd.2007.02.264
  191. Li X, Li J, Li Y et al. The role of preoperative ultrasound, contrast-enhanced ultrasound, and 99mTc-MIBI scanning with single-photon emission computed tomography/X-ray computed tomography localization in refractory secondary hyperparathyroidism. Clinical hemorheology and microcirculation 2020;75(1):35-46. doi: 10.3233/CH-190723
  192. Lee JB, Kim WY, Lee YM. The role of preoperative ultrasonography, computed tomography, and sestamibi scintigraphy localization in secondary hyperparathyroidism. Annals of surgical treatment and research 2015;89(6):300
  193. Alkhalili E, Tasci Y, Aksoy E et al. The utility of neck ultrasound and sestamibi scans in patients with secondary and tertiary hyperparathyroidism. World journal of surgery 2015;39(3):701-705. doi: 10.1007/s00268-014-2878-3
  194. Luciano RL, Moeckel GW. Update on the Native Kidney Biopsy: Core Curriculum 2019. Am J Kidney Dis 2019;73(3):404-415. doi: 10.1053/j.ajkd.2018.10.011
  195. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int Suppl 2012;2:139-1274
  196. Xie X, Liu Y, Perkovic V et al. Renin-Angiotensin System Inhibitors and Kidney and Cardiovascular Outcomes in Patients With CKD: A Bayesian Network Meta-analysis of Randomized Clinical Trials. Am J Kidney Dis 2016;67(5):728-41. doi: 10.1053/j.ajkd.2015.10.011
  197. Wu HY, Huang JW, Lin HJ et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and bayesian network meta-analysis. BMJ 2013;347:f6008. doi: 10.1136/bmj.f6008
  198. Hou W, Lv J, Perkovic V et al. Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. Eur Heart J 2013;34(24):1807-17. doi: 10.1093/eurheartj/eht065
  199. Chewcharat A, Takkavatakarn K, Isaranuwatchai S et al. Pleiotropic effects of antidiabetic agents on renal and cardiovascular outcomes: a meta-analysis of randomized controlled trials. Int Urol Nephrol 2020;52(9):1733-1745. doi: 10.1007/s11255-020-02520-z
  200. Pei G, Tang Y, Tan L et al. Aerobic exercise in adults with chronic kidney disease (CKD): a meta-analysis. Int Urol Nephrol 2019;51(10):1787-1795. doi: 10.1007/s11255-019-02234-x
  201. Zelniker TA, Wiviott SD, Raz I et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019;393(10166):31-39. doi: 10.1016/S0140-6736(18)32590-X
  202. Seidu S, Kunutsor SK, Cos X et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis. Prim Care Diabetes 2018;12(3):265-283. doi: 10.1016/j.pcd.2018.02.001
  203. Toyama T, Neuen BL, Jun M et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes Metab 2019;21(5):1237-1250. doi: 10.1111/dom.13648
  204. Feng C, Wu M, Chen Z et al. Effect of SGLT2 inhibitor on renal function in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Int Urol Nephrol 2019;51(4):655-669. doi: 10.1007/s11255-019-02112-6
  205. Magee GM, Bilous RW, Cardwell CR et al. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 2009;52(4):691-7. doi: 10.1007/s00125-009-1268-0
  206. Yan B, Su X, Xu B et al. Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta-analysis. PLoS One 2018;13(11):e0206134. doi: 10.1371/journal.pone.0206134
  207. Zhang L, Wang Y, Xiong L et al. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients: evidence from a meta-analysis. BMC Nephrol 2019;20(1):398. doi: 10.1186/s12882-019-1586-5
  208. Wu X, Yang L, Wang Y et al. Effects of combined aerobic and resistance exercise on renal function in adult patients with chronic kidney disease: a systematic review and meta-analysis. Clin Rehabil 2020;34(7):851-865. doi: 10.1177/0269215520924459
  209. Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. Cochrane Database Syst Rev 2011;(10):CD003236. doi: 10.1002/14651858.CD003236.pub2
  210. Bentata Y, Karimi I, Benabdellah N et al. Does smoking increase the risk of progression of nephropathy and/or cardiovascular disease in type 2 diabetic patients with albuminuria and those without albuminuria? Am J Cardiovasc Dis 2016;6(2):66-9
  211. Grams ME, Yang W, Rebholz CM et al. Risks of Adverse Events in Advanced CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2017;70(3):337-346. doi: 10.1053/j.ajkd.2017.01.050
  212. Li K, Zou J, Ye Z et al. Effects of Bariatric Surgery on Renal Function in Obese Patients: A Systematic Review and Meta Analysis. PLoS One 2016;11(10):e0163907. doi: 10.1371/journal.pone.0163907
  213. Jicheng Lv, Perkovic V, Foote CV et al. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev 2012;12:CD004136. doi: 10.1002/14651858.CD004136.pub3
  214. Geng DF, Sun WF, Yang L et al. Antiproteinuric effect of angiotensin receptor blockers in normotensive patients with proteinuria: a meta-analysis of randomized controlled trials. J Renin Angiotensin Aldosterone Syst 2014;15(1):44-51. doi: 10.1177/1470320312474054
  215. Catalá-López F, Macías Saint-Gerons D, González-Bermejo D et al. Cardiovascular and Renal Outcomes of Renin-Angiotensin System Blockade in Adult Patients with Diabetes Mellitus: A Systematic Review with Network Meta-Analyses. PLoS Med 2016;13(3):e1001971. doi: 10.1371/journal.pmed.1001971
  216. Hou FF, Xie D, Zhang X et al. Renoprotection of Optimal Antiproteinuric Doses (ROAD) Study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency. J Am Soc Nephrol 2007;18(6):1889-98. doi: 10.1681/ASN.2006121372
  217. Burgess E, Muirhead N, Rene de Cotret P et al. Supramaximal dose of candesartan in proteinuric renal disease. J Am Soc Nephrol 2009;20(4):893-900. doi: 10.1681/ASN.2008040416
  218. Ricardo AC, Anderson CA, Yang W et al. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2015;65(3):412-24. doi: 10.1053/j.ajkd.2014.09.016
  219. Liu Y, Ma X, Zheng J et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on cardiovascular events and residual renal function in dialysis patients: a meta-analysis of randomised controlled trials. BMC Nephrol 2017;18(1):206. doi: 10.1186/s12882-017-0605-7
  220. Zhang L, Zeng X, Fu P, Wu HM. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for preserving residual kidney function in peritoneal dialysis patients. Cochrane Database Syst Rev 2014;(6):CD009120. doi: 10.1002/14651858.CD009120.pub2
  221. Tian ML, Shen Y, Sun ZL, Zha Y. Efficacy and safety of combining pentoxifylline with angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in diabetic nephropathy: a meta-analysis. Int Urol Nephrol 2015;47(5):815-22. doi: 10.1007/s11255-015-0968-2
  222. Liu D, Wang LN, Li HX et al. Pentoxifylline plus ACEIs/ARBs for proteinuria and kidney function in chronic kidney disease: a meta-analysis. J Int Med Res 2017;45(2):383-398. doi: 10.1177/0300060516663094
  223. Navarro-González JF, Mora-Fernández C, Muros de Fuentes M et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol 2015;26(1):220-229. doi: 10.1681/ASN.2014010012
  224. Ghorbani A, Omidvar B, Beladi-Mousavi SS et al. The effect of pentoxifylline on reduction of proteinuria among patients with type 2 diabetes under blockade of angiotensin system: a double blind and randomized clinical trial. Nefrologia 2012;32(6):790-796. doi: 10.3265/Nefrologia.pre2012.Jun.11242
  225. Renke M, Tylicki L, Rutkowski P et al. Effect of pentoxifylline on proteinuria, markers of tubular injury and oxidative stress in non-diabetic patients with chronic kidney disease - placebo controlled, randomized, cross-over study. Acta Biochim Pol 2010;57(1):119-123
  226. Oliaei F, Hushmand S, Khafri S et al. Efficacy of pentoxifylline for reduction of proteinuria in type II diabetic patients. Caspian J Intern Med 2011;2:309-313
  227. Lin SL, Chen YM, Chiang WC et al. Effect of pentoxifylline in addition to losartan on proteinuria and GFR in CKD: a 12-month randomized trial. Am J Kidney Dis 2008;52(3):464-474. doi: 10.1053/j.ajkd.2008.05.012
  228. Navarro JF, Mora C, Muros M et al. Effects of pentoxifylline administration on urinary N-acetyl-beta-glucosaminidase excretion in type 2 diabetic patients: a short-term, prospective, randomized study. Am J Kidney Dis 2003;42(2):264-270. doi: 10.1016/s0272-6386(03)00651-6
  229. Roozbeh J, Banihashemi MA, Ghezlou M et al. Captopril and combination therapy of captopril and pentoxifylline in reducing proteinuria in diabetic nephropathy. Ren Fail 2010;32(2):172-178. doi: 10.3109/08860221003602645
  230. Perkins RM, Aboudara MC, Uy AL et al. Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 2009;53(4):606-616. doi: 10.1053/j.ajkd.2008.11.026
  231. Harmankaya O, Seber S, Yilmaz M. Combination of pentoxifylline with angiotensin converting enzyme inhibitors produces an additional reduction in microalbuminuria in hypertensive type 2 diabetic patients. Ren Fail 2003;25(3):465-470. doi: 10.1081/jdi-120021159
  232. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 2011;343:d4169. doi: 10.1136/bmj.d4169
  233. Hemmingsen B, Lund SS, Gluud C et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev 2013;(11):CD008143. doi: 10.1002/14651858.CD008143.pub3
  234. Ismail-Beigi F, Craven T, Banerji MA et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 2010;376(9739):419-30. doi: 10.1016/S0140-6736(10)60576-4
  235. Сахарный диабет 2 типа у взрослых. Клинические рекомендации. https://cr.minzdrav.gov.ru/schema/290_2
  236. Qiu M, Ding LL, Wei XB et al. Comparative efficacy of GLP-1 RAs and SGLT2is for prevention of major adverse cardiovascular events in type 2 diabetes: a network meta-analysis. J Cardiovasc Pharmacol 2020 Oct 22. doi: 10.1097/FJC.0000000000000916. Online ahead of print
  237. Kristensen SL, Rørth R, Jhund PS et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019;7(10):776-785. doi: 10.1016/S2213-8587(19)30249-9
  238. Agarwal R, Filippatos G, Pitt B et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J 2022;43(6):474-484. doi: 10.1093/eurheartj/ehab777
  239. Shi Q, Nong K, Vandvik PO et al. Benefits and harms of drug treatment for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 2023;381:e074068. doi: 10.1136/bmj-2022-074068
  240. Zhang Y, Jiang L, Wang J et al. Network meta-analysis on the effects of finerenone versus SGLT2 inhibitors and GLP-1 receptor agonists on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease. Cardiovasc Diabetol 2022;21(1):232. doi: 10.1186/s12933-022-01676-5
  241. Gu X, Jiang S, Yang Y, Li W. Effects of finerenone and glucagon-like peptide 1 receptor agonists on cardiovascular and renal outcomes in type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 2024;16(1):14. doi: 10.1186/s13098-023-01251-2
  242. DAPA-CKD Trial Committees and Investigators. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 2021;9(1):22-31. doi: 10.1016/S2213-8587(20)30369-7
  243. Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists" Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 2022;400(10365):1788-1801. doi: 10.1016/S0140-6736(22)02074-8
  244. Tsai WC, Hsu SP, Chiu YL et al. Cardiovascular and renal efficacy and safety of sodium-glucose cotransporter-2 inhibitors in patients without diabetes: a systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2022;12(10):e060655. doi: 10.1136/bmjopen-2021-060655
  245. Ettehad D, Emdin CA, Kiran A et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016;387(10022):957-967. doi: 10.1016/S0140-6736(15)01225-8
  246. Aggarwal R, Petrie B, Bala W, Chiu N. Mortality Outcomes With Intensive Blood Pressure Targets in Chronic Kidney Disease Patients. Hypertension 2019;73(6):1275-1282. doi: 10.1161/HYPERTENSIONAHA.119.12697
  247. Tsai WC, Wu HY, Peng YS et al. Association of Intensive Blood Pressure Control and Kidney Disease Progression in Nondiabetic Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. JAMA Intern Med 2017;177(6):792-799. doi: 10.1001/jamainternmed.2017.0197
  248. Ku E, Sarnak MJ, Toto R et al. Effect of Blood Pressure Control on Long-Term Risk of End-Stage Renal Disease and Death Among Subgroups of Patients With Chronic Kidney Disease. J Am Heart Assoc 2019;8(16):e012749. doi: 10.1161/JAHA.119.012749
  249. Beddhu S, Greene T, Boucher R et al. Intensive systolic blood pressure control and incident chronic kidney disease in people with and without diabetes mellitus: secondary analyses of two randomised controlled trials. Lancet Diabetes Endocrinol 2018;6(7):555-563. doi: 10.1016/S2213-8587(18)30099-8
  250. Rocco MV, Sink KM, Lovato LC et al. Effects of Intensive Blood Pressure Treatment on Acute Kidney Injury Events in the Systolic Blood Pressure Intervention Trial (SPRINT). Am J Kidney Dis 2018;71(3):352-361. doi: 10.1053/j.ajkd.2017.08.021
  251. Chi G, Jamil A, Jamil U et al. Effect of intensive versus standard blood pressure control on major adverse cardiac events and serious adverse events: A bivariate analysis of randomized controlled trials. Clin Exp Hypertens 2018;1-8. doi: 10.1080/10641963.2018.1462373
  252. SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2015;373(22):2103-16. doi: 10.1056/NEJMoa1511939
  253. Huang RS, Cheng YM, Zeng XX et al. Renoprotective Effect of the Combination of Renin-angiotensin System Inhibitor and Calcium Channel Blocker in Patients with Hypertension and Chronic Kidney Disease. Chin Med J (Engl) 2016;129(5):562-9. doi: 10.4103/0366-6999.176987
  254. Thamcharoen N, Susantitaphong P, Wongrakpanich S et al. Effect of N- and T-type calcium channel blocker on proteinuria, blood pressure and kidney function in hypertensive patients: a meta-analysis. Hypertens Res 2015;38(12):847-55. doi: 10.1038/hr.2015.69
  255. Kario K, Tomitani N, Kanegae H et al. Comparative Effects of an Angiotensin II Receptor Blocker (ARB)/Diuretic vs. ARB/Calcium-Channel Blocker Combination on Uncontrolled Nocturnal Hypertension Evaluated by Information and Communication Technology-Based Nocturnal Home Blood Pressure Monitoring - The NOCTURNE Study. Circ J 2017;81(7):948-957. doi: 10.1253/circj.CJ-17-0109
  256. Zhao HJ, Li Y, Liu SM et al. Effect of calcium channels blockers and inhibitors of the renin-angiotensin system on renal outcomes and mortality in patients suffering from chronic kidney disease: systematic review and meta-analysis. Ren Fail 2016;38(6):849-56. doi: 10.3109/0886022X.2016.1165065
  257. Lin YC, Lin JW, Wu MS et al. Effects of calcium channel blockers comparing to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients with hypertension and chronic kidney disease stage 3 to 5 and dialysis: A systematic review and meta-analysis. PLoS One 2017;12(12):e0188975. doi: 10.1371/journal.pone.0188975
  258. Pongpanich P, Pitakpaiboonkul P, Takkavatakarn K et al. The benefits of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers combined with calcium channel blockers on metabolic, renal, and cardiovascular outcomes in hypertensive patients: a meta-analysis. Int Urol Nephrol 2018;50(12):2261-2278. doi: 10.1007/s11255-018-1991-x
  259. Bovée DM, Visser WJ, Middel I et al. A Randomized Trial of Distal Diuretics versus Dietary Sodium Restriction for Hypertension in Chronic Kidney Disease. J Am Soc Nephrol 2020;31(3):650-662. doi: 10.1681/ASN.2019090905
  260. Heerspink HJ, Ninomiya T, Perkovic V et al. Effects of a fixed combination of perindopril and indapamide in patients with type 2 diabetes and chronic kidney disease. Eur Heart J 2010;31(23):2888-96. doi: 10.1093/eurheartj/ehq139
  261. Abe M, Okada K, Maruyama T, Matsumoto K. Antiproteinuric and blood pressure-lowering effects of a fixed-dose combination of losartan and hydrochlorothiazide in hypertensive patients with stage 3 chronic kidney disease. Pharmacotherapy 2009;29(9):1061-72. doi: 10.1592/phco.29.9.1061
  262. Ando K, Nitta K, Rakugi H et al. Comparison of the antialbuminuric effects of benidipine and hydrochlorothiazide in Renin-Angiotensin System (RAS) inhibitor-treated hypertensive patients with albuminuria: the COSMO-CKD (COmbination Strategy on Renal Function of Benidipine or Diuretics TreatMent with RAS inhibitOrs in a Chronic Kidney Disease Hypertensive Population) study.  Int J Med Sci 2014;11(9):897-904. doi: 10.7150/ijms.9026
  263. Cheng Y, Huang R, Kim S et al. Renoprotective effects of renin-angiotensin system inhibitor combined with calcium channel blocker or diuretic in hypertensive patients: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2016;95(28):e4167. doi: 10.1097/MD.0000000000004167
  264. Vasavada N, Saha C, Agarwal R. A double-blind randomized crossover trial of two loop diuretics in chronic kidney disease. Kidney Int 2003;64(2):632-40. doi: 10.1046/j.1523-1755.2003.00124.x
  265. Mourad G, Haecker W, Mion C. Dose-dependent salidiuretic efficacy of torasemide in comparison to furosemide and placebo in advanced renal failure. Arzneimittelforschung 1988;38(1A):205-8
  266. Dussol B, Moussi-Frances J, Morange S et al. A pilot study comparing furosemide and hydrochlorothiazide in patients with hypertension and stage 4 or 5 chronic kidney disease. J Clin Hypertens (Greenwich) 2012;14(1):32-7. doi: 10.1111/j.1751-7176.2011.00564.x
  267. Khan YH, Sarriff A, Adnan AS et al. Chronic Kidney Disease, Fluid Overload and Diuretics: A Complicated Triangle. PLoS One 2016;11(7):e0159335. doi: 10.1371/journal.pone.0159335
  268. Zhang X, Zhao Q. Association of Thiazide-Type Diuretics With Glycemic Changes in Hypertensive Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. J Clin Hypertens (Greenwich) 2016;18(4):342-51. doi: 10.1111/jch.12679
  269. Hall JJ, Eurich DT, Nagy D et al. Thiazide Diuretic-Induced Change in Fasting Plasma Glucose: a Meta-analysis of Randomized Clinical Trials. J Gen Intern Med 2020;35(6):1849-1860. doi: 10.1007/s11606-020-05731-3
  270. Bolignano D, Palmer SC, Navaneethan SD, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2014;(4):CD007004. doi: 10.1002/14651858.CD007004.pub3
  271. Alexandrou ME, Papagianni A, Tsapas A et al. Effects of mineralocorticoid receptor antagonists in proteinuric kidney disease: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2019;37(12):2307-2324. doi: 10.1097/HJH.0000000000002187
  272. Currie G, Taylor AH, Fujita T et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol 2016 Sep 8;17(1):127. doi: 10.1186/s12882-016-0337-0
  273. Ferreira JP, Pitt B, McMurray JJV et al. Steroidal MRA Across the Spectrum of Renal Function: A Pooled Analysis of RCTs. JACC Heart Fail 2022;10(11):842-850. doi: 10.1016/j.jchf.2022.06.010
  274. Li Y, Xie N, Liang M. Aldosterone Antagonists Reduce the Risk of Cardiovascular Mortality in Dialysis Patients: A Meta-Analysis. Evid Based Complement Alternat Med 2019;2019:1925243. doi: 10.1155/2019/1925243
  275. Quach K, Lvtvyn L, Baigent C et al. The Safety and Efficacy of Mineralocorticoid Receptor Antagonists in Patients Who Require Dialysis: A Systematic Review and Meta-analysis. Am J Kidney Dis 2016;68(4):591-598. doi: 10.1053/j.ajkd.2016.04.011
  276. Matsumoto Y, Mori Y, Kageyama S et al. Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J Am Coll Cardiol 2014;63(6):528-36. doi: 10.1016/j.jacc.2013.09.056
  277. Ito Y, Mizuno M, Suzuki Y et al. Long-term effects of spironolactone in peritoneal dialysis patients. J Am Soc Nephrol 2014;25(5):1094-102. doi: 10.1681/ASN.2013030273
  278. Lin C, Zhang Q, Zhang H, Lin A. Long-Term Effects of Low-Dose Spironolactone on Chronic Dialysis Patients: A Randomized Placebo-Controlled Study. J Clin Hypertens (Greenwich) 2016;18(2):121-8. doi: 10.1111/jch.12628
  279. Feniman-De-Stefano GM, Zanati-Basan SG, De Stefano LM et al. Spironolactone is secure and reduces left ventricular hypertrophy in hemodialysis patients. Ther Adv Cardiovasc Dis 2015;9(4):158-67. doi: 10.1177/1753944715591448
  280. Walsh M, Manns B, Garg AX et al. The Safety of Eplerenone in Hemodialysis Patients: A Noninferiority Randomized Controlled Trial. Clin J Am Soc Nephrol 2015;10(9):1602-8. doi: 10.2215/CJN.12371214
  281. Flevari P, Kalogeropoulou S, Drakou A et al. Spironolactone improves endothelial and cardiac autonomic function in non heart failure hemodialysis patients. J Hypertens 2013;31(6):1239-44. doi: 10.1097/HJH.0b013e32835f955c
  282. Di Iorio BR, Bellasi A, Raphael KL et al. Treatment of metabolic acidosis with sodium bicarbonate delays progression of chronic kidney disease: the UBI Study. J Nephrol 2019;32(6):989-1001. doi: 10.1007/s40620-019-00656-5
  283. Sampson AL, Singer RF, Walters GD. Uric acid lowering therapies for preventing or delaying the progression of chronic kidney disease. Cochrane Database Syst Rev 2017;10(10):CD009460. doi: 10.1002/14651858.CD009460.pub2
  284. Kovesdy CP, Matsushita K, Sang Y et al. Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis. Eur Heart J 2018;39(17):1535-1542.  doi: 10.1093/eurheartj/ehy100
  285. Zhang Y, Chen P, Chen J et al. Association of Low Serum Potassium Levels and Risk for All-Cause Mortality in Patients With Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Ther Apher Dial 2019 Feb;23(1):22-31. doi: 10.1111/1744-9987.12753
  286. Cowan AC, Gharib EG, Weir MA. Advances in the management of hyperkalemia in chronic kidney disease. Curr Opin Nephrol Hypertens 2017;26(3):235-239. doi: 10.1097/MNH.0000000000000320
  287. Clase CM, Carrero JJ, Ellison DH et al. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2020;97(1):42-61. doi: 10.1016/j.kint.2019.09.018
  288. Gritter M, Vogt L, Yeung SMH et al. Rationale and Design of a Randomized Placebo-Controlled Clinical Trial Assessing the Renoprotective Effects of Potassium Supplementation in Chronic Kidney Disease. Nephron 2018;140(1):48-57. doi: 10.1159/000490261
  289. Morris A, Krishnan N, Kimani PK, Lycett D. Effect of Dietary Potassium Restriction on Serum Potassium, Disease Progression, and Mortality in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J Ren Nutr 2020;30(4):276-285. doi: 10.1053/j.jrn.2019.09.009
  290. Kalantar-Zadeh K, Fouque D. Nutritional Management of Chronic Kidney Disease. N Engl J Med 2017;377(18):1765-1776. doi: 10.1056/NEJMra1700312
  291. Kashihara N, Kohsaka S, Kanda E et al. Hyperkalemia in Real-World Patients Under Continuous Medical Care in Japan. Kidney Int Rep 2019;4(9):1248-1260. doi: 10.1016/j.ekir.2019.05.018
  292. Palmer BF, Clegg DJ. Treatment of Abnormalities of Potassium Homeostasis in CKD. Adv Chronic Kidney Dis 2017;24(5):319-324. doi: 10.1053/j.ackd.2017.06.001
  293. Mahoney BA, Smith WA, Lo DS et al. Emergency interventions for hyperkalaemia. Cochrane Database Syst Rev 2005;2005(2):CD003235. doi: 10.1002/14651858.CD003235.pub2
  294. Liou HH, Chiang SS, Wu SC et al. Intravenous infusion or nebulization of salbutamol for treatment of hyperkalemia in patients with chronic renal failure. Zhonghua Yi Xue Za Zhi (Taipei) 1994;53(5):276-81
  295. Mandelberg A, Krupnik Z, Houri S et al. Salbutamol metered-dose inhaler with spacer for hyperkalemia: how fast? How safe? Chest 1999;115(3):617-22. doi: 10.1378/chest.115.3.617
  296. Allon M, Copkney C. Albuterol and insulin for treatment of hyperkalemia in hemodialysis patients. Kidney International 1990;38(5):869‐72. doi: 10.1038/ki.1990.284
  297. Moussavi K, Nguyen LT, Hua H, Fitter S. Comparison of IV Insulin Dosing Strategies for Hyperkalemia in the Emergency Department. Crit Care Explor 2020;2(4):e0092. doi: 10.1097/CCE.0000000000000092
  298. Harel Z, Kamel KS. Optimal Dose and Method of Administration of Intravenous Insulin in the Management of Emergency Hyperkalemia: A Systematic Review. PLoS One 2016;11(5):e0154963. doi: 10.1371/journal.pone.0154963
  299. Moussavi K, Fitter S, Gabrielson SW et al. Management of Hyperkalemia With Insulin and Glucose: Pearls for the Emergency Clinician. J Emerg Med 2019;57(1):36-42. doi: 10.1016/j.jemermed.2019.03.043
  300. Truhlář A, Deakin CD, Soar J et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation 2015;95:148-201. doi: 10.1016/j.resuscitation.2015.07.017
  301. Suki WN. Use of diuretics in chronic renal failure. Kidney Int Suppl 1997;59:S33-5
  302. Lepage L, Dufour AC, Doiron J et al. Randomized Clinical Trial of Sodium Polystyrene Sulfonate for the Treatment of Mild Hyperkalemia in CKD. Clin J Am Soc Nephrol 2015;10(12):2136-42. doi: 10.2215/CJN.03640415
  303. Wang J, Lv MM, Zach O et al. Calcium-Polystyrene Sulfonate Decreases Inter-Dialytic Hyperkalemia in Patients Undergoing Maintenance Hemodialysis: A Prospective, Randomized, Crossover Study. Ther Apher Dial 2018;22(6):609-616. doi: 10.1111/1744-9987.12723
  304. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 2009;20(9):2075-84. doi: 10.1681/ASN.2008111205
  305. Mahajan A, Simoni J, Sheather SJ et al. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 2010;78(3):303-9. doi: 10.1038/ki.2010.129
  306. Dubey AK, Sahoo J, Vairappan B et al. Correction of metabolic acidosis improves muscle mass and renal function in chronic kidney disease stages 3 and 4: a randomized controlled trial. Nephrol Dial Transplant 2020;35(1):121-129. doi: 10.1093/ndt/gfy214
  307. Sodium Bicarbonate Dosage. https://www.drugs.com/dosage/sodium-bicarbonate.html
  308. Cholesterol Treatment Trialists" (CTT) Collaboration. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol 2016;4(10):829-39. doi: 10.1016/S2213-8587(16)30156-5
  309. Navaneethan SD, Pansini F, Perkovic V et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev 2009;(2):CD007784. doi: 10.1002/14651858.CD007784
  310. Sanguankeo A, Upala S, Cheungpasitporn W et al. Effects of Statins on Renal Outcome in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. PLoS One 2015;10(7):e0132970. doi: 10.1371/journal.pone.0132970
  311. Barylski M, Nikfar S, Mikhailidis DP et al. Statins decrease all-cause mortality only in CKD patients not requiring dialysis therapy--a meta-analysis of 11 randomized controlled trials involving 21,295 participants. Pharmacol Res 2013;72:35-44. doi: 10.1016/j.phrs.2013.03.007
  312. Silbernagel G, Fauler G, Genser B et al. Intestinal cholesterol absorption, treatment with atorvastatin, and cardiovascular risk in hemodialysis patients. J Am Coll Cardiol 2015;65(21):2291-8. doi: 10.1016/j.jacc.2015.03.551
  313. Liao G, Wang X, Li Y et al. Antidyslipidemia Pharmacotherapy in Chronic Kidney Disease: A Systematic Review and Bayesian Network Meta-Analysis. Pharmaceutics 2022;15(1):6. doi: 10.3390/pharmaceutics15010006
  314. Charytan DM, Sabatine MS, Pedersen TR et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J Am Coll Cardiol 2019;73(23):2961-2970. doi: 10.1016/j.jacc.2019.03.513
  315. Tuñón J, Steg PG, Bhatt DL et al. Effect of alirocumab on major adverse cardiovascular events according to renal function in patients with a recent acute coronary syndrome: prespecified analysis from the ODYSSEY OUTCOMES randomized clinical trial. Eur Heart J 2020;41(42):4114-4123. doi: 10.1093/eurheartj/ehaa498
  316. Koenig W, Conde LG, Landmesser U et al. Efficacy and Safety of Inclisiran in Patients with Polyvascular Disease: Pooled, Post Hoc Analysis of the ORION-9, ORION-10, and ORION-11 Phase 3 Randomized Controlled Trials. Cardiovasc Drugs Ther 2024;38(3):493-503. doi: 10.1007/s10557-022-07413-0
  317. Rhee CM, Ahmadi SF, Kovesdy CP, Kalantar-Zadeh K. Low-protein diet for conservative management of chronic kidney disease: a systematic review and meta-analysis of controlled trials. J Cachexia Sarcopenia Muscle 2018;9(2):235-245. doi: 10.1002/jcsm.12264
  318. Hahn D, Hodson EM, Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev 2018;10(10):CD001892. doi: 10.1002/14651858.CD001892.pub4
  319. Jing Z, Wei-Jie Y. Effects of soy protein containing isoflavones in patients with chronic kidney disease: A systematic review and meta-analysis. Clin Nutr 2016;35(1):117-124. doi: 10.1016/j.clnu.2015.03.012
  320. Zhang J, Liu J, Su J, Tian F. The effects of soy protein on chronic kidney disease: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2014;68(9):987-93.  doi: 10.1038/ejcn.2014.112
  321. Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr 2011;30(2):79-91. doi: 10.1080/07315724.2011.10719947
  322. Di Iorio BR, Rocchetti MT, De Angelis M et al. Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study). J Clin Med 2019;8(9):1424. doi: 10.3390/jcm8091424
  323. Li A, Lee HY, Lin YC. The Effect of Ketoanalogues on Chronic Kidney Disease Deterioration: A Meta-Analysis. Nutrients 2019;11(5):957. doi: 10.3390/nu11050957
  324. Chewcharat A, Takkavatakarn K, Wongrattanagorn S et al. The Effects of Restricted Protein Diet Supplemented With Ketoanalogue on Renal Function, Blood Pressure, Nutritional Status, and Chronic Kidney Disease-Mineral and Bone Disorder in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. J Ren Nutr 2020;30(3):189-199. doi: 10.1053/j.jrn.2019.07.005
  325. Jiang Z, Zhang X, Yang L, Li Z, Qin W. Effect of restricted protein diet supplemented with keto analogues in chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol 2016;48(3):409-18. doi: 10.1007/s11255-015-1170-2
  326. Jiang Z, Tang Y, Yang L et al. Effect of restricted protein diet supplemented with keto analogues in end-stage renal disease: a systematic review and meta-analysis. Int Urol Nephrol 2018;50(4):687-694. doi: 10.1007/s11255-017-1713-9
  327. Palmer SC, Hayen A, Macaskill P et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA 2011;305(11):1119-27. doi: 10.1001/jama.2011.308
  328. Block GA, Wheeler DC, Persky MS et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 2012;23(8):1407-15. doi: 10.1681/ASN.2012030223
  329. Moe SM, Zidehsarai MP, Chambers MA et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol 2011;6(2):257-64. doi: 10.2215/CJN.05040610
  330. Sigrist M, Tang M, Beaulieu M et al. Responsiveness of FGF-23 and mineral metabolism to altered dietary phosphate intake in chronic kidney disease (CKD): results of a randomized trial. Nephrol Dial Transplant 2013;28(1):161-9. doi: 10.1093/ndt/gfs405
  331. Chang AR, Miller ER 3rd, Anderson CA et al. Phosphorus Additives and Albuminuria in Early Stages of CKD: A Randomized Controlled Trial. Am J Kidney Dis 2017;69(2):200-209. doi: 10.1053/j.ajkd.2016.08.029
  332. Pisani A, Riccio E, Bellizzi V et al. 6-tips diet: a simplified dietary approach in patients with chronic renal disease. A clinical randomized trial. Clin Exp Nephrol 2016;20(3):433-42. doi: 10.1007/s10157-015-1172-5
  333. Garneata L, Stancu A, Dragomir D et al. Ketoanalogue-Supplemented Vegetarian Very Low-Protein Diet and CKD Progression. J Am Soc Nephrol 2016;27(7):2164-76. doi: 10.1681/ASN.2015040369
  334. de Fornasari ML, Dos Santos Sens YA. Replacing Phosphorus-Containing Food Additives With Foods Without Additives Reduces Phosphatemia in End-Stage Renal Disease Patients: A Randomized Clinical Trial. J Ren Nutr 2017;27(2):97-105. doi: 10.1053/j.jrn.2016.08.009
  335. Lou LM, Caverni A, Gimeno JA et al. Dietary intervention focused on phosphate intake in hemodialysis patients with hyperphosphoremia. Clin Nephrol 2012;77(6):476-83
  336. Sullivan C, Sayre SS, Leon JB et al. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 2009;301(6):629-35. doi: 10.1001/jama.2009.96
  337. Murali KM, Mullan J, Roodenrys S et al. Strategies to improve dietary, fluid, dialysis or medication adherence in patients with end stage kidney disease on dialysis: A systematic review and meta-analysis of randomized intervention trials. PLoS One 2019;14(1):e0211479. doi: 10.1371/journal.pone.0211479
  338. Caldeira D, Amaral T, David C, Sampaio C. Educational strategies to reduce serum phosphorus in hyperphosphatemic patients with chronic kidney disease: systematic review with meta-analysis. J Ren Nutr 2011;21(4):285-94. doi: 10.1053/j.jrn.2010.11.006
  339. Shi Y, Zhao Y, Liu J et al. Educational intervention for metabolic bone disease in patients with chronic kidney disease: a systematic review and meta-analysis. J Ren Nutr 2014;24(6):371-84. doi: 10.1053/j.jrn.2014.06.007
  340. Milazi M, Bonner A, Douglas C. Effectiveness of educational or behavioral interventions on adherence to phosphate control in adults receiving hemodialysis: a systematic review. JBI Database System Rev Implement Rep 2017;15(4):971-1010. doi: 10.11124/JBISRIR-2017-003360
  341. Karavetian M, de Vries N, Rizk R, Elzein H. Dietary educational interventions for management of hyperphosphatemia in hemodialysis patients: a systematic review and meta-analysis. Nutr Rev 2014;72(7):471-82. doi: 10.1111/nure.12115
  342. Daugirdas JT, Chertow GM, Larive B et al. Effects of frequent hemodialysis on measures of CKD mineral and bone disorder. J Am Soc Nephrol 2012;23(4):727-38. doi: 10.1681/ASN.2011070688
  343. Zimmerman DL, Nesrallah GE, Chan CT et al. Dialysate calcium concentration and mineral metabolism in long and long-frequent hemodialysis: a systematic review and meta-analysis for a Canadian Society of Nephrology clinical practice guideline. Am J Kidney Dis 2013;62(1):97-111. doi: 10.1053/j.ajkd.2013.02.357
  344. Cornelis T, van der Sande FM, Eloot S et al. Acute hemodynamic response and uremic toxin removal in conventional and extended hemodialysis and hemodiafiltration: a randomized crossover study. Am J Kidney Dis 2014;64(2):247-56. doi: 10.1053/j.ajkd.2014.02.016
  345. Walsh M, Manns BJ, Klarenbach S et al. The effects of nocturnal compared with conventional hemodialysis on mineral metabolism: A randomized-controlled trial. Hemodial Int 2010;14(2):174-81. doi: 10.1111/j.1542-4758.2009.00418.x
  346. Culleton BF, Walsh M, Klarenbach SW et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 2007;298(11):1291-9. doi: 10.1001/jama.298.11.1291
  347. Gutzwiller JP, Schneditz D, Huber AR et al. Increasing blood flow increases kt/V(urea) and potassium removal but fails to improve phosphate removal. Clin Nephrol 2003;59(2):130-6. doi: 10.5414/cnp59130
  348. Vaithilingam I, Polkinghorne KR, Atkins RC, Kerr PG. Time and exercise improve phosphate removal in hemodialysis patients. Am J Kidney Dis 2004;43(1):85-9. doi: 10.1053/j.ajkd.2003.09.016
  349. Gutzwiller JP, Schneditz D, Huber AR et al. Estimating phosphate removal in haemodialysis: an additional tool to quantify dialysis dose. Nephrol Dial Transplant 2002;17(6):1037-44. doi: 10.1093/ndt/17.6.1037
  350. Cupisti A, Gallieni M, Rizzo MA et al. Phosphate control in dialysis. Int J Nephrol Renovasc Dis 2013;6:193-205. doi: 10.2147/IJNRD.S35632
  351. Sampaio MS, Ruzany F, Dorigo DM, Suassuna JH. Phosphate mass removal during hemodialysis: a comparison between eKT/V-matched conventional and extended dialysis. Am J Nephrol 2012;36(2):121-6. doi: 10.1159/000338675
  352. Zupančič T, Ponikvar R, Gubenšek J, Buturović-Ponikvar J. Phosphate Removal During Long Nocturnal Hemodialysis/Hemodiafiltration: A Study With Total Dialysate Collection. Ther Apher Dial 2016;20(3):267-71. doi: 10.1111/1744-9987.12435
  353. Ayus JC, Mizani MR, Achinger SG et al. Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study. J Am Soc Nephrol 2005;16(9):2778-88. doi: 10.1681/ASN.2005040392
  354. Susantitaphong P, Siribamrungwong M, Jaber BL. Convective therapies versus low-flux hemodialysis for chronic kidney failure: a meta-analysis of randomized controlled trials. Nephrol Dial Transplant 2013;28(11):2859-74. doi: 10.1093/ndt/gft396
  355. INDEPENDENT Study Investigators. Mortality in kidney disease patients treated with phosphate binders: a randomized study. Clin J Am Soc Nephrol 2012;7(3):487-93. doi: 10.2215/CJN.03820411
  356. Ruospo M, Palmer SC, Natale P et al. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst Rev 2018;8(8):CD006023. doi: 10.1002/14651858.CD006023.pub3
  357. Lioufas NM, Pascoe EM, Hawley CM et al. Systematic Review and Meta-Analyses of the Effects of Phosphate-Lowering Agents in Nondialysis CKD. J Am Soc Nephrol 2022;33(1):59-76. doi: 10.1681/ASN.2021040554
  358. Habbous S, Przech S, Acedillo R et al. The efficacy and safety of sevelamer and lanthanum versus calcium-containing and iron-based binders in treating hyperphosphatemia in patients with chronic kidney disease: a systematic review and meta-analysis. Nephrol Dial Transplant 2017;32(1):111-125. doi: 10.1093/ndt/gfw312
  359. Jamal SA, Vandermeer B, Raggi P et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet 2013;382(9900):1268-77. doi: 10.1016/S0140-6736(13)60897-1
  360. Sekercioglu N, Thabane L, Díaz Martínez JP et al. Comparative Effectiveness of Phosphate Binders in Patients with Chronic Kidney Disease: A Systematic Review and Network Meta-Analysis. PLoS One 2016;11(6):e0156891. doi: 10.1371/journal.pone.0156891
  361. Patel L, Bernard LM, Elder GJ. Sevelamer Versus Calcium-Based Binders for Treatment of Hyperphosphatemia in CKD: A Meta-Analysis of Randomized Controlled Trials. Clin J Am Soc Nephrol 2016;11(2):232-44. doi: 10.2215/CJN.06800615
  362. Hill KM, Martin BR, Wastney ME et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int 2013;83(5):959-66. doi: 10.1038/ki.2012.403
  363. Wang F, Lu X, Zhang J et al. Effect of Lanthanum Carbonate on All-Cause Mortality in Patients Receiving Maintenance Hemodialysis: a Meta-Analysis of Randomized Controlled Trials. Kidney Blood Press Res 2018;43(2):536-544. doi: 10.1159/000488700
  364. Sekercioglu N, Angeliki Veroniki A, Thabane L et al. Effects of different phosphate lowering strategies in patients with CKD on laboratory outcomes: A systematic review and NMA. PLoS One 2017;12(3):e0171028. doi: 10.1371/journal.pone.0171028
  365. Geng S, Kuang Z, Peissig PL et al. Parathyroid hormone independently predicts fracture, vascular events, and death in patients with stage 3 and 4 chronic kidney disease. Osteoporos Int 2019;30(10):2019-2025. doi: 10.1007/s00198-019-05033-3
  366. Shardlow A, McIntyre NJ, Fluck RJ et al. Associations of fibroblast growth factor 23, vitamin D and parathyroid hormone with 5-year outcomes in a prospective primary care cohort of people with chronic kidney disease stage 3. BMJ Open 2017;7(8):e016528. doi: 10.1136/bmjopen-2017-016528
  367. Seiler-Mussler S, Limbach AS, Emrich IE et al. Association of Nonoxidized Parathyroid Hormone with Cardiovascular and Kidney Disease Outcomes in Chronic Kidney Disease. Clin J Am Soc Nephrol 2018;13(4):569-576. doi: 10.2215/CJN.06620617
  368. Tentori F, Wang M, Bieber BA et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol 2015;10(1):98-109. doi: 10.2215/CJN.12941213
  369. Tentori F, Zepel L, Fuller DS et al. The DOPPS Practice Monitor for US Dialysis Care: PTH Levels and Management of Mineral and Bone Disorder in US Hemodialysis Patients. Am J Kidney Dis 2015;66(3):536-9. doi: 10.1053/j.ajkd.2015.07.011
  370. Kandula P, Dobre M, Schold JD et al. Vitamin D supplementation in chronic kidney disease: a systematic review and meta-analysis of observational studies and randomized controlled trials. Clin J Am Soc Nephrol 2011;6(1):50-62. doi: 10.2215/CJN.03940510
  371. Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 2014;348:g2035. doi: 10.1136/bmj.g2035
  372. Xu C, Li YC, Zhao SM, Li ZX. Evaluation of responses to vitamin D3 (cholecalciferol) in patients on dialysis: a systematic review and meta-analysis. J Investig Med 2016;64(5):1050-9. doi: 10.1136/jim-2015-000032
  373. Bover J, Gunnarsson J, Csomor P et al. Impact of nutritional vitamin D supplementation on parathyroid hormone and 25-hydroxyvitamin D levels in non-dialysis chronic kidney disease: a meta-analysis. Clin Kidney J 2021;14(10):2177-2186. doi: 10.1093/ckj/sfab035
  374. Tripkovic L, Lambert H, Hart K et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 2012;95(6):1357-64. doi: 10.3945/ajcn.111.031070
  375. Cardoso MP, Pereira LAL. Native vitamin D in pre-dialysis chronic kidney disease. Nefrologia 2019;39(1):18-28. doi: 10.1016/j.nefro.2018.07.004
  376. Ennis JL, Worcester EM, Coe FL, Sprague SM. Current recommended 25-hydroxyvitamin D targets for chronic kidney disease management may be too low. J Nephrol 2016;29(1):63-70. doi: 10.1007/s40620-015-0186-0
  377. Hu X, Shang J, Yuan W et al. Effects of paricalcitol on cardiovascular outcomes and renal function in patients with chronic kidney disease: A meta-analysis. Herz 2018;43(6):518-528. doi: 10.1007/s00059-017-4605-y
  378. Liu Y, Liu LY, Jia Y et al. Efficacy and safety of paricalcitol in patients undergoing hemodialysis: a meta-analysis. Drug Des Devel Ther 2019;13:999-1009. doi: 10.2147/DDDT.S176257
  379. Zhang T, Ju H, Chen H, Wen W. Comparison of Paricalcitol and Calcitriol in Dialysis Patients With Secondary Hyperparathyroidism: A Meta-Analysis of Randomized Controlled Studies. Ther Apher Dial 2019;23(1):73-79. doi: 10.1111/1744-9987.12760
  380. Cai P, Tang X, Qin W et al. Comparison between paricalcitol and active non-selective vitamin D receptor activator for secondary hyperparathyroidism in chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Int Urol Nephrol 2016;48(4):571-84. doi: 10.1007/s11255-015-1195-6
  381. Xie Y, Su P, Sun Y et al. Comparative efficacy and safety of paricalcitol versus vitamin D receptor activators for dialysis patients with secondary hyperparathyroidism: a meta-analysis of randomized controlled trials. BMC Nephrol 2017;18(1):272. doi: 10.1186/s12882-017-0691-6
  382. Ye H, Ye P, Zhang Z et al. A Bayesian network analysis on comparative efficacy of treatment strategies for dialysis patients with secondary hyperparathyroidism. Exp Ther Med 2019;17(1):531-540. doi: 10.3892/etm.2018.6906
  383. Zheng Z, Shi H, Jia J et al. Vitamin D supplementation and mortality risk in chronic kidney disease: a meta-analysis of 20 observational studies. BMC Nephrol 2013;14:199. doi: 10.1186/1471-2369-14-199
  384. He L, Li Y, Jin J et al. Comparative efficacy of sodium thiosulfate, bisphosphonates, and cinacalcet for the treatment of vascular calcification in patients with haemodialysis: a systematic review and network meta-analysis. BMC Nephrol 2024;25(1):26. doi: 10.1186/s12882-024-03460-x
  385. Chandran M, Bilezikian JP, Lau J et al. The efficacy and safety of cinacalcet in primary hyperparathyroidism: a systematic review and meta-analysis of randomized controlled trials and cohort studies. Rev Endocr Metab Disord 2022;23(3):485-501. doi: 10.1007/s11154-021-09694-6
  386. Lozano-Ortega G, Waser N, Bensink ME et al. Effects of calcimimetics on long-term outcomes in dialysis patients: literature review and Bayesian meta-analysis. J Comp Eff Res 2018;7(7):693-707. doi: 10.2217/cer-2018-0015
  387. Zu Y, Lu X, Song J et al. Cinacalcet Treatment Significantly Improves All-Cause and Cardiovascular Survival in Dialysis Patients: Results from a Meta-Analysis. Kidney Blood Press Res 2019;44(6):1327-1338. doi: 10.1159/000504139
  388. Sekercioglu N, Busse JW, Sekercioglu MF et al. Cinacalcet versus standard treatment for chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2016;38(6):857-74. doi: 10.3109/0886022X.2016.1172468
  389. Ballinger AE, Palmer SC, Nistor I et al. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev 2014;2014(12):CD006254
  390. Jin L, Zhou J, Shao F, Yang F. Long-term effects on PTH and mineral metabolism of 1.25 versus 1.75 mmol/L dialysate calcium in peritoneal dialysis patients: a meta-analysis. BMC Nephrol 2019;20(1):213. doi: 10.1186/s12882-019-1388-9
  391. Ok E, Asci G, Bayraktaroglu S et al. Reduction of Dialysate Calcium Level Reduces Progression of Coronary Artery Calcification and Improves Low Bone Turnover in Patients on Hemodialysis. J Am Soc Nephrol 2016;27(8):2475-86. doi: 10.1681/ASN.2015030268
  392. Spasovski G, Gelev S, Masin-Spasovska J et al. Improvement of bone and mineral parameters related to adynamic bone disease by diminishing dialysate calcium. Bone 2007;41(4):698-703. doi: 10.1016/j.bone.2007.06.014
  393. Yoshikawa M, Takase O, Tsujimura T et al. Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis. Sci Rep 2018;8(1):5310. doi: 10.1038/s41598-018-23658-y
  394. Palmer SC, Nistor I, Craig JC et al. Cinacalcet in patients with chronic kidney disease: a cumulative meta-analysis of randomized controlled trials. PLoS Med 2013;10(4):e1001436. doi: 10.1371/journal.pmed.1001436
  395. Ballinger AE, Palmer SC, Nistor I et al. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev 2014;(12):CD006254. doi: 10.1002/14651858.CD006254.pub2
  396. Palmer SC, Mavridis D, Johnson DW et al. Comparative Effectiveness of Calcimimetic Agents for Secondary Hyperparathyroidism in Adults: A Systematic Review and Network Meta-analysis. Am J Kidney Dis 2020;76(3):321-330. doi: 10.1053/j.ajkd.2020.02.439
  397. Xu J, Yang Y, Ma L et al. Cinacalcet plus vitamin D versus vitamin D alone for the treatment of secondary hyperparathyroidism in patients undergoing dialysis: a meta-analysis of randomized controlled trials. Int Urol Nephrol 2019;51(11):2027-2036. doi: 10.1007/s11255-019-02271-6
  398. Block GA, Bushinsky DA, Cunningham J et al. Effect of Etelcalcetide vs Placebo on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism: Two Randomized Clinical Trials. JAMA 2017;317(2):146-155. doi: 10.1001/jama.2016.19456
  399. Chen L, Wang K, Yu S et al. Long-term mortality after parathyroidectomy among chronic kidney disease patients with secondary hyperparathyroidism: a systematic review and meta-analysis. Ren Fail 2016;38(7):1050-8. doi: 10.1080/0886022X.2016.1184924
  400. Apetrii M, Goldsmith D, Nistor I et al. Impact of surgical parathyroidectomy on chronic kidney disease-mineral and bone disorder (CKD-MBD) - A systematic review and meta-analysis. PLoS One 2017;12(11):e0187025. doi: 10.1371/journal.pone.0187025
  401. Schneider R, Kolios G, Koch BM et al. An economic comparison of surgical and medical therapy in patients with secondary hyperparathyroidism--the German perspective. Surgery 2010;148(6):1091-9. doi: 10.1016/j.surg.2010.09.009
  402. Narayan R, Perkins RM, Berbano EP et al. Parathyroidectomy versus cinacalcet hydrochloride-based medical therapy in the management of hyperparathyroidism in ESRD: a cost utility analysis. Am J Kidney Dis 2007;49(6):801-13. doi: 10.1053/j.ajkd.2007.03.009
  403. Hou J, Shan H, Zhang Y et al. Network meta-analysis of surgical treatment for secondary hyperparathyroidism. Am J Otolaryngol 2020;41(2):102370. doi: 10.1016/j.amjoto.2019.102370
  404. Liu ME, Qiu NC, Zha SL et al. To assess the effects of parathyroidectomy (TPTX versus TPTX+AT) for Secondary Hyperparathyroidism in chronic renal failure: A Systematic Review and Meta-Analysis. Int J Surg 2017;44:353-362. doi: 10.1016/j.ijsu.2017.06.029
  405. Yuan Q, Liao Y, Zhou R et al. Subtotal parathyroidectomy versus total parathyroidectomy with autotransplantation for secondary hyperparathyroidism: an updated systematic review and meta-analysis. Langenbecks Arch Surg 2019;404(6):669-679. doi: 10.1007/s00423-019-01809-7
  406. Клинические рекомендации. Анемия при хронической болезни почек. 2020. https://cr.minzdrav.gov.ru/recomend/623_4
  407. Korevaar JC, Feith GW, Dekker FW et al. Effect of starting with hemodialysis compared with peritoneal dialysis in patients new on dialysis treatment: a randomized controlled trial. Kidney Int 2003;64(6):2222-8. doi: 10.1046/j.1523-1755.2003.00321.x
  408. Devoe DJ, Wong B, James MT et al. Patient Education and Peritoneal Dialysis Modality Selection: A Systematic Review and Meta-analysis. Am J Kidney Dis 2016;68(3):422-33. doi: 10.1053/j.ajkd.2016.02.053
  409. Garofalo C, Borrelli S, De Stefano T et al. Incremental dialysis in ESRD: systematic review and meta-analysis. J Nephrol 2019;32(5):823-836. doi: 10.1007/s40620-018-00577-9
  410. Liem YS, Bosch JL, Hunink MG. Preference-based quality of life of patients on renal replacement therapy: a systematic review and meta-analysis. Value Health 2008;11(4):733-41. doi: 10.1111/j.1524-4733.2007.00308.x
  411. Han SS, Park JY, Kang S et al. Dialysis Modality and Mortality in the Elderly: A Meta-Analysis. Clin J Am Soc Nephrol 2015;10(6):983-93. doi: 10.2215/CJN.05160514
  412. Lozier MR, Sanchez AM, Lee JJ et al. Comparison of Cardiovascular Outcomes by Dialysis Modality: A Systematic Review and Meta-Analysis. Perit Dial Int 2019;39(4):306-314. doi: 10.3747/pdi.2018.00227
  413. Boonpheng B, Thongprayoon C, Cheungpasitporn W. The comparison of risk of stroke in patients with peritoneal dialysis and hemodialysis: A systematic review and meta-analysis. J Evid Based Med 2018;11(3):158-168. doi: 10.1111/jebm.12315
  414. Zazzeroni L, Pasquinelli G, Nanni E et al. Comparison of Quality of Life in Patients Undergoing Hemodialysis and Peritoneal Dialysis: a Systematic Review and Meta-Analysis. Kidney Blood Press Res 2017;42(4):717-727. doi: 10.1159/000484115
  415. Ravani P, Palmer SC, Oliver MJ et al. Associations between hemodialysis access type and clinical outcomes: a systematic review. J Am Soc Nephrol 2013;24(3):465-73. doi: 10.1681/ASN.2012070643
  416. Almasri J, Alsawas M, Mainou M et al. Outcomes of vascular access for hemodialysis: A systematic review and meta-analysis. J Vasc Surg 2016;64(1):236-43. doi: 10.1016/j.jvs.2016.01.053
  417. Smart NA, Dieberg G, Ladhani M, Titus T. Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease. Cochrane Database Syst Rev 2014;(6):CD007333. doi: 10.1002/14651858.CD007333.pub2
  418. Добронравов ВА, Карунная АВ. Прогностическое значение условий оптимального начала диализа (мета-анализ обсервационных исследований). Нефрология 2021;25(4):42-47. doi: 10.36485/1561-6274-2021-25-4-42-47
  419. Chan MR, Dall AT, Fletcher KE et al. Outcomes in patients with chronic kidney disease referred late to nephrologists: a meta-analysis. Am J Med 2007;120(12):1063-1070. doi: 10.1016/j.amjmed.2007.04.024
  420. Yin Y, Cao Y, Yuan L. Outcome and Safety of Unplanned-Start Peritoneal Dialysis according to Break-In Periods: A Systematic Review and Meta-Analysis. Blood Purif 2021;50(2):161-173. doi: 10.1159/000510550
  421. Htay H, Johnson DW, Craig JC et al. Urgent-start peritoneal dialysis versus conventional-start peritoneal dialysis for people with chronic kidney disease. Cochrane Database Syst Rev 2020;12:CD012913. doi: 10.1002/14651858.CD012913.pub2
  422. Metcalfe W, Khan IH, Prescott GJ et al. Can we improve early mortality in patients receiving renal replacement therapy? Kidney Int 2000;57(6):2539-2545. doi: 10.1046/j.1523-1755.2000.00113.x
  423. Descamps C, Labeeuw M, Trolliet P et al. Confounding factors for early death in incident end-stage renal disease patients: Role of emergency dialysis start. Hemodial Int 2011;15(1):23-9. doi: 10.1111/j.1542-4758.2010.00513.x
  424. Michel A, Pladys A, Bayat S et al. Deleterious effects of dialysis emergency start, insights from the French REIN registry. BMC Nephrol 2018;19(1):233. doi: 10.1186/s12882-018-1036-9
  425. Liu FX, Ghaffari A, Dhatt H et al. Economic evaluation of urgent-start peritoneal dialysis versus urgent-start hemodialysis in the United States. Medicine (Baltimore) 2014;93(28):e293. doi: 10.1097/MD.0000000000000293
  426. Mendelssohn DC, Malmberg C, Hamandi B. An integrated review of "unplanned" dialysis initiation: reframing the terminology to "suboptimal" initiation. BMC Nephrol 2009;10:22. doi: 10.1186/1471-2369-10-22
  427. Cooper BA, Branley P, Bulfone L et al. A randomized, controlled trial of early versus late initiation of dialysis. N Engl J Med 2010;363(7):609-19. doi: 10.1056/NEJMoa1000552
  428. Susantitaphong P, Altamimi S, Ashkar M et al. GFR at initiation of dialysis and mortality in CKD: a meta-analysis. Am J Kidney Dis 2012;59(6):829-40. doi: 10.1053/j.ajkd.2012.01.015
  429. Pan Y, Xu XD, Guo LL et al. Association of early versus late initiation of dialysis with mortality: systematic review and meta-analysis. Nephron Clin Pract 2012;120(3):c121-31. doi: 10.1159/000337572
  430. Zhao Y, Pei X, Zhao W. Timing of Dialysis Initiation and Mortality Risk in Chronic Kidney Disease: A Meta-Analysis. Ther Apher Dial 2018;22(6):600-608. doi: 10.1111/1744-9987.12721
  431. Xieyi G, Xiaohong T, Xiaofang W, Zi L. Urgent-start peritoneal dialysis in chronic kidney disease patients: A systematic review and meta-analysis compared with planned peritoneal dialysis and with urgent-start hemodialysis. Perit Dial Int 2020;896860820918710. doi: 10.1177/0896860820918710
  432. Bhandari B, Komanduri S. Dialysis Disequilibrium Syndrome. [Updated 2021 Jun 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559018/
  433. Mistry K. Dialysis disequilibrium syndrome prevention and management. Int J Nephrol Renovasc Dis 2019;12:69-77. doi: 10.2147/IJNRD.S165925
  434. Mah DY, Yia HJ, Cheong WS. Dialysis disequilibrium syndrome: a preventable fatal acute complication. Med J Malaysia 2016;71:91-2
  435. Brown RS, Patibandla BK, Goldfarb-Rumyantzev AS. The Survival Benefit of "Fistula First, Catheter Last" in Hemodialysis Is Primarily Due to Patient Factors. J Am Soc Nephrol 2017;28(2):645-652. doi: 10.1681/ASN.2016010019
  436. Murad MH, Elamin MB, Sidawy AN et al. Autogenous versus prosthetic vascular access for hemodialysis: a systematic review and meta-analysis. J Vasc Surg 2008;48(5 Suppl):34S-47S. doi: 10.1016/j.jvs.2008.08.044
  437. Georgiadis GS, Charalampidis DG, Argyriou C et al. The Necessity for Routine Pre-operative Ultrasound Mapping Before Arteriovenous Fistula Creation: A Meta-analysis. Eur J Vasc Endovasc Surg 2015;49(5):600-5. doi: 10.1016/j.ejvs.2015.01.012
  438. Aragoncillo Sauco I, Ligero Ramos JM, Vega Martínez A et al. Vascular access clinic results before and after implementing a multidisciplinary approach adding routine Doppler ultrasound. Nefrologia 018;38(6):616-621. doi: 10.1016/j.nefro.2018.04.003
  439. Kensinger C, Brownie E, Bream P Jr, Moore D. Multidisciplinary team approach to end-stage dialysis access patients. J Surg Res 2015;199(1):259-65. doi: 10.1016/j.jss.2015.04.088
  440. Bylsma LC, Gage SM, Reichert H et al. Arteriovenous Fistulae for Haemodialysis: A Systematic Review and Meta-analysis of Efficacy and Safety Outcomes. Eur J Vasc Endovasc Surg 2017;54(4):513-522. doi: 10.1016/j.ejvs.2017.06.024
  441. Harms JC, Rangarajan S, Young CJ et al. Outcomes of arteriovenous fistulas and grafts with or without intervention before successful use. J Vasc Surg 2016;64(1):155-62. doi: 10.1016/j.jvs.2016.02.033
  442. Lok CE, Sontrop JM, Tomlinson G et al. Cumulative patency of contemporary fistulas versus grafts (2000-2010). Clin J Am Soc Nephrol 2013;8(5):810-8. doi: 10.2215/CJN.00730112
  443. Maya ID, O"Neal JC, Young CJ et al. Outcomes of brachiocephalic fistulas, transposed brachiobasilic fistulas, and upper arm grafts. Clin J Am Soc Nephrol 2009;4(1):86-92. doi: 10.2215/CJN.02910608
  444. Astor BC, Eustace JA, Powe NR et al. Timing of nephrologist referral and arteriovenous access use: the CHOICE study. Am J Kidney Dis 2001;38:494-501. doi: 10.1053/ajkd.2001.2683
  445. Begin V, Ethier J, Dumont M, Leblanc M. Prospective evaluation of the intra-access flow of recently created native arteriovenous fistulae. Am J Kidney Dis 2002;40(6):1277-82. doi: 10.1053/ajkd.2002.36898
  446. Basile C, Lomonte C, Vernaglione L et al. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant 2008;23(1):282-7. doi: 10.1093/ndt/gfm549
  447. Al-Ghonaim M, Manns BJ, Hirsch DJ et al. Relation between access blood flow and mortality in chronic hemodialysis patients. Clin J Am Soc Nephrol 2008;3(2):387-91. doi: 10.2215/CJN.03000707
  448. Saleh MA, El Kilany WM, Keddis VW, El Said TW. Effect of high flow arteriovenous fistula on cardiac function in hemodialysis patients. Egypt Heart J 2018;70(4):337-341. doi: 10.1016/j.ehj.2018.10.007
  449. Kordzadeh A, Chung J, Panayiotopoulos YP. Cephalic vein and radial artery diameter in formation of radiocephalic arteriovenous fistula: a systematic review. J Vasc Access 2015; 16:506-11. doi: 10.5301/jva.5000413
  450. Aitken E, Jackson A, Kearns R et al. Effect of regional versus local anesthesia on outcome after arteriovenous fistula creation: a randomized controlled trial. Lancet 2016;388:1067-1074. doi: 10.1016/S0140-6736(16)30948-5
  451. Ismail A, Abushouk AI, Bekhet AH et al. Regional versus local anesthesia for arteriovenous fistula creation in end-stage renal disease: a systematic review and meta-analysis. J Vasc Access 2017;18:177-184. doi: 10.5301/jva.5000683
  452. Gao C, Weng C, He C et al. Comparison of regional and local anesthesia for arteriovenous fistula creation in end-stage renal disease: a systematic review and meta-analysis. BMC Anesthesiol 2020;20(1):219. doi: 10.1186/s12871-020-01136-1
  453. Palmer SC, Di Micco L, Razavian M et al. Antiplatelet therapy to prevent hemodialysis vascular access failure: systematic review and meta-analysis. Am J Kidney Dis 2013;61(1):112-22. doi: 10.1053/j.ajkd.2012.08.031
  454. Dember LM, Beck GJ, Allon M et al. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA 2008;299(18):2164-71. doi: 10.1001/jama.299.18.2164
  455. Tanner NC, Da Silva A. Medical adjuvant treatment to increase patency of arteriovenous fistulae and grafts. Cochrane Database Syst Rev 2015;2015(7):CD002786. doi: 10.1002/14651858.CD002786.pub3
  456. Smith GE, Souroullos P, Cayton T et al. A systematic review and meta-analysis of systemic intraoperative anticoagulation during arteriovenous access formation for dialysis. J Vasc Access 2016;17:1-5. doi: 10.5301/jva.5000484
  457. Rayner HC, Pisoni RL, Gillespie BW et al. Creation, cannulation and survival of arteriovenous fistulae: data from the Dialysis Outcomes and Practice Patterns Study. Kidney Int 2003;63(1):323-30. doi: 10.1046/j.1523-1755.2003.00724.x
  458. Saran R, Dykstra DM, Pisoni RL et al. Timing of first cannulation and vascular access failure in haemodialysis: an analysis of practice patterns at dialysis facilities in the DOPPS. Nephrol Dial Transplant 2004;19(9):2334-40. doi: 10.1093/ndt/gfh363
  459. Ravani P, Brunori G, Mandolfo S et al. Cardiovascular comorbidity and late referral impact arteriovenous fistula survival: a prospective multicenter study. J Am Soc Nephrol 2004;15(1):204-9. doi: 10.1097/01.asn.0000103870.31606.90
  460. Wilmink T, Hollingworth L, Stevenson T, Powers S. Is early cannulation of an arteriovenous fistula associated with early failure of the fistula? J Vasc Access 2017;18(Suppl. 1):92-97. doi: 10.5301/jva.5000674
  461. Allon M, Imrey PB, Cheung AK et al. Relationships Between Clinical Processes and Arteriovenous Fistula Cannulation and Maturation: A Multicenter Prospective Cohort Study. Am J Kidney Dis 2018;71(5):677-689. doi: 10.1053/j.ajkd.2017.10.027
  462. Wilmink T, Powers S, Hollingworth L, Stevenson T. Effect of first cannulation time and dialysis machine blood flows on survival of arteriovenous fistulas. Nephrol Dial Transplant 2018;33(5):841-846. doi: 10.1093/ndt/gfx278
  463. Ferring M, Henderson J, Wilmink T. Accuracy of early postoperative clinical and ultrasound examination of arteriovenous fistulae to predict dialysis use. J Vasc Access 2014;15(4):291-7. doi: 10.5301/jva.5000210
  464. Stewart AH, Eyers PS, Earnshaw JJ. Prevention of infection in peripheral arterial reconstruction: a systematic review and meta-analysis. J Vasc Surg 2007;46(1):148-55. doi: 10.1016/j.jvs.2007.02.065
  465. Feldman L, Shani M, Mursi J et al. Effect of timing of the first cannulation on survival of arteriovenous hemodialysis grafts. Ther Apher Dial 2013;17(1):60-4. doi: 10.1111/j.1744-9987.2012.01134.x
  466. Schild AF, Schuman ES, Noicely K et al. Early cannulation prosthetic graft (Flixene™) for arteriovenous access. J Vasc Access 2011;12(3):248-52. doi: 10.5301/jva.2011.6351
  467. Hakaim AG, Scott TE. Durability of early prosthetic dialysis graft cannulation: results of a prospective, nonrandomized clinical trial. J Vasc Surg 1997;25(6):1002-5. doi: 10.1016/s0741-5214(97)70123-x
  468. Glickman MH, Burgess J, Cull D et al. Prospective multicenter study with a 1-year analysis of a new vascular graft used for early cannulation in patients undergoing hemodialysis. J Vasc Surg 2015;62(2):434-41. doi: 10.1016/j.jvs.2015.03.020
  469. National Kidney Foundation. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am J Kidney Dis 2020;75(4 Suppl 2):S1-S164. doi: 10.1053/j.ajkd.2019.12.001
  470. Diskin CJ, Stokes TJ, Panus LW et al. The importance of timing of surgery for hemodialysis vascular access thrombectomy. Nephron 1997;75:233-237. doi: 10.1159/000189538
  471. Sadaghianloo N, Jean-Baptiste E, Gaid H et al. Early surgical thrombectomy improves salvage of thrombosed vascular accesses. J Vasc Surg 2014;59:1377-1384.e1-2. doi: 10.1016/j.jvs.2013.11.092
  472. Green LD, Lee DS, Kucey DS. A metaanalysis comparing surgical thrombectomy, mechanical thrombectomy, and pharmacomechanical thrombolysis for thrombosed dialysis grafts.  J Vasc Surg 2002;36(5):939-45. doi: 10.1067/mva.2002.127524
  473. Chan N, Wee I, Soong TK et al. A systematic review and meta-analysis of surgical versus endovascular thrombectomy of thrombosed arteriovenous grafts in hemodialysis patients. J Vasc Surg 2019;69(6):1976-1988.e7. doi: 10.1016/j.jvs.2018.10.102
  474. Kuhan G, Antoniou GA, Nikam M et al. A meta-analysis of randomized trials comparing surgery versus endovascular therapy for thrombosed arteriovenous fistulas and grafts in hemodialysis. Cardiovasc Intervent Radiol 2013;36(3):699-705. doi: 10.1007/s00270-013-0564-8
  475. Doelman C, Duijm LE, Liem YS et al. Stenosis detection in failing hemodialysis access fistulas and grafts: comparison of color Doppler ultrasonography, contrast-enhanced magnetic resonance angiography, and digital subtraction angiography. J Vasc Surg 2005;42(4):739-46. doi: 10.1016/j.jvs.2005.06.006
  476. Tessitore N, Bedogna V, Gammaro L et al. Diagnostic accuracy of ultrasound dilution access blood flow measurement in detecting stenosis and predicting thrombosis in native forearm arteriovenous fistulae for hemodialysis. Am J Kidney Dis 2003;42(2):331-41. doi: 10.1016/s0272-6386(03)00659-0
  477. Tonelli M, James M, Wiebe N et al. Ultrasound monitoring to detect access stenosis in hemodialysis patients: a systematic review. Am J Kidney Dis 2008;51(4):630-40. doi: 10.1053/j.ajkd.2007.11.025
  478. Schwarz C, Mitterbauer C, Boczula M et al. Flow monitoring: performance characteristics of ultrasound dilution versus color Doppler ultrasound compared with fistulography. Am J Kidney Dis 2003;42(3):539-45. doi: 10.1016/s0272-6386(03)00786-8
  479. Rooijens PP, Serafino GP, Vroegindeweij D et al. Multi-slice computed tomographic angiography for stenosis detection in forearm hemodialysis arteriovenous fistulas. J Vasc Access 2008;9(4):278-84
  480. Karadeli E, Tarhan NC, Ulu EM et al. Evaluation of failing hemodialysis fistulas with multidetector CT angiography: comparison of different 3D planes. Eur J Radiol 2009;69(1):184-92. doi: 10.1016/j.ejrad.2007.09.014
  481. Dimopoulou A, Raland H, Wikström B, Magnusson A. MDCT angiography with 3D image reconstructions in the evaluation of failing arteriovenous fistulas and grafts in hemodialysis patients. Acta Radiol 2011;52(9):935-42. doi: 10.1258/ar.2011.110255
  482. Wasinrat J, Siriapisith T, Thamtorawat S, Tongdee T. 64-slice MDCT angiography of upper extremity in assessment of native hemodialysis access. Vasc Endovascular Surg 2011;45(1):69-77. doi: 10.1177/1538574410379922
  483. Yan Wee IJ, Yap HY, Hsien Ts"ung LT et al. A systematic review and meta-analysis of drug-coated balloon versus conventional balloon angioplasty for dialysis access stenosis. J Vasc Surg 2019;70(3):970-979.e3. doi: 10.1016/j.jvs.2019.01.082
  484. Hu H, Wu Z, Zhao J et al. Stent graft placement versus angioplasty for hemodialysis access failure: a meta-analysis. J Surg Res 2018;226:82-88. doi: 10.1016/j.jss.2018.01.030
  485. Agarwal SK, Nadkarni GN, Yacoub R et al. Comparison of Cutting Balloon Angioplasty and Percutaneous Balloon Angioplasty of Arteriovenous Fistula Stenosis: A Meta-Analysis and Systematic Review of Randomized Clinical Trials. J Interv Cardiol 2015;28(3):288-95. doi: 10.1111/joic.12202
  486. Kundu S. Review of central venous disease in hemodialysis patients. J Vasc Intervent Radiol 2010;21:963-8.  doi: 10.1016/j.jvir.2010.01.044
  487. Ozyer U, Harman A, Yildirim E et al. Long-term results of angioplasty and stent placement for treatment of central venous obstruction in 126 hemodialysis patients: a 10-year single-center experience. AJR Am J Roentgenol 2009;193(6):1672-9. doi: 10.2214/AJR.09.2654
  488. Quaretti P, Galli F, Moramarco LP et al. Stent Grafts Provided Superior Primary Patency for Central Venous Stenosis Treatment in Comparison with Angioplasty and Bare Metal Stent: A Retrospective Single Center Study on 70 Hemodialysis Patients. Vasc Endovascular Surg 2016;50(4):221-30. doi: 10.1177/1538574416639149
  489. Kumbar L, Yee J. Current Concepts in Hemodialysis Vascular Access Infections. Adv Chronic Kidney Dis 2019;26(1):16-22. doi: 10.1053/j.ackd.2018.10.005
  490. Padberg Jr FT, Calligaro KD, Sidawy AN. Complications of arteriovenous hemodialysis access: recognition and management. J Vasc Surg 2008;48:55S-80S. doi: 10.1016/j.jvs.2008.08.067
  491. Ryan SV, Calligaro KD, Dougherty MJ. Management of hemodialysis access infections. Semin Vasc Surg 2004;17:40-4. doi: 10.1053/j.semvascsurg.2003.11.004
  492. Benrashid E, Youngwirth LM, Mareeba L, Lawsoneffrey JH. Operative and perioperative management of infected arteriovenous grafts. J Vasc Access 2017;18(1):13-21. doi: 10.5301/jva.5000613
  493. Schutte WP, Helmer SD, Salazar L, Smith JL. Surgical treatment of infected prosthetic dialysis arteriovenous grafts: total versus partial graft excision. Comparative Study. Am J Surg 2007;193:385-8
  494. Furukawa H.  Surgical management of vascular access related aneurysms to salvage dialysis access: case report and a systematic review of the literature. J Vasc Access 2015;16(2):120-5. doi: 10.5301/jva.5000319
  495. Georgiadis GS, Lazarides MK, Panagoutsos SA et al. Surgical revision of complicated false and true vascular access-related aneurysms. Multicenter Study. J Vasc Surg 2008;47:1284-91. doi: 10.1016/j.jvs.2008.01.051
  496. Shemesh D, Goldin I, Zaghal I et al. Stent graft treatment for hemodialysis access aneurysms. J Vasc Surg 2011;54:1088-94 doi: 10.1016/j.jvs.2011.03.252
  497. Pandolfe LR, Malamis AP, Pierce K, Borge MA. Treatment of hemodialysis graft pseudoaneurysms with stent grafts: institutional experience and review of the literature. Semin Intervent Radiol 2009;26:89-95
  498. Spergel LM, Ravani P, Roy-Chaudhury P et al. Surgical salvage of the autogenous arteriovenous fistula (AVF). J Nephrol 2007;20:388-98
  499. Thomson P, Stirling C, Traynor J et al. A prospective observational study of catheter-related bacteraemia and thrombosis in a haemodialysis cohort: univariate and multivariate analyses of risk association. Nephrol Dial Transplant 2010;25(5):1596-604. doi: 10.1093/ndt/gfp667
  500. Shingarev R, Barker-Finkel J, Allon M. Natural history of tunneled dialysis catheters placed for hemodialysis initiation. J Vasc Interv Radiol 2013;24(9):1289-94. doi: 10.1016/j.jvir.2013.05.034
  501. Oliver MJ, Callery SM, Thorpe KE et al. Risk of bacteremia from temporary hemodialysis catheters by site of insertion and duration of use: a prospective study. Kidney Int 2000;58(6):2543-5. doi: 10.1046/j.1523-1755.2000.00439.x
  502. Hryszko T, Brzosko S, Mazerska M et al. Risk factors of nontunneled noncuffed hemodialysis catheter malfunction. A prospective study. Nephron Clin Pract 2004;96(2):c43-7. doi: 10.1159/000076398
  503. Engstrom BI, Horvath JJ, Stewart JK et al. Tunneled internal jugular hemodialysis catheters: impact of laterality and tip position on catheter dysfunction and infection rates. J Vasc Interv Radiol 2013;24(9):1295-302. doi: 10.1016/j.jvir.2013.05.035
  504. Oguzkurt L, Tercan F, Torun D, et al. Impact of short-term hemodialysis catheters on the central veins: a catheter venographic study. Eur J Radiol 2004;52:293-299. doi: 10.1016/j.ejrad.2003.12.004
  505. Cimochowski GE, Worley E, Rutherford WE et al. Superiority of the internal jugular over the subclavian access for temporary dialysis. Nephron 1990;54(2):154-61. doi: 10.1159/000185837
  506. Oliver MJ, Edwards LJ, Treleaven DJ et al. Randomized study of temporary hemodialysis catheters. Int J Artif Organs 2002;25(1):40-4. doi: 10.1177/039139880202500107
  507. Salik E, Daftary A, Tal MG. Three-dimensional anatomy of the left central veins: implications for dialysis catheter placement. J Vasc Interv Radiol 2007;18:361-364. doi: 10.1016/ j. jvir.2006.12.721
  508. Schillinger F, Schillinger D, Montagnac R, Milcent T. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant 1991;6(10):722-4. doi: 10.1093/ndt/6.10.722
  509. Schwab SJ, Quarles LD, Middleton JP et al. Hemodialysis-associated subclavian vein stenosis. Kidney Int 1988;33(6):1156-9. doi: 10.1038/ki.1988.124
  510. Naumovic RT, Jovanovic DB, Djukanovic LJ. Temporary vascular catheters for hemodialysis: a 3-year prospective study. Int J Artif Organs 2004;27(10):848-54. doi: 10.1177/039139880402701006
  511. Falk A. Use of the femoral vein as insertion site for tunneled hemodialysis catheters. J Vasc Interv Radiol 2007;18(2):217-25. doi: 10.1016/j.jvir.2006.12.001
  512. Randolph AG, Cook DJ, Gonzales CA, Pribble CG. Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med 1996;24(12):2053-8. doi: 10.1097/00003246-199612000-00020
  513. Hind D, Calvert N, McWilliams R et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 2003;327(7411):361. doi: 10.1136/bmj.327.7411.361
  514. Rabindranath KS, Kumar E, Shail R, Vaux E. Use of real-time ultrasound guidance for the placement of hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis 2011;58(6):964-70. doi: 10.1053/j.ajkd.2011.07.025
  515. Bansal R, Agarwal S, Tiwari SC, Dash SC. A prospective randomized study to compare ultrasound-guided with non-ultrasound guided double lumen internal jugular catheter insertion as a temporary hemodialysis access. Ren Fail 2005;27:561-564. doi: 10.1080/08860220500199084
  516. Allon M, Brouwer-Maier DJ, Abreo K et al. Recommended Clinical Trial End Points for Dialysis Catheters. Clin J Am Soc Nephrol 2018;13(3):495-500. doi: 10.2215/CJN.12011116
  517. Yevzlin AS, Song GU, Sanchez RJ, Becker YT. Fluoroscopically guided vs modified traditional placement of tunneled hemodialysis catheters: clinical outcomes and cost analysis. J Vasc Access 2007; 8:245-251
  518. Wong SS, Kwaan HC, Ing TS. Venous air embolism related to the use of central catheters revisited: with emphasis on dialysis catheters. Clin Kidney J 2017;10:797-803. doi: 10.1093/ckj/sfx064
  519. Beathard GA, Litchfield T. Physician Operators Forum of RMS Lifeline, Inc. Effectiveness and safety of dialysis vascular access procedures performed by interventional nephrologists. Kidney Int 2004; 66:1622-1632. doi: 10.1111/j.1523- 1755.2004.00928.x
  520. Abood GJ, Davis KA, Esposito TJ et al. Comparison of routine chest radiograph versus clinician judgment to determine adequate central line placement in critically ill patients. J Trauma 2007;63:50-56. doi: 10.1097/TA.0b013e31806bf1a3
  521. Chalkiadis GA, Goucke CR. Depth of central venous catheter insertion in adults: an audit and assessment of a technique to improve tip position. Anaesthesiol Intensive Care 1998;26:61ю-66. doi: 10.1177/0310057X9802600109
  522. Aboelela SW, Stone PW, Larson EL. Effectiveness of bundled behavioural interventions to control healthcare-associated infections: a systematic review of the literature. J Hosp Infect 2007;66(2):101-108. doi: 10.1016/j.jhin.2006.10.019
  523. Blot K, Bergs J, Vogelaers D et al. Prevention of central line-associated bloodstream infections through quality improvement interventions: a systematic review and meta-analysis. Clin Infect Dis 2014; 59:96-105. doi: 10.1093/cid/ciu239
  524. Rosenblum A, Wang W, Ball LK et al. Hemodialysis catheter care strategies: a cluster-randomized quality improvement initiative. Am J Kidney Dis 2014;63(2):259-67. doi: 10.1053/j.ajkd.2013.08.019
  525. Silva TN, de Marchi D, Mendes ML et al. Approach to prophylactic measures for central venous catheter-related infections in hemodialysis: a critical review. Hemodial Int 2014;18:15-23.  doi: 10.1111/hdi.12071
  526. American Society of Anesthesiologists Task Force on Central Venous Access. Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology 2012;116(3):539-73. doi: 10.1097/ALN.0b013e31823c9569
  527. СанПиН 2.1.3.2630-10 "Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность" (с изменениями на 10 июня 2016 года)
  528. Приказ Росстандарта от 31 марта 2015 года N 199-ст утвержден ГОСТ Р 52623.3-2015 "Технологии выполнения простых медицинских услуг. Манипуляции сестринского ухода"
  529. Клинические рекомендации. Профилактика катетер-ассоциированных инфекций кровотока и уход за центральным венозным катетером (ЦВК), 2017 год. https://zdrav36.ru/files/fkr-2017-profilaktika-kateter-associirovannyh-infekcij-krovotoka.pdf
  530. Raad II, Hohn DC, Gilbreath BJ et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 1994;15:231-23
  531. Safdar N, Abad C. Educational interventions for prevention of healthcare-associated infection: a systematic review. Crit Care Med 2008;36(3):933-940.   doi: 10.1097/CCM.0B013E318165FAF3
  532. Ma IW, Brindle ME, Ronksley PE et al. Use of simulation-based education to improve outcomes of central venous catheterization: a systematic review and meta-analysis. Acad Med 2011;86(9):1137-1147. doi: 10.1097/ACM.0b013e318226a204
  533. Chaiyakunapruk N, Veenstra DL, Lipsky BA et al. Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med 2002;136:792-801. doi: 10.7326/0003-4819-136-11-200206040-00007
  534. Mimoz O, Lucet JC, Kerforne T et al. Skin antisepsis with chlorhexidine-alcohol versus povidone iodine-alcohol, with and without skin scrubbing, for prevention of intravascularcatheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet 2015; 386:2069-2077. doi: 10.1016/S0140- 6736(15)00244-5
  535. Gilles D, O’Riordan L, Carr D et al. Gauze and tape and transparent polyurethane dressings for central venous catheters. Meta-analysis Cochrane Database Systematic Review 2003;4:CD003827.  doi: 10.1002/14651858.CD003827
  536. Ho KM, Litton E. Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother 2006;58:281-7. doi: 10.1093/jac/dkl234
  537. Hoffmann KK, Weber DJ, Samsa GP, Rutala WA. Transparent polyurethane film as an intravenous catheter dressing. A meta-analysis of the infection risks. JAMA 1992;267(15):2072-2076
  538. Le Corre I, Delorme M, Cournoyer S. A prospective, randomized trial comparing a transparent dressing and a dry gauze on the exit site of long term central venous catheters of hemodialysis patients. The Journal of Vascular Access 2003;4:56-61
  539. Betjes MGH. Prevention of catheter-related bloodstream infection in patients on hemodialysis. Review. Nat Rev Nephrol 2011;7:257-265. doi: 10.1038/nrneph.2011.28
  540. James MT, Conley J, Tonelli M et al. Meta-analysis: antibiotics for prophylaxis against hemodialysis catheter-related infections. Ann Intern Med 2008;148:596-605. doi: 10.7326/0003-4819-148-8-200804150-00004
  541. Johnson DW, MacGinley R, Kay TD et al. A randomized controlled trial of topical exit site mupirocin application in patients with tunnelled, cuffed haemodialysis catheters. Nephrol Dial Transplant 2002;17(10):1802-1807. doi: 10.1093/ndt/17.10.1802
  542. Tacconelli E, Carmeli Y, Aizer A et al. Mupirocin prophylaxis to prevent Staphylococcus aureus infection in patients undergoing dialysis: a meta-analysis. Clin Infect Dis 2003;37:1629-1638
  543. Rabindranath KS, Bansal T, Adams J et al. Systematic review of antimicrobials for the prevention of haemodialysis catheter-related infections. Nephrology Dialysis Transplantation 2009;24:3763-74. doi: 10.1093/ndt/gfp327
  544. Boelaert JR, De Smedt RA, De Baere YA et al. The influence of calcium mupirocin nasal ointment on the incidence of Staphylococcus aureus infections in haemodialysis patients. Randomized clinical trial. Nephrol Dial Transplant 1989;4:278-81. doi: 10.1093/oxfordjournals.ndt.a091872
  545. Sesso R, Barbosa D, Leme IL et al. Staphylococcus aureus prophylaxis in hemodialysis patients using central venous catheters: effect of mupirocin ointment.  Randomized clinical trial. J Am Soc Nephrol 1998;9:1085-92. doi: 10.1681/ASN.V961085
  546. Chapla K, Oza-Gajera BP, Yevzlin AS et al. Hemodialysis catheter locking solutions and the prevention of catheter dysfunction: a meta-analysis. J Vasc Access 2015;16(2):107-12. doi: 10.5301/jva.5000312
  547. Bosma JW, Siegert CE, Peerbooms PG et al. Reduction of biofilm formation with trisodium citrate in haemodialysis catheters: a randomized controlled trial. Nephrol Dial Transplant 2010;25:1213-1217. doi: 10.1093/ndt/gfp651
  548. Han X, Yang X, Huang B et al. Low-dose versus high-dose heparin locks for hemodialysis catheters: a systematic review and meta-analysis. Clin Nephrol 2016;86(7):1-8. doi: 10.5414/CN108701
  549. Zhao Y, Li Z, Zhang L et al. Citrate versus heparin lock for hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis 2014;63:479-490. doi: 10.1053/j.ajkd.2013.08.016
  550. Jinrui J, Wang Ch, Zhao H et al. Anticoagulant therapies versus heparin for the prevention of hemodialysis catheter-related complications: systematic review and meta-analysis of prospective randomized controlled trials. Int J Clin Exp Med 2015;8(8):11985-11995
  551. Pollo V, Dionízio D, Bucuvic EM et al. Alteplase vs. urokinase for occluded hemodialysis catheter: A randomized trial. Hemodial Int 2016;20(3):378-84. doi: 10.1111/hdi.12391
  552. Al-Ali F, Hamdy AF, Hamad A et al. Safety and efficacy of taurolidine/urokinase versus taurolidine/heparin as a tunneled catheter lock solution in hemodialysis patients: a prospective, randomized, controlled study. Nephrol Dial Transplant 2018;33(4):619-626. doi: 10.1093/ndt/gfx187
  553. Winnicki W, Herkner H, Lorenz M et al. Taurolidine-based catheter lock regimen significantly reduces overall costs, infection, and dysfunction rates of tunneled hemodialysis catheters. Kidney Int 2018;93(3):753-760. doi: 10.1016/j.kint.2017.06.026
  554. Zwiech R, Adelt M, Chrul S. A Taurolidine-Citrate-Heparin Lock Solution Effectively Eradicates Pathogens from the Catheter Biofilm in Hemodialysis Patients. Am J Ther 2016;23(2):e363-8. doi: 10.1097/MJT.0b013e31828d4610
  555. Solomon LR, Cheesbrough JS, Bhargava R et al. Observational study of need for thrombolytic therapy and incidence of bacteremia using taurolidine-citrate-heparin, taurolidine-citrate and heparin catheter locks in patients treated with hemodialysis. Semin Dial 2012;25(2):233-8. doi: 10.1111/j.1525-139X.2011.00951
  556. Bonkain F, Van Hulle F, Janssens P et al. Urokinase-containing locking solution in the prevention of dialysis catheter dysfunction: a double blind randomized controlled trial. J Vasc Access 2017;18(5):436-442. doi: 10.5301/jva.5000737
  557. Liu H, Liu H, Deng J et al. Preventing catheter-related bacteremia with taurolidine-citrate catheter locks: a systematic review and meta-analysis. Blood Purif 2014;37(3):179-87. doi: 10.1159/000360271
  558. Allon M. Dialysis catheter-related bacteremia: treatment and prophylaxis. Am J Kidney Dis 2004;44(5):779-91
  559. Kumbar L, Yee J. Current Concepts in Hemodialysis Vascular Access Infections. Adv Chronic Kidney Dis 2019;26(1):16-22. doi: 10.1053/j.ackd.2018.10.005
  560. Mickley V. Central venous catheters: many questions, few answers. Nephrol Dial Transplant 2002;17:1368-1373. DOI: 10.1093/ndt/17.8.1368
  561. Weijmer MC, Vervloet MG, ter Wee PM. Compared to tunnelled cuffed haemodialysis catheters, temporary untunnelled catheters are associated with more complications already within 2 weeks of use. Nephrol Dial Transplant 2004;19(3):670-7. doi: 10.1093/ndt/gfg581
  562. NEW D"cruz RT, Leong SW, Syn N et al. Endovascular treatment of cephalic arch stenosis in brachiocephalic arteriovenous fistulas: A systematic review and meta-analysis. J Vasc Access 2019;20(4):345-355. doi: 10.1177/1129729818814466
  563. NEW Wu TY, Wu CK, Chen YY, Lin CH. Comparison of Percutaneous Transluminal Angioplasty with Stenting for Treatment of Central Venous Stenosis or Occlusion in Hemodialysis Patients: A Systematic Review and Meta-analysis. Cardiovasc Intervent Radiol 2020;43(4):525-540. doi: 10.1007/s00270-019-02383-7
  564. Dammers R, de Haan MW, Planken NR et al. Central vein obstruction in hemodialysis patients: results of radiological and surgical intervention. Eur J Vasc Endovasc Surg 2003;26(3):317-21. doi: 10.1053/ejvs.2002.1943
  565. Sprouse LR 2nd, Lesar CJ, Meier GH 3rd et al. Percutaneous treatment of symptomatic central venous stenosis. J Vasc Surg 2004;39(3):578-82. doi: 10.1016/j.jvs.2003.09.034
  566. Bakken AM, Protack CD, Saad WE et al. Long-term outcomes of primary angioplasty and primary stenting of central venous stenosis in hemodialysis patients. J Vasc Surg 2007;45(4):776-83. doi: 10.1016/j.jvs.2006.12.046
  567. Ozyer U, Harman A, Yildirim E et al. Long-term results of angioplasty and stent placement for treatment of central venous obstruction in 126 hemodialysis patients: a 10-year single-center experience. AJR Am J Roentgenol 2009;193(6):1672-9. doi: 10.2214/AJR.09.2654
  568. Maya ID, Saddekni S, Allon M. Treatment of refractory central vein stenosis in hemodialysis patients with stents. Semin Dial 2007;20(1):78-82. doi: 10.1111/j.1525-139X.2007.00246.x
  569. Kim YC, Won JY, Choi SY et al. Percutaneous treatment of central venous stenosis in hemodialysis patients: long-term outcomes. Cardiovasc Intervent Radiol 2009;32(2):271-8. doi: 10.1007/s00270-009-9511-0
  570. Anaya-Ayala JE, Smolock CJ, Colvard BD et al. Efficacy of covered stent placement for central venous occlusive disease in hemodialysis patients. J Vasc Surg 2011;54(3):754-9. doi: 10.1016/j.jvs.2011.03.260
  571. Kundu S, Modabber M, You JM et al. Use of PTFE stent grafts for hemodialysis-related central venous occlusions: intermediate-term results. Cardiovasc Intervent Radiol 2011;34(5):949-57. doi: 10.1007/s00270-010-0019-4
  572. Quaretti P, Galli F, Moramarco LP et al. Stent Grafts Provided Superior Primary Patency for Central Venous Stenosis Treatment in Comparison with Angioplasty and Bare Metal Stent: A Retrospective Single Center Study on 70 Hemodialysis Patients. Vasc Endovascular Surg 2016;50(4):221-30. doi: 10.1177/1538574416639149
  573. Ronald J, Davis B, Guevara CJ et al. Treatment of central venous in-stent restenosis with repeat stent deployment in hemodialysis patients. J Vasc Access 2017;18(3):214-219. doi: 10.5301/jva.5000705
  574. Swaminathan S, Mor V, Mehrotra R, Trivedi AN. Initial Session Duration and Mortality Among Incident Hemodialysis Patients. Am J Kidney Dis 2017;70(1):69-75. doi: 10.1053/j.ajkd.2016.11.017
  575. Flythe JE, Curhan GC, Brunelli SM. Shorter length dialysis sessions are associated with increased mortality, independent of body weight. Kidney Int 2013;83(1):104-13. doi: 10.1038/ki.2012.346
  576. Ko GJ, Obi Y, Soohoo M et al. No Survival Benefit in Octogenarians and Nonagenarians with Extended Hemodialysis Treatment Time. Am J Nephrol 2018;48(5):389-398. doi: 10.1159/000494336
  577. Mathew A, McLeggon JA, Mehta N et al. Mortality and Hospitalizations in Intensive Dialysis: A Systematic Review and Meta-Analysis. Can J Kidney Health Dis 2018;5:2054358117749531. doi: 10.1177/2054358117749531
  578. Jansz TT, Noordzij M, Kramer A et al. Survival of patients treated with extended-hours haemodialysis in Europe: an analysis of the ERA-EDTA Registry. Nephrol Dial Transplant 2020;35(3):488-495. doi: 10.1093/ndt/gfz208
  579. Greene T, Daugirdas J, Depner T et al. Association of achieved dialysis dose with mortality in the hemodialysis study: an example of "dose-targeting bias". J Am Soc Nephrol 2005;16(11):3371-80. doi: 10.1681/ASN.2005030321
  580. Sridharan S, Vilar E, Davenport A et al. Indexing dialysis dose for gender, body size and physical activity: Impact on survival. PLoS One 2018;13(9):e0203075. doi: 10.1371/journal.pone.0203075
  581. Miller JE, Kovesdy CP, Nissenson AR et al. Association of hemodialysis treatment time and dose with mortality and the role of race and sex. Am J Kidney Dis 2010;55(1):100-12. doi: 10.1053/j.ajkd.2009.08.007
  582. Eknoyan G, Beck GJ, Cheung AK et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 2002;347(25):2010-9. doi: 10.1056/NEJMoa021583
  583. European Best Practice Guidelines Expert Group on Hemodialysis, European Renal Association. Section II. Haemodialysis adequacy. Nephrol Dial Transplant 2002;17 Suppl 7:16-31
  584. Ahrenholz P, Taborsky P, Bohling M et al. Determination of dialysis dose: a clinical comparison of methods. Blood Purif 2011;32(4):271-7. doi: 10.1159/000330340
  585. Rabindranath KS, Strippoli GF, Roderick P et al. Comparison of hemodialysis, hemofiltration, and acetate-free biofiltration for ESRD: systematic review. Am J Kidney Dis 2005;45(3):437-47. doi: 10.1053/j.ajkd.2004.11.008
  586. Nistor I, Palmer SC, Craig JC et al. Haemodiafiltration, haemofiltration and haemodialysis for end-stage kidney disease. Cochrane Database Syst Rev 2015;(5):CD006258. doi: 10.1002/14651858.CD006258.pub2
  587. Liu Y, Zou W, Wu J et al. Comparison between incremental and thrice-weekly haemodialysis: Systematic review and meta-analysis. Nephrology (Carlton) 2019;24(4):438-444. doi: 10.1111/nep.13252
  588. Fernández-Lucas M, Teruel-Briones JL, Gomis A et al. Recovery of renal function in patients receiving haemodialysis treatment. Nefrologia 2012;32(2):166-71. doi: 10.3265/Nefrologia.pre2011.Dec.11194
  589. Tattersall J. Residual renal function in incremental dialysis. Clin Kidney J 2018;11(6):853-856. doi: 10.1093/ckj/sfy082
  590. Vartia A. Residual renal function in incremental haemodialysis. Clin Kidney J 2018;11(6):857-863. doi: 10.1093/ckj/sfy036
  591. Daugirdas JT. Residual renal function in incremental haemodialysis. Clin Kidney J 2018;11(6):857-863. doi: 10.1093/ckj/sfy036
  592. Obi Y, Rhee CM, Mathew AT et al. Residual Kidney Function Decline and Mortality in Incident Hemodialysis Patients. J Am Soc Nephrol 2016;27(12):3758-3768. doi: 10.1681/ASN.2015101142
  593. Paniagua R, Amato D, Vonesh E et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 2002;13(5):1307-20
  594. Termorshuizen F, Korevaar JC, Dekker FW et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis 2003;41(6):1293-302
  595. CANUSA Peritoneal Dialysis Study Group. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol 2001;12(10):2158-62
  596. Lu W, Ren C, Han X et al. The protective effect of different dialysis types on residual renal function in patients with maintenance hemodialysis: A systematic review and meta-analysis. Medicine (Baltimore) 2018;97(37):e12325. doi: 10.1097/MD.0000000000012325
  597. Wang M, Obi Y, Streja E et al. Impact of residual kidney function on hemodialysis adequacy and patient survival. Nephrol Dial Transplant 2018;33(10):1823-1831. doi: 10.1093/ndt/gfy060
  598. Daugirdas JT, Depner TA, Greene T et al. Standard Kt/Vurea: a method of calculation that includes effects of fluid removal and residual kidney clearance. Kidney Int 2010;77(7):637-44. doi: 10.1038/ki.2009.525
  599. Casino FG, Basile C. A user-friendly tool for incremental haemodialysis prescription. Nephrol Dial Transplant 2018;33(6):1046-1053. doi: 10.1093/ndt/gfx343
  600. Palmer SC, Rabindranath KS, Craig JC et al. High-flux versus low-flux membranes for end-stage kidney disease. Cochrane Database Syst Rev 2012;2012(9):CD005016. doi: 10.1002/14651858.CD005016.pub2
  601. Zhao F, Wang Z, Liu L, Wang S. The influence of mortality rate from membrane flux for end-stage renal disease: A meta-analysis. Nephrol Ther 2017;13(1):9-13. doi: 10.1016/j.nephro.2016.07.445
  602. Li X, Xu H, Xiao XC et al. Prognostic effect of high-flux hemodialysis in patients with chronic kidney disease. Braz J Med Biol Res 2016;49(1):e4708. doi: 10.1590/1414-431X20154708
  603. Peters SA, Bots ML, Canaud B et al. Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials. Nephrol Dial Transplant 2016;31(6):978-84. doi: 10.1093/ndt/gfv349
  604. Masakane I, Kikuchi K, Kawanishi H. Evidence for the Clinical Advantages of Predilution On-Line Hemodiafiltration. Contrib Nephrol 2017;189:17-23. doi: 10.1159/000450635
  605. Wang AY, Ninomiya T, Al-Kahwa A et al. Effect of hemodiafiltration or hemofiltration compared with hemodialysis on mortality and cardiovascular disease in chronic kidney failure: a systematic review and meta-analysis of randomized trials. Am J Kidney Dis 2014;63(6):968-78. doi: 10.1053/j.ajkd.2014.01.435
  606. Liu S, Liu H, Wang Z et al. Effect of changing treatment to high-flux hemodialysis (HFHD) on mortality in patients with long-term low flux hemodialysis (LFHD): a propensity score matched cohort study. BMC Nephrol 2020;21(1):485. doi: 10.1186/s12882-020-02145-5
  607. Nistor I, Palmer SC, Craig JC et al. Convective versus diffusive dialysis therapies for chronic kidney failure: an updated systematic review of randomized controlled trials. Am J Kidney Dis 2014;63(6):954-67. doi: 10.1053/j.ajkd.2013.12.004
  608. Mostovaya IM, Blankestijn PJ, Bots ML et al. Clinical evidence on hemodiafiltration: a systematic review and a meta-analysis. Semin Dial 2014;27(2):119-27. doi: 10.1111/sdi.12200
  609. Maduell F, Moreso F, Pons M et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol 2013;24:487-497. doi: 10.1681/ASN.2012080875
  610. Grooteman MP, van den Dorpel MA, Bots ML et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J Am Soc Nephrol 2012;23:1087-1096. doi: 10.1681/ASN.2011121140
  611. Ok E, Asci G, Toz H et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF Study. Nephrol Dial Transplant 2013;28:192-202. doi: 10.1093/ndt/gfs407
  612. Davenport A, Peters SA, Bots ML et al. Higher convection volume exchange with online hemodiafiltration is associated with survival advantage for dialysis patients: the effect of adjustment for body size. Kidney Int 2016;89:193-199. doi: 10.1038/ki.2015.264
  613. Tsuchida K, Minakuchi J. Clinical benefits of predilution on-line hemodiafiltration. Blood Purif 2013;35(Suppl 1):18-22. doi: 10.1159/000346221
  614. Macleod AM, Campbell M, Cody JD et al. Cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease. Cochrane Database Syst Rev 2005;(3):CD003234. doi: 10.1002/14651858.CD003234.pub2
  615. Ashby D, Borman N, Burton J et al. Renal Association Clinical Practice Guideline on Haemodialysis. BMC Nephrol 2019;20(1):379. doi: 10.1186/s12882-019-1527-3
  616. Tielemans C, Madhoun P, Lenaers M et al. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 1990;38:982-984
  617. Martin-Navarroa J, Esterasb R, Castillo E et al. Reactions to synthetic membranes dialyzers: is there an increase in incidence? Kidney Blood Press Res 2019;44(5):907-914
  618. Wilson B, Harwood L. Reaching Consensus on Outcomes for Successful Cannulation of an Arteriovenous Fistula: Patient and Healthcare Provider Perspectives. Nephrol Nurs J 2018;45:327-336
  619. Lazrak HH, René É, Elftouh N et al. Safety of low-molecular-weight heparin compared to unfractionated heparin in hemodialysis: a systematic review and meta-analysis. BMC Nephrol 2017;18(1):187. doi: 10.1186/s12882-017-0596-4
  620. Lim W, Cook DJ, Crowther MA. Safety and efficacy of low molecular weight heparins for haemodialysis in patients with end-stage renal failure: a metaanalysis of randomised trials. J Am Soc Nephrol 2004;15:3192-206
  621. Palamaner Subash Shantha G, Kumar AA, Sethi M et al. Efficacy and safety of low molecular weight heparin compared to unfractionated heparin for chronic outpatient hemodialysis in end stage renal disease: systematic review and meta-analysis. Peer J 2015;3:e835
  622. Davenport A. Optimization of heparin anticoagulation for hemodialysis. Hemodial Int 2011;15 Suppl 1:S43-8. doi: 10.1111/j.1542-4758.2011.00601.x
  623. Шило В.Ю. Низкомолекулярные гепарины в гемодиализе: многолетий опыт применения далтепарина. Клиницист. 2008: 2; 55-57
  624. Строков А.Г., Поз Я.Л. Антикоагуляция при заместительной почечной терапии: классические подходы и новые возможности. Вестник трансплантологии и искусственных органов. 2010;4:80-85
  625. Fischer KG. Essentials of anticoagulation in hemodialysis. Hemodial Int 2007;11(2):178-89. doi: 10.1111/j.1542-4758.2007.00166.x
  626. Susantitaphong P, Riella C, Jaber BL. Effect of ultrapure dialysate on markers of inflammation, oxidative stress, nutrition and anemia parameters: a meta-analysis. Nephrol Dial Transplant 2013;28(2):438-46. doi: 10.1093/ndt/gfs514
  627. Flythe JE, Kshirsagar AV, Falk RJ, Brunelli SM. Associations of Posthemodialysis Weights above and below Target Weight with All-Cause and Cardiovascular Mortality. Clin J Am Soc Nephrol 2015;10(5):808-16. doi: 10.2215/CJN.10201014
  628. Sands JJ, Usvyat LA, Sullivan T et al. Intradialytic hypotension: frequency, sources of variation and correlation with clinical outcome. Hemodial Int 2014;18(2):415-22. doi: 10.1111/hdi.12138
  629. Kraemer M, Rode C, Wizemann V. Detection limit of methods to assess fluid status changes in dialysis patients. Kidney Int 2006;69:1609-1620. doi: 10.1038/sj.ki.5000286
  630. Piccoli A. Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. The Italian Hemodialysis-Bioelectrical Impedance Analysis (HD-BIA) Study Group. Kidney Int 1998;53:1036-1043
  631. Tao WW, Tao XM, Wang Y, Bi SH. Psycho-social and educational interventions for enhancing adherence to dialysis in adults with end-stage renal disease: A meta-analysis. J Clin Nurs 2020;29(15-16):2834-2848. doi: 10.1111/jocn.15301
  632. Murali KM, Mullan J, Roodenrys S et al. Strategies to improve dietary, fluid, dialysis or medication adherence in patients with end stage kidney disease on dialysis: A systematic review and meta-analysis of randomized intervention trials. PLoS One 2019;14(1):e0211479. doi: 10.1371/journal.pone.0211479
  633. Huang M, Lv A, Wang J et al. Exercise Training and Outcomes in Hemodialysis Patients: Systematic Review and Meta-Analysis. Am J Nephrol 2019;50(4):240-254. doi: 10.1159/000502447
  634. Scapini KB, Bohlke M, Moraes OA et al. Combined training is the most effective training modality to improve aerobic capacity and blood pressure control in people requiring haemodialysis for end-stage renal disease: systematic review and network meta-analysis. J Physiother 2019;65(1):4-15. doi: 10.1016/j.jphys.2018.11.008
  635. Salhab N, Karavetian M, Kooman J et al. Effects of intradialytic aerobic exercise on hemodialysis patients: a systematic review and meta-analysis. J Nephrol 2019;32(4):549-566. doi: 10.1007/s40620-018-00565-z
  636. Dobsak P, Homolka P, Svojanovsky J et al. Intra-dialytic electrostimulation of leg extensors may improve exercise tolerance and quality of life in hemodialyzed patients. Artif Organs 2012;36(1):71-8. doi: 10.1111/j.1525-1594.2011.01302.x
  637. EBPG Expert Group on Peritoneal Dialysis. European best practice guidelines for peritoneal dialysis. 1 General guidelines. Nephrol Dial Transplant 2005;20 Suppl 9:ix2. doi: 10.1093/ndt/gfi1115
  638. Rabindranath KS, Adams J, Ali TZ et al. Continuous ambulatory peritoneal dialysis versus automated peritoneal dialysis for end-stage renal disease. Cochrane Database Syst Rev 2007(2):CD006515. doi: 10.1002/14651858.CD006515
  639. Michels WM, van Dijk S, Verduijn M et al. Quality of life in automated and continuous ambulatory peritoneal dialysis. Perit Dial Int 2011;31(2):138-47. doi: 10.3747/pdi.2010.00063
  640. Eloot S, Vanholder R, Dequidt C, Van Biesen W. Removal of Different Classes of Uremic Toxins in APD vs CAPD: A Randomized Cross-Over Study. Perit Dial Int 2015;35(4):436-42. doi: 10.3747/pdi.2013.00202
  641. Johnson DW, Hawley CM, McDonald SP et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 2010;25(6):1973-9. doi: 10.1093/ndt/gfp780
  642. Michels WM, Verduijn M, Grootendorst DC et al. Decline in residual renal function in automated compared with continuous ambulatory peritoneal dialysis. Clin J Am Soc Nephrol 2011;6(3):537-42. doi: 10.2215/CJN.00470110
  643. Pérez Fontán M, Remón Rodríguez C, Borràs Sans M et al. Compared decline of residual kidney function in patients treated with automated peritoneal dialysis and continuous ambulatory peritoneal dialysis: a multicenter study. Nephron Clin Pract 2014;128(3-4):352-60. doi: 10.1159/000368933
  644. Ding L, Yang J, Li L, Yang Y. Effects of ACEIs and ARBs on the Residual Renal Function in Peritoneal Dialysis Patients: A Meta-Analysis of Randomized Controlled Trials. Biomed Res Int 2020;2020:6762029. doi: 10.1155/2020/6762029
  645. Yoon HE, Kwon YJ, Shin SJ et al. Bioimpedance spectroscopy-guided fluid management in peritoneal dialysis patients with residual kidney function: A randomized controlled trial. Nephrology (Carlton) 2019;24(12):1279-1289. doi: 10.1111/nep.13571
  646. Oh KH, Baek SH, Joo KW et al. Does Routine Bioimpedance-Guided Fluid Management Provide Additional Benefit to Non-Anuric Peritoneal Dialysis Patients? Results from COMPASS Clinical Trial. Perit Dial Int 2018;38(2):131-138. doi: 10.3747/pdi.2016.00241
  647. Covic A, Ciumanghel AI, Siriopol D et al. Value of bioimpedance analysis estimated "dry weight" in maintenance dialysis patients: a systematic review and meta-analysis. Int Urol Nephrol 2017;49(12):2231-2245. doi: 10.1007/s11255-017-1698-4
  648. Ng JK, Kwan BC, Chow KM et al. Asymptomatic fluid overload predicts survival and cardiovascular event in incident Chinese peritoneal dialysis patients. PLoS One 2018;13(8):e0202203. doi: 10.1371/journal.pone.0202203
  649. EBPG Expert Group on Peritoneal Dialysis. European best practice guidelines for peritoneal dialysis. 7 Adequacy of peritoneal dialysis. Nephrol Dial Transplant 2005;20 Suppl 9:ix24-ix27. doi: 10.1093/ndt/gfi1121
  650. EAPOS Group. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol 2003;14(11):2948-57. doi: 10.1097/01.asn.0000092146.67909.e2
  651. Davies SJ, Brown EA, Reigel W et al. What is the link between poor ultrafiltration and increased mortality in anuric patients on automated peritoneal dialysis? Analysis of data from EAPOS. Perit Dial Int 2006;26(4):458-65
  652. Woodrow G, Fan SL, Reid C et al. Renal Association Clinical Practice Guideline on peritoneal dialysis in adults and children. BMC Nephrol 2017;18(1):333. doi: 10.1186/s12882-017-0687-2
  653. Brimble KS, Walker M, Margetts PJ et al. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 2006;17(9):2591-8. doi: 10.1681/ASN.2006030194
  654. Krediet RT, Struijk DG. Peritoneal dialysis membrane evaluation in clinical practice. Contrib Nephrol 2012;178:232-237. doi: 10.1159/000337884
  655. La Milia V, Virga G, Amici G et al. Functional assessment of the peritoneal membrane. J Nephrol 2013;26 Suppl 21:120-39. doi: 10.5301/JN.2013.11637
  656. Wen Y, Guo Q, Yang X et al. High glucose concentrations in peritoneal dialysate are associated with all-cause and cardiovascular disease mortality in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 2015;35(1):70-7. doi: 10.3747/pdi.2013.00083
  657. Selby NM, Fialova J, Burton JO, McIntyre CW. The haemodynamic and metabolic effects of hypertonic-glucose and amino-acid-based peritoneal dialysis fluids. Nephrol Dial Transplant 2007;22(3):870-9. doi: 10.1093/ndt/gfl654
  658. Netherlands Ultrafiltration Failure Study Group. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int 2004;24(6):562-70
  659. Fernström A, Hylander B, Moritz A et al. Increase of intra-abdominal fat in patients treated with continuous ambulatory peritoneal dialysis. Perit Dial Int 1998;18(2):166-71
  660. Selby NM, Fonseca S, Hulme L et al. Hypertonic glucose-based peritoneal dialysate is associated with higher blood pressure and adverse haemodynamics as compared with icodextrin. Nephrol Dial Transplant 2005;20(9):1848-53. doi: 10.1093/ndt/gfh946
  661. Marshall J, Jennings P, Scott A et al. Glycemic control in diabetic CAPD patients assessed by continuous glucose monitoring system (CGMS). Kidney Int 2003;64(4):1480-6. doi: 10.1046/j.1523-1755.2003.00209.x
  662. Htay H, Johnson DW, Wiggins KJ et al. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev 2018;10(10):CD007554. doi: 10.1002/14651858.CD007554.pub3
  663. Qi H, Xu C, Yan H, Ma J. Comparison of icodextrin and glucose solutions for long dwell exchange in peritoneal dialysis: a meta-analysis of randomized controlled trials. Perit Dial Int 2011;31(2):179-88. doi: 10.3747/pdi.2009.00264
  664. Goossen K, Becker M, Marshall MR et al. Icodextrin Versus Glucose Solutions for the Once-Daily Long Dwell in Peritoneal Dialysis: An Enriched Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Kidney Dis 2020;75(6):830-846. doi: 10.1053/j.ajkd.2019.10.004
  665. Asola M, Virtanen K, Någren K et al. Amino-acid-based peritoneal dialysis solution improves amino-acid transport into skeletal muscle. Kidney Int Suppl 2008;(108):S131-6. doi: 10.1038/sj.ki.5002614
  666. Plum J, Erren C, Fieseler C et al. An amino acid-based peritoneal dialysis fluid buffered with bicarbonate versus glucose/bicarbonate and glucose/lactate solutions: an intraindividual randomized study. Perit Dial Int 1999;19(5):418-28
  667. Jones M, Hagen T, Boyle CA et al. Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am J Kidney Dis 1998;32(5):761-9. doi: 10.1016/s0272-6386(98)70131-3
  668. Li FK, Chan LY, Woo JC et al. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am J Kidney Dis 2003;42(1):173-83. doi: 10.1016/s0272-6386(03)00421-9
  669. Tjiong HL, van den Berg JW, Wattimena JL et al. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol 2005;16(5):1486-93. doi: 10.1681/ASN.2004050402
  670. Wang J, Zhu N, Yuan W. Effect of neutral pH and low-glucose degradation product-containing peritoneal dialysis solution on residual renal function in peritoneal dialysis patients: a meta-analysis. Nephron 2015;129(3):155-63. doi: 10.1159/000368235
  671. Yohanna S, Alkatheeri AM, Brimble SK et al. Effect of Neutral-pH, Low-Glucose Degradation Product Peritoneal Dialysis Solutions on Residual Renal Function, Urine Volume, and Ultrafiltration: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 2015;10(8):1380-8. doi: 10.2215/CJN.05410514
  672. EBPG Expert Group on Peritoneal Dialysis. European best practice guidelines for peritoneal dialysis. 3 Peritoneal access. Nephrol Dial Transplant 2005;20 Suppl 9:ix8-ix12. doi: 10.1093/ndt/gfi1117
  673. Gadallah MF, Pervez A, el-Shahawy MA et al. Peritoneoscopic versus surgical placement of peritoneal dialysis catheters: a prospective randomized study on outcome. Am J Kidney Dis 1999;33(1):118-22. doi: 10.1016/s0272-6386(99)70266-0
  674. Qiao Q, Zhou L, Hu K et al. Laparoscopic versus traditional peritoneal dialysis catheter insertion: a meta analysis. Ren Fail 2016;38(5):838-48. doi: 10.3109/0886022X.2015.1077313
  675. Lo WK, Ho YW, Li CS et al. Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int 2003;64(2):649-56. doi: 10.1046/j.1523-1755.2003.00098.x
  676. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. J Am Soc Nephrol 1996;7(2):198-207
  677. Jansen MA, Termorshuizen F, Korevaar JC et al. Predictors of survival in anuric peritoneal dialysis patients. Kidney Int 2005;68(3):1199-205. doi: 10.1111/j.1523-1755.2005.00512.x
  678. Szeto CC, Wong TY, Chow KM et al. Impact of dialysis adequacy on the mortality and morbidity of anuric Chinese patients receiving continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 2001;12(2):355-60
  679. Fried L, Hebah N, Finkelstein F, Piraino B. Association of Kt/V and creatinine clearance with outcomes in anuric peritoneal dialysis patients. Am J Kidney Dis 2008;52:1122-1130
  680. Lo WK, Lui SL, Chan TM et al. Minimal and optimal peritoneal Kt/V targets: results of an anuric peritoneal dialysis patient"s survival analysis. Kidney Int 2005;67(5):2032-8. doi: 10.1111/j.1523-1755.2005.00305.x
  681. Kim DJ, Do JH, Huh WS et al. Dissociation between clearances of small and middle molecules in incremental peritoneal dialysis. Perit Dial Int 2001;21:462-466
  682. Piraino B, Bernardini J, Brown E et al. ISPD position statement on reducing the risks of peritoneal dialysis-related infections. Perit Dial Int 2011;31(6):614-30. doi: 10.3747/pdi.2011.00057
  683. Daly CD, Campbell MK, MacLeod AM et al. Do the Y-set and double-bag systems reduce the incidence of CAPD peritonitis? A systematic review of randomized controlled trials. Nephrol Dial Transplant 2001;16(2):341-7. doi: 10.1093/ndt/16.2.341
  684. Daly C, Cody JD, Khan I et al. Double bag or Y-set versus standard transfer systems for continuous ambulatory peritoneal dialysis in end-stage kidney disease. Cochrane Database Syst Rev 2014;2014(8):CD003078. doi: 10.1002/14651858.CD003078.pub2
  685. Strippoli GF, Tong A, Johnson D et al. Catheter-related interventions to prevent peritonitis in peritoneal dialysis: A systematic review of randomized, controlled trials. J Am Soc Nephrol 2004;15:2735-2746
  686. Bernardini J, Piraino B, Holley J et al. A randomized trial of Staphylococcus aureus prophylaxis in peritoneal dialysis patients: mupirocin calcium ointment 2% applied to the exit site versus cyclic oral rifampin. Am J Kidney Dis 1996;27(5):695-700. doi: 10.1016/s0272-6386(96)90105-5
  687. Bernardini J, Bender F, Florio T et al. Randomized, double-blind trial of antibiotic exit site cream for prevention of exit site infection in peritoneal dialysis patients. J Am Soc Nephrol 2005;16(2):539-45. doi: 10.1681/ASN.2004090773
  688. Campbell D, Mudge DW, Craig JC et al. Antimicrobial agents for preventing peritonitis in peritoneal dialysis patients. Cochrane Database Syst Rev 2017;4(4):CD004679. doi: 10.1002/14651858.CD004679.pub3
  689. Grothe C, Taminato M, Belasco A et al. Prophylactic treatment of chronic renal disease in patients undergoing peritoneal dialysis and colonized by Staphylococcus aureus: a systematic review and meta-analysis. BMC Nephrol 2016;17(1):115. doi: 10.1186/s12882-016-0329-0
  690. Tsai CC, Yang PS, Liu CL et al. Comparison of topical mupirocin and gentamicin in the prevention of peritoneal dialysis-related infections: A systematic review and meta-analysis. Am J Surg 2018;215(1):179-185. doi: 10.1016/j.amjsurg.2017.03.005
  691. Xu G, Tu W, Xu C. Mupirocin for preventing exit-site infection and peritonitis in patients undergoing peritoneal dialysis. Nephrol Dial Transplant 2010;25(2):587-92. doi: 10.1093/ndt/gfp411
  692. Piraino B. Staphylococcus aureus infections in dialysis patients: focus on prevention. ASAIO J 2000;46(6):S13-7. doi: 10.1097/00002480-200011000-00031
  693. Li PK, Szeto CC, Piraino B et al. Peritoneal dialysis-related infections recommendations: 2010 update. Perit Dial Int  2010;30(4):393-423. doi: 10.3747/pdi.2010.00049
  694. Li PK, Szeto CC, Piraino B et al. ISPD peritonitis recommendations: 2016 update on prevention and treatment. Perit Dial Int 2016;36:481-508
  695. Barretti P, Doles JV, Pinotti DG, El Dib R. Efficacy of antibiotic therapy for peritoneal dialysis-associated peritonitis: a proportional meta-analysis. BMC Infect Dis 2014;14:445. doi: 10.1186/1471-2334-14-445
  696. Ballinger AE, Palmer SC, Wiggins KJ et al. Treatment for peritoneal dialysis-associated peritonitis. Cochrane Database Syst Rev 2014;(4):CD005284. doi: 10.1002/14651858.CD005284.pub3
  697. Chang TI, Kim HW, Park JT et al. Early catheter removal improves patient survival in peritoneal dialysis patients with fungal peritonitis: results of ninety-four episodes of fungal peritonitis at a single center. Perit Dial Int 2011;31(1):60-6. doi: 10.3747/pdi.2009.00057
  698. Basturk T, Koc Y, Unsal A et al. Fungal peritonitis in peritoneal dialysis: a 10 year retrospective analysis in a single center. Eur Rev Med Pharmacol Sci 2012;16(12):1696-700
  699. Wang AY, Yu AW, Li PK et al. Factors predicting outcome of fungal peritonitis in peritoneal dialysis: analysis of a 9-year experience of fungal peritonitis in a single center. Am J Kidney Dis 2000;36(6):1183-92. doi: 10.1053/ajkd.2000.19833
  700. Miles R, Hawley CM, McDonald SP et al. Predictors and outcomes of fungal peritonitis in peritoneal dialysis patients. Kidney Int 2009;76(6):622-8. doi: 10.1038/ki.2009.202
  701. Nadeau-Fredette AC, Bargman JM. Characteristics and outcomes of fungal peritonitis in a modern North American cohort. Perit Dial Int 2015;35(1):78-84. doi: 10.3747/pdi.2013.00179
  702. ONTARGET Investigators. Population-Attributable Fractions of Modifiable Lifestyle Factors for CKD and Mortality in Individuals With Type 2 Diabetes: A Cohort Study. Am J Kidney Dis 2016;68(1):29-40. doi: 10.1053/j.ajkd.2015.12.019
  703. Smart N, Steele M. Exercise training in haemodialysis patients: a systematic review and meta-analysis. Nephrology (Carlton) 2011;16(7):626-32. doi: 10.1111/j.1440-1797.2011.01471.x
  704. Greenwood SA, Lindup H, Taylor K et al. Evaluation of a pragmatic exercise rehabilitation programme in chronic kidney disease. Nephrol Dial Transplant 2012;27 Suppl 3:iii126-34. doi: 10.1093/ndt/gfs272
  705. Tentori F, Elder SJ, Thumma J et al. Physical exercise among participants in the Dialysis Outcomes and Practice Patterns Study (DOPPS): correlates and associated outcomes. Nephrol Dial Transplant 2010;25(9):3050-62. doi: 10.1093/ndt/gfq138
  706. Kurella Tamura M, Covinsky KE, Chertow GM et al. Functional status of elderly adults before and after initiation of dialysis. N Engl J Med 2009;361(16):1539-47. doi: 10.1056/NEJMoa0904655
  707. McIntyre CW, Selby NM, Sigrist M et al. Patients receiving maintenance dialysis have more severe functionally significant skeletal muscle wasting than patients with dialysis-independent chronic kidney disease. Nephrol Dial Transplant 2006;21(8):2210-6. doi: 10.1093/ndt/gfl064
  708. American College of Sports Medicine; American Heart Association. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007;116(9):1094-105. doi: 10.1161/CIRCULATIONAHA.107.185650
  709. Kosmadakis GC, Bevington A, Smith AC et al. Physical exercise in patients with severe kidney disease. Nephron Clin Pract 2010;115(1):c7-c16. doi: 10.1159/000286344
  710. Intiso D, Di Rienzo F, Russo M et al. Rehabilitation strategy in the elderly. J Nephrol 2012;25 Suppl 19:S90-5. doi: 10.5301/jn.5000138
  711. Bowling CB, Muntner P, Sawyer P et al. Community mobility among older adults with reduced kidney function: a study of life-space. Am J Kidney Dis 2014;63(3):429-36. doi: 10.1053/j.ajkd.2013.07.022
  712. Chin A Paw MJ, van Uffelen JG, Riphagen I, van Mechelen W. The functional effects of physical exercise training in frail older people: a systematic review. Sports Med 2008;38(9):781-93. doi: 10.2165/00007256-200838090-00006
  713. Sugawara J, Miyachi M, Moreau KL et al. Age-related reductions in appendicular skeletal muscle mass: association with habitual aerobic exercise status. Clin Physiol Funct Imaging 2002;22(3):169-72. doi: 10.1046/j.1475-097x.2002.00413.x
  714. Pavasini R, Guralnik J, Brown JC et al. Short Physical Performance Battery and all-cause mortality: systematic review and meta-analysis. BMC Med 2016;14(1):215. doi: 10.1186/s12916-016-0763-7
  715. GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;386(10010):2287‐2323. doi:10.1016/S0140-6736(15)00128-2
  716. Xu H, Suo J, Lian J. Cigarette smoking and risk of albuminuria in patients with type 2 diabetes: a systematic review and meta-analysis of observational studies. Int Urol Nephrol 2018;50(5):911-922. doi: 10.1007/s11255-018-1825-x
  717. Liao D, Ma L, Liu J, Fu P. Cigarette smoking as a risk factor for diabetic nephropathy: A systematic review and meta-analysis of prospective cohort studies. PLoS One 2019;14(2):e0210213. doi: 10.1371/journal.pone.0210213
  718. Kar D, Gillies C, Nath M et al. Association of smoking and cardiometabolic parameters with albuminuria in people with type 2 diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol 2019;56(8):839-850. doi: 10.1007/s00592-019-01293-x
  719. Garofalo C, Borrelli S, Minutolo R et al. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int 2017;91(5):1224-1235. doi: 10.1016/j.kint.2016.12.013
  720. Martens RJH, van der Berg JD, Stehouwer CDA et al. Amount and pattern of physical activity and sedentary behavior are associated with kidney function and kidney damage: The Maastricht Study. PLoS One 2018;13(4):e0195306. doi: 10.1371/journal.pone.0195306
  721. Parsons TJ, Sartini C, Ash S et al. Objectively measured physical activity and kidney function in older men; a cross-sectional population-based study. Age Ageing 2017;46(6):1010-1014. doi: 10.1093/ageing/afx091
  722. Bach KE, Kelly JT, Palmer SC et al. Healthy Dietary Patterns and Incidence of CKD: A Meta-Analysis of Cohort Studies. Clin J Am Soc Nephrol 2019;14(10):1441-1449. doi: 10.2215/CJN.00530119
  723. Mottl AK, Buse JB, Ismail-Beigi F et al. Long-Term Effects of Intensive Glycemic and Blood Pressure Control and Fenofibrate Use on Kidney Outcomes. Clin J Am Soc Nephrol 2018;13(11):1693-1702. doi: 10.2215/CJN.06200518
  724. Ruospo M, Saglimbene VM, Palmer SC et al. Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev 2017;6(6):CD010137. doi: 10.1002/14651858.CD010137.pub2
  725. Persson F, Lindhardt M, Rossing P, Parving HH. Prevention of microalbuminuria using early intervention with renin-angiotensin system inhibitors in patients with type 2 diabetes: A systematic review. J Renin Angiotensin Aldosterone Syst 2016;17(3):1470320316652047. doi: 10.1177/1470320316652047
  726. Patti G, Ricottini E, Nusca A et al. Short-term, high-dose Atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN [atorvastatin for reduction of myocardial damage during angioplasty--contrast-induced nephropathy] trial. Am J Cardiol 2011;108(1):1-7. doi: 10.1016/j.amjcard.2011.03.001
  727. Han Y, Zhu G, Han L et al. Impact of Rosuvastatin on contrast-induced acute kidney injury in patients at high risk for nephropathy undergoing elective angiography. Am J Cardiol 2015;115(7):867-71. doi: 10.1016/j.amjcard.2015.01.007
  728. Fu N, Liang M, Yang S. High Loading Dose of Atorvastatin for the Prevention of Serum Creatinine and Cystatin C-Based Contrast-Induced Nephropathy Following Percutaneous Coronary Intervention. Angiology 2018;69(8):692-699. doi: 10.1177/0003319717750903
  729. Xinwei J, Xianghua F, Jing Z et al. Comparison of usefulness of simvastatin 20 mg versus 80 mg in preventing contrast-induced nephropathy in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Am J Cardiol 2009;104(4):519-24. doi: 10.1016/j.amjcard.2009.04.014
  730. Brar SS, Aharonian V, Mansukhani P et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial.
  731. Lancet 2014;383(9931):1814-23. doi: 10.1016/S0140-6736(14)60689-9Black C, Sharma P, Scotland G et al. Early referral strategies for management of people with markers of renal disease: a systematic review of the evidence of clinical effectiveness, cost-effectiveness and economic analysis. Health Technol Assess 2010;14(21):1-184. doi: 10.3310/hta14210
  732. Chan MR, Dall AT, Fletcher KE et al. Outcomes in patients with chronic kidney disease referred late to nephrologists: a meta-analysis. Am J Med 2007;120(12):1063-70. doi: 10.1016/j.amjmed.2007.04.024
  733. Smart NA, Titus TT. Outcomes of early versus late nephrology referral in chronic kidney disease: a systematic review. Am J Med 2011;124(11):1073-80.e2. doi: 10.1016/j.amjmed.2011.04.026

Для продолжения работы требуется Registration
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
Список литературы
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу