Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы

  1. И. В. Фомин, “Артериальная гипертония в Российской Федерации – последние 10 лет. Что дальше?,” Сердце, vol. 6, no. 3, pp. 1–6, 2007.
  2. М. Ю. Ситникова et al., “Результаты Российского госпитального регистра хронической сердечной недостаточности в 3 субъектах Российской Федерации,” Кардиология, vol. 10_2015, pp. 5–13, Oct. 2015, doi: 10.18565/cardio.2015.10.5-13.
  3. Д. С. Поляков et al., “Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПОХА -ХСН,” Кардиология, vol. 61, no. 4, pp. 4–14, May 2021, doi: 10.18087/cardio.2021.4.n1628.
  4. С. Н. Терещенко et al., “Распространенность и диагностика дилатационной кардиомиопатии по данным Российского регистра.,” Кардиология, no. 7, pp. 67–72, 2012.
  5. J. Cleland, “The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe Part 1: patient characteristics and diagnosis,” Eur. Heart J., vol. 24, no. 5, pp. 442–463, Mar. 2003, doi: 10.1016/S0195-668X(02)00823-0.
  6. P. A. Heidenreich et al., “Forecasting the Impact of Heart Failure in the United States,” Circ. Hear. Fail., vol. 6, no. 3, pp. 606–619, May 2013, doi: 10.1161/HHF.0b013e318291329a.
  7. B. A. Steinberg et al., “Trends in Patients Hospitalized With Heart Failure and Preserved Left Ventricular Ejection Fraction,” Circulation, vol. 126, no. 1, pp. 65–75, Jul. 2012, doi: 10.1161/CIRCULATIONAHA.111.080770.
  8. C. S. P. Lam, A. A. Voors, P. Piotr, J. J. V McMurray, and S. D. Solomon, “Time to rename the middle child of heart failure: heart failure with mildly reduced ejection fraction,” Eur. Heart J., vol. 41, no. 25, pp. 2353–2355, Jul. 2020, doi: 10.1093/eurheartj/ehaa158.
  9. L. H. Lund et al., “Heart failure with mid‐range ejection fraction in CHARM: characteristics, outcomes and effect of candesartan across the entire ejection fraction spectrum,” Eur. J. Heart Fail., vol. 20, no. 8, pp. 1230–1239, Aug. 2018, doi: 10.1002/ejhf.1149.
  10. S. D. Solomon et al., “Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction,” N. Engl. J. Med., vol. 381, no. 17, pp. 1609–1620, Oct. 2019, doi: 10.1056/NEJMoa1908655.
  11. C. S. P. Lam and S. D. Solomon, “The middle child in heart failure: heart failure with mid‐range ejection fraction (40–50%),” Eur. J. Heart Fail., vol. 16, no. 10, pp. 1049–1055, Oct. 2014, doi: 10.1002/ejhf.159.
  12. Ф. Т. Агеев and А. Г. Овчинников, “Диастолическая сердечная недостаточность: 20 лет спустя. Актуальные вопросы патогенеза, диагностики и лечения сердечной недостаточности с сохраненной ФВ ЛЖ,” Кардиология, vol. 63, no. 3, pp. 3–12, Mar. 2023, doi: 10.18087/cardio.2023.3.n2376.
  13. С. Н. Терещенко et al., “Диагностика и лечение хронической и острой сердечной недостаточности.,” Кардиологический вестник, no. 2, pp. 3–33, 2016.
  14. J. J. V. McMurray, “Systolic Heart Failure,” N. Engl. J. Med., vol. 362, no. 3, pp. 228–238, Jan. 2010, doi: 10.1056/NEJMcp0909392.
  15. J. Chen, S.-L. T. Normand, Y. Wang, and H. M. Krumholz, “National and Regional Trends in Heart Failure Hospitalization and Mortality Rates for Medicare Beneficiaries, 1998-2008,” JAMA, vol. 306, no. 15, p. 1669, Oct. 2011, doi: 10.1001/jama.2011.1474.
  16. S. M. Dunlay et al., “Hospitalizations After Heart Failure Diagnosis,” J. Am. Coll. Cardiol., vol. 54, no. 18, pp. 1695–1702, Oct. 2009, doi: 10.1016/j.jacc.2009.08.019.
  17. A. S. Koh et al., “A comprehensive population‐based characterization of heart failure with mid‐range ejection fraction,” Eur. J. Heart Fail., vol. 19, no. 12, pp. 1624–1634, Dec. 2017, doi: 10.1002/ejhf.945.
  18. O. Vedin et al., “Significance of Ischemic Heart Disease in Patients With Heart Failure and Preserved, Midrange, and Reduced Ejection Fraction,” Circ. Hear. Fail., vol. 10, no. 6, Jun. 2017, doi: 10.1161/CIRCHEARTFAILURE.117.003875.
  19. J. R. Kapoor et al., “Precipitating Clinical Factors, Heart Failure Characterization, and Outcomes in Patients Hospitalized With Heart Failure With Reduced, Borderline, and Preserved Ejection Fraction,” JACC Hear. Fail., vol. 4, no. 6, pp. 464–472, Jun. 2016, doi: 10.1016/j.jchf.2016.02.017.
  20. A. Dhingra et al., “Epidemiology of Heart Failure with Preserved Ejection Fraction,” Curr. Heart Fail. Rep., vol. 11, no. 4, pp. 354–365, Dec. 2014, doi: 10.1007/s11897-014-0223-7.
  21. M. Liu, F. Fang, and C.-M. Yu, “Noncardiac Comorbidities in Heart Failure With Preserved Ejection Fraction – A Commonly Ignored Fact –,” Circ. J., vol. 79, no. 5, pp. 954–959, 2015, doi: 10.1253/circj.CJ-15-0056.
  22. S. M. Dunlay, V. L. Roger, and M. M. Redfield, “Epidemiology of heart failure with preserved ejection fraction,” Nat. Rev. Cardiol., vol. 14, no. 10, pp. 591–602, Oct. 2017, doi: 10.1038/nrcardio.2017.65.
  23. V. Xanthakis et al., “Prevalence, Neurohormonal Correlates, and Prognosis of Heart Failure Stages in the Community,” JACC Hear. Fail., vol. 4, no. 10, pp. 808–815, Oct. 2016, doi: 10.1016/j.jchf.2016.05.001.
  24. K. Hogg, K. Swedberg, and J. McMurray, “Heart failure with preserved left ventricular systolic function,” J. Am. Coll. Cardiol., vol. 43, no. 3, pp. 317–327, Feb. 2004, doi: 10.1016/j.jacc.2003.07.046.
  25. M. Senni et al., “In-hospital and 1-year outcomes of acute heart failure patients according to presentation (de novo vs. worsening) and ejection fraction. Results from IN-HF Outcome Registry,” Int. J. Cardiol., vol. 173, no. 2, pp. 163–169, May 2014, doi: 10.1016/j.ijcard.2014.02.018.
  26. M. Cowie, “Hospitalization of patients with heart failure. A population-based study,” Eur. Heart J., vol. 23, no. 11, pp. 877–885, Jun. 2002, doi: 10.1053/euhj.2001.2973.
  27. F. A. McAlister et al., “Insights into the contemporary epidemiology and outpatient management of congestive heart failure,” Am. Heart J., vol. 138, no. 1, pp. 87–94, Jul. 1999, doi: 10.1016/S0002-8703(99)70251-6.
  28. W. J. Paulus and C. Tschöpe, “A Novel Paradigm for Heart Failure With Preserved Ejection Fraction,” J. Am. Coll. Cardiol., vol. 62, no. 4, pp. 263–271, Jul. 2013, doi: 10.1016/j.jacc.2013.02.092.
  29. Redfield MM, “Heart Failure with Preserved Ejection Fraction,” N. Engl. J. Med., vol. 376, no. 9, pp. 896–897, Mar. 2017, doi: 10.1056/NEJMc1615918.
  30. W. J. Paulus and E. Dal Canto, “Distinct Myocardial Targets for Diabetes Therapy in Heart Failure With Preserved or Reduced Ejection Fraction,” JACC Hear. Fail., vol. 6, no. 1, pp. 1–7, Jan. 2018, doi: 10.1016/j.jchf.2017.07.012.
  31. G. J. Wehner et al., “Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie?,” Eur. Heart J., vol. 41, no. 12, pp. 1249–1257, Mar. 2020, doi: 10.1093/eurheartj/ehz550.
  32. S. Stewart et al., “Ejection fraction and mortality: a nationwide register‐based cohort study of 499 153 women and men,” Eur. J. Heart Fail., vol. 23, no. 3, pp. 406–416, Mar. 2021, doi: 10.1002/ejhf.2047.
  33. S. J. Pocock et al., “Predictors of mortality and morbidity in patients with chronic heart failure,” Eur. Heart J., vol. 27, no. 1, pp. 65–75, Jan. 2006, doi: 10.1093/eurheartj/ehi555.
  34. M. Komajda et al., “Factors Associated With Outcome in Heart Failure With Preserved Ejection Fraction,” Circ. Hear. Fail., vol. 4, no. 1, pp. 27–35, Jan. 2011, doi: 10.1161/CIRCHEARTFAILURE.109.932996.
  35. E. S. Ketchum and W. C. Levy, “Establishing Prognosis in Heart Failure: A Multimarker Approach,” Prog. Cardiovasc. Dis., vol. 54, no. 2, pp. 86–96, Sep. 2011, doi: 10.1016/j.pcad.2011.03.003.
  36. K. K. Ho, K. M. Anderson, W. B. Kannel, W. Grossman, and D. Levy, “Survival after the onset of congestive heart failure in Framingham Heart Study subjects.,” Circulation, vol. 88, no. 1, pp. 107–115, Jul. 1993, doi: 10.1161/01.CIR.88.1.107.
  37. И. В. Фомин, “ХРОНИЧЕСКАЯ СЕРДЕЧНАЯ НЕДОСТАТОЧНОСТЬ В РОССИЙСКОЙ ФЕДЕРАЦИИ: ЧТО СЕГОДНЯ МЫ ЗНАЕМ И ЧТО ДОЛЖНЫ ДЕЛАТЬ.,” Российский кардиологический журнал., no. 8, pp. 7–13, Jan. 2016, doi: 10.15829/1560-4071-2016-8-7-13.
  38. В. Ю. Мареев, М. О. Даниелян, and Ю. Н. Беленков, “Влияние терапии на прогноз и выживаемость больных с хронической сердечной недостаточностью,” Русский медицинский журнал, no. 2, pp. 88–94, 1999.
  39. D. S. Lee et al., “Relation of Disease Pathogenesis and Risk Factors to Heart Failure With Preserved or Reduced Ejection Fraction,” Circulation, vol. 119, no. 24, pp. 3070–3077, Jun. 2009, doi: 10.1161/CIRCULATIONAHA.108.815944.
  40. H. Wedel et al., “Predictors of fatal and non-fatal outcomes in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide,” Eur. J. Heart Fail., vol. 11, no. 3, pp. 281–291, Mar. 2009, doi: 10.1093/eurjhf/hfn046.
  41. Е. В. Ощепкова, Н. В. Лазарев, Д. Ф. Сатлыкова, and С. Н. Терещенко, “Первые результаты российского регистра хронической сердечной недостаточности,” Кардиология, no. 5, pp. 22–28, 2015, doi: 10.18565/cardio.2015.5.22-28.
  42. B. Bozkurt et al., “Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition o,” Eur. J. Heart Fail., vol. 23, no. 3, pp. 352–380, Mar. 2021, doi: 10.1002/ejhf.2115.
  43. J. E. Wilcox, J. C. Fang, K. B. Margulies, and D. L. Mann, “Heart Failure With Recovered Left Ventricular Ejection Fraction,” J. Am. Coll. Cardiol., vol. 76, no. 6, pp. 719–734, Aug. 2020, doi: 10.1016/j.jacc.2020.05.075.
  44. Е. В. Шляхто, “Классификация сердечной недостаточности: фокус на профилактику,” Российский кардиологический журнал, vol. 28, no. 1, p. 5351, Feb. 2023, doi: 10.15829/1560-4071-2023-5351.
  45. А. С. Галявич, С. В. Недогода, Г. П. Арутюнов, and Ю. Н. Беленков, “О классификации хронической сердечной недостаточности.,” Российский кардиологический журнал, vol. 28, no. 9, pp. 13–18, 2023.
  46. О. Б. Иртюга et al., “Результаты опроса Российского кардиологического общества «Хроническая сердечная недостаточность. Нерешенные проблемы»,” Российский кардиологический журнал, vol. 29, no. 6, p. 5944, May 2024, doi: 10.15829/1560-4071-2024-5944.
  47. A. Davie, “Assessing diagnosis in heart failure: which features are any use?,” QJM, vol. 90, no. 5, pp. 335–339, May 1997, doi: 10.1093/qjmed/90.5.335.
  48. J. Mant et al., “Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care,” Health Technol. Assess. (Rockv)., vol. 13, no. 32, Jul. 2009, doi: 10.3310/hta13320.
  49. I. Oudejans et al., “Clinical evaluation of geriatric outpatients with suspected heart failure: value of symptoms, signs, and additional tests,” Eur. J. Heart Fail., vol. 13, no. 5, pp. 518–527, May 2011, doi: 10.1093/eurjhf/hfr021.
  50. C. Fonseca, “Diagnosis of heart failure in primary care,” Heart Fail. Rev., vol. 11, no. 2, pp. 95–107, Jun. 2006, doi: 10.1007/s10741-006-9481-0.
  51. J. C. Kelder et al., “The Diagnostic Value of Physical Examination and Additional Testing in Primary Care Patients With Suspected Heart Failure,” Circulation, vol. 124, no. 25, pp. 2865–2873, Dec. 2011, doi: 10.1161/CIRCULATIONAHA.111.019216.
  52. O. Weingartner, T. Hasan, and M. Bohm, “Pathophysiologie und Differentialdiagnose der Dyspnoe,” Herz, vol. 29, no. 6, pp. 595–601, Sep. 2004, doi: 10.1007/s00059-004-2594-0.
  53. “Fries R.Differential diagnosis of leg edema. MMW Fortschr Med. 2004 Apr 15; 146(16):39-4.”.
  54. J. T. Thibodeau et al., “Characterization of a Novel Symptom of Advanced Heart Failure: Bendopnea,” JACC Hear. Fail., vol. 2, no. 1, pp. 24–31, Feb. 2014, doi: 10.1016/j.jchf.2013.07.009.
  55. E. Roberts et al., “The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting,” BMJ, vol. 350, no. mar04 22, pp. h910–h910, Mar. 2015, doi: 10.1136/bmj.h910.
  56. A. Zaphiriou et al., “The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: Results of the UK natriuretic peptide study,” Eur. J. Heart Fail., vol. 7, no. 4, pp. 537–541, Jun. 2005, doi: 10.1016/j.ejheart.2005.01.022.
  57. A. Fuat et al., “The diagnostic accuracy and utility of a B-type natriuretic peptide test in a community population of patients with suspected heart failure.,” Br. J. Gen. Pract., vol. 56, no. 526, pp. 327–33, May 2006, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16638247
  58. K. Yamamoto, J. C. Burnett, E. A. Bermudez, M. Jougasaki, K. R. Bailey, and M. M. Redfield, “Clinical criteria and biochemical markers for the detection of systolic dysfunction,” J. Card. Fail., vol. 6, no. 3, pp. 194–200, Sep. 2000, doi: 10.1054/jcaf.2000.9676.
  59. M. R. Cowie et al., “Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care,” Lancet, vol. 350, no. 9088, pp. 1349–1353, Nov. 1997, doi: 10.1016/S0140-6736(97)06031-5.
  60. P. Krishnaswamy et al., “Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction,” Am. J. Med., vol. 111, no. 4, pp. 274–279, Sep. 2001, doi: 10.1016/S0002-9343(01)00841-5.
  61. J. C. Kelder, M. J. Cramer, W. M. Verweij, D. E. Grobbee, and A. W. Hoes, “Clinical Utility of Three B-Type Natriuretic Peptide Assays for the Initial Diagnostic Assessment of New Slow-Onset Heart Failure,” J. Card. Fail., vol. 17, no. 9, pp. 729–734, Sep. 2011, doi: 10.1016/j.cardfail.2011.04.013.
  62. V. Cheng et al., “A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study,” J. Am. Coll. Cardiol., vol. 37, no. 2, pp. 386–391, Feb. 2001, doi: 10.1016/S0735-1097(00)01157-8.
  63. P. A. McCullough et al., “B-type natriuretic peptide and renal function in the diagnosis of heart failure: An analysis from the breathing not properly multinational study,” Am. J. Kidney Dis., vol. 41, no. 3, pp. 571–579, Mar. 2003, doi: 10.1053/ajkd.2003.50118.
  64. E. A. Jankowska et al., “Iron status in patients with chronic heart failure,” Eur. Heart J., vol. 34, no. 11, pp. 827–834, Mar. 2013, doi: 10.1093/eurheartj/ehs377.
  65. T. McDonagh et al., “Screening, diagnosis and treatment of iron deficiency in chronic heart failure: putting the 2016 European Society of Cardiology heart failure guidelines into clinical practice,” Eur. J. Heart Fail., vol. 20, no. 12, pp. 1664–1672, Dec. 2018, doi: 10.1002/ejhf.1305.
  66. S. D. Anker et al., “Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron‐deficient heart failure patients: an individual patient data meta‐analysis,” Eur. J. Heart Fail., vol. 20, no. 1, pp. 125–133, Jan. 2018, doi: 10.1002/ejhf.823.
  67. E. A. Jankowska, S. von Haehling, S. D. Anker, I. C. Macdougall, and P. Ponikowski, “Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives,” Eur. Heart J., vol. 34, no. 11, pp. 816–829, Mar. 2013, doi: 10.1093/eurheartj/ehs224.
  68. K. Damman, M. A. E. Valente, A. A. Voors, C. M. O’Connor, D. J. van Veldhuisen, and H. L. Hillege, “Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis,” Eur. Heart J., vol. 35, no. 7, pp. 455–469, Feb. 2014, doi: 10.1093/eurheartj/eht386.
  69. G. Filippatos, D. Farmakis, and J. Parissis, “Renal dysfunction and heart failure: things are seldom what they seem,” Eur. Heart J., vol. 35, no. 7, pp. 416–418, Feb. 2014, doi: 10.1093/eurheartj/eht515.
  70. A. S. Desai, “Hyperkalemia in patients with heart failure: Incidence, prevalence, and management,” Curr. Heart Fail. Rep., vol. 6, no. 4, pp. 272–280, Dec. 2009, doi: 10.1007/s11897-009-0037-1.
  71. M. Ewid et al., “AST/ALT ratio predicts the functional severity of chronic heart failure with reduced left ventricular ejection fraction,” BMC Res. Notes, vol. 13, no. 1, p. 178, Dec. 2020, doi: 10.1186/s13104-020-05031-3.
  72. M. Rauchhaus et al., “The relationship between cholesterol and survival in patients with chronic heart failure,” J. Am. Coll. Cardiol., vol. 42, no. 11, pp. 1933–1940, Dec. 2003, doi: 10.1016/j.jacc.2003.07.016.
  73. J. L. Bonilla-Palomas et al., “Hypoalbuminemia in Acute Heart Failure Patients: Causes and Its Impact on Hospital and Long-Term Mortality,” J. Card. Fail., vol. 20, no. 5, pp. 350–358, May 2014, doi: 10.1016/j.cardfail.2014.01.016.
  74. D. Aguilar, B. Bozkurt, K. Ramasubbu, and A. Deswal, “Relationship of Hemoglobin A1C and Mortality in Heart Failure Patients With Diabetes,” J. Am. Coll. Cardiol., vol. 54, no. 5, pp. 422–428, Jul. 2009, doi: 10.1016/j.jacc.2009.04.049.
  75. C. Passino et al., “Prognostic Value of Combined Measurement of Brain Natriuretic Peptide and Triiodothyronine in Heart Failure,” J. Card. Fail., vol. 15, no. 1, pp. 35–40, Feb. 2009, doi: 10.1016/j.cardfail.2008.08.008.
  76. K. Matsushita et al., “Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data.,” lancet. Diabetes Endocrinol., vol. 3, no. 7, pp. 514–25, Jul. 2015, doi: 10.1016/S2213-8587(15)00040-6.
  77. K. Khunti, I. Squire, K. R. Abrams, and A. J. Sutton, “Accuracy of a 12‐lead electrocardiogram in screening patients with suspected heart failure for open access echocardiography: a systematic review and meta‐analysis,” Eur. J. Heart Fail., vol. 6, no. 5, pp. 571–576, Aug. 2004, doi: 10.1016/j.ejheart.2004.03.013.
  78. A. P. Davie et al., “Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction,” BMJ, vol. 312, no. 7025, pp. 222–222, Jan. 1996, doi: 10.1136/bmj.312.7025.222.
  79. J. T. Thomas et al., “Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure,” Am. J. Med., vol. 112, no. 6, pp. 437–445, Apr. 2002, doi: 10.1016/S0002-9343(02)01048-3.
  80. L. Spinarová, “[Changes in the ECG in chronic heart failure and after transplantation].,” Vnitr. Lek., vol. 49, no. 9, pp. 730–3, Sep. 2003, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/14584424
  81. S. Baldasseroni et al., “Intraventricular conduction defects in patients with congestive heart failure: left but not right bundle branch block is an independent predictor of prognosis. A report from the Italian Network on Congestive Heart Failure (IN-CHF database).,” Ital. Heart J., vol. 4, no. 9, pp. 607–13, Sep. 2003, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/14635378
  82. C. Tribouilloy, D. Rusinaru, H. Mahjoub, T. Goissen, F. Lévy, and M. Peltier, “Impact of echocardiography in patients hospitalized for heart failure: A prospective observational study,” Arch. Cardiovasc. Dis., vol. 101, no. 7–8, pp. 465–473, Jul. 2008, doi: 10.1016/j.acvd.2008.06.012.
  83. J. N. Kirkpatrick, M. A. Vannan, J. Narula, and R. M. Lang, “Echocardiography in Heart Failure,” J. Am. Coll. Cardiol., vol. 50, no. 5, pp. 381–396, Jul. 2007, doi: 10.1016/j.jacc.2007.03.048.
  84. M. Senni et al., “Use of echocardiography in the management of congestive heart failure in the community,” J. Am. Coll. Cardiol., vol. 33, no. 1, pp. 164–170, Jan. 1999, doi: 10.1016/S0735-1097(98)00523-3.
  85. S. A. Agha et al., “Echocardiography and Risk Prediction in Advanced Heart Failure: Incremental Value Over Clinical Markers,” J. Card. Fail., vol. 15, no. 7, pp. 586–592, Sep. 2009, doi: 10.1016/j.cardfail.2009.03.002.
  86. J. B. Chambers et al., “Appropriateness criteria for the use of cardiovascular imaging in heart valve disease in adults: a European Association of Cardiovascular Imaging report of literature review and current practice,” Eur. Hear. J. - Cardiovasc. Imaging, vol. 18, no. 5, pp. 489–498, May 2017, doi: 10.1093/ehjci/jew309.
  87. J. C. Plana et al., “Expert Consensus for Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging,” J. Am. Soc. Echocardiogr., vol. 27, no. 9, pp. 911–939, Sep. 2014, doi: 10.1016/j.echo.2014.07.012.
  88. K. K. Poppe et al., “Ethnic-Specific Normative Reference Values for Echocardiographic LA and LV Size, LV Mass, and Systolic Function,” JACC Cardiovasc. Imaging, vol. 8, no. 6, pp. 656–665, Jun. 2015, doi: 10.1016/j.jcmg.2015.02.014.
  89. D. Muraru et al., “Comprehensive Analysis of Left Ventricular Geometry and Function by Three-Dimensional Echocardiography in Healthy Adults,” J. Am. Soc. Echocardiogr., vol. 26, no. 6, pp. 618–628, Jun. 2013, doi: 10.1016/j.echo.2013.03.014.
  90. L. Caballero et al., “Echocardiographic reference ranges for normal cardiac Doppler data: results from the NORRE Study,” Eur. Hear. J. - Cardiovasc. Imaging, Apr. 2015, doi: 10.1093/ehjci/jev083.
  91. J. L. Dorosz, D. C. Lezotte, D. A. Weitzenkamp, L. A. Allen, and E. E. Salcedo, “Performance of 3-Dimensional Echocardiography in Measuring Left Ventricular Volumes and Ejection Fraction,” J. Am. Coll. Cardiol., vol. 59, no. 20, pp. 1799–1808, May 2012, doi: 10.1016/j.jacc.2012.01.037.
  92. I. Goldenberg et al., “Predictors of Response to Cardiac Resynchronization Therapy in the Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy (MADIT-CRT),” Circulation, vol. 124, no. 14, pp. 1527–1536, Oct. 2011, doi: 10.1161/CIRCULATIONAHA.110.014324.
  93. P. Thavendiranathan et al., “Automated Quantification of Mitral Inflow and Aortic Outflow Stroke Volumes by Three-Dimensional Real-Time Volume Color-Flow Doppler Transthoracic Echocardiography: Comparison with Pulsed-Wave Doppler and Cardiac Magnetic Resonance Imaging,” J. Am. Soc. Echocardiogr., vol. 25, no. 1, pp. 56–65, Jan. 2012, doi: 10.1016/j.echo.2011.10.004.
  94. A. Alherbish et al., “Impact of contrast echocardiography on accurate discrimination of specific degree of left ventricular systolic dysfunction and comparison with cardiac magnetic resonance imaging,” Echocardiography, vol. 35, no. 11, pp. 1746–1754, Nov. 2018, doi: 10.1111/echo.14152.
  95. R. Hoffmann et al., “Assessment of systolic left ventricular function: a multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography,” Eur. Heart J., vol. 26, no. 6, pp. 607–616, Mar. 2005, doi: 10.1093/eurheartj/ehi083.
  96. R. Hoffmann et al., “Analysis of Left Ventricular Volumes and Function: A Multicenter Comparison of Cardiac Magnetic Resonance Imaging, Cine Ventriculography, and Unenhanced and Contrast-Enhanced Two-Dimensional and Three-Dimensional Echocardiography,” J. Am. Soc. Echocardiogr., vol. 27, no. 3, pp. 292–301, Mar. 2014, doi: 10.1016/j.echo.2013.12.005.
  97. P. Thavendiranathan, F. Poulin, K.-D. Lim, J. C. Plana, A. Woo, and T. H. Marwick, “Use of Myocardial Strain Imaging by Echocardiography for the Early Detection of Cardiotoxicity in Patients During and After Cancer Chemotherapy,” J. Am. Coll. Cardiol., vol. 63, no. 25, pp. 2751–2768, Jul. 2014, doi: 10.1016/j.jacc.2014.01.073.
  98. A. Mignot et al., “Global Longitudinal Strain as a Major Predictor of Cardiac Events in Patients with Depressed Left Ventricular Function: A Multicenter Study,” J. Am. Soc. Echocardiogr., vol. 23, no. 10, pp. 1019–1024, Oct. 2010, doi: 10.1016/j.echo.2010.07.019.
  99. T. Yingchoncharoen, S. Agarwal, Z. B. Popović, and T. H. Marwick, “Normal Ranges of Left Ventricular Strain: A Meta-Analysis,” J. Am. Soc. Echocardiogr., vol. 26, no. 2, pp. 185–191, Feb. 2013, doi: 10.1016/j.echo.2012.10.008.
  100. T. Stanton, R. Leano, and T. H. Marwick, “Prediction of All-Cause Mortality From Global Longitudinal Speckle Strain,” Circ. Cardiovasc. Imaging, vol. 2, no. 5, pp. 356–364, Sep. 2009, doi: 10.1161/CIRCIMAGING.109.862334.
  101. M. Bansal, G.-Y. Cho, J. Chan, R. Leano, B. A. Haluska, and T. H. Marwick, “Feasibility and Accuracy of Different Techniques of Two-Dimensional Speckle Based Strain and Validation With Harmonic Phase Magnetic Resonance Imaging,” J. Am. Soc. Echocardiogr., vol. 21, no. 12, pp. 1318–1325, Dec. 2008, doi: 10.1016/j.echo.2008.09.021.
  102. E. Potter and T. H. Marwick, “Assessment of Left Ventricular Function by Echocardiography,” JACC Cardiovasc. Imaging, vol. 11, no. 2, pp. 260–274, Feb. 2018, doi: 10.1016/j.jcmg.2017.11.017.
  103. D. A. Morris et al., “Left ventricular longitudinal systolic function analysed by 2D speckle-tracking echocardiography in heart failure with preserved ejection fraction: a meta-analysis,” Open Hear., vol. 4, no. 2, p. e000630, Sep. 2017, doi: 10.1136/openhrt-2017-000630.
  104. A. M. Shah et al., “Prognostic Importance of Impaired Systolic Function in Heart Failure With Preserved Ejection Fraction and the Impact of Spironolactone,” Circulation, vol. 132, no. 5, pp. 402–414, Aug. 2015, doi: 10.1161/CIRCULATIONAHA.115.015884.
  105. R. M. Lang et al., “Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging,” J. Am. Soc. Echocardiogr., vol. 16, no. 1, pp. 1-39.e14, Jan. 2015, doi: 10.1093/ehjci/jev014.
  106. S. F. Nagueh et al., “Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging,” J. Am. Soc. Echocardiogr., vol. 29, no. 4, pp. 277–314, Apr. 2016, doi: 10.1016/j.echo.2016.01.011.
  107. B. Pieske et al., “How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC),” Eur. Heart J., vol. 40, no. 40, pp. 3297–3317, Oct. 2019, doi: 10.1093/eurheartj/ehz641.
  108. Y. N. V. Reddy, R. E. Carter, M. Obokata, M. M. Redfield, and B. A. Borlaug, “A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure With Preserved Ejection Fraction,” Circulation, vol. 138, no. 9, pp. 861–870, Aug. 2018, doi: 10.1161/CIRCULATIONAHA.118.034646.
  109. P. Lancellotti et al., “Echo-Doppler estimation of left ventricular filling pressure: results of the multicentre EACVI Euro-Filling study,” Eur. Hear. J. - Cardiovasc. Imaging, vol. 18, no. 9, pp. 961–968, Sep. 2017, doi: 10.1093/ehjci/jex067.
  110. B. Pieske et al., “How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC),” Eur. J. Heart Fail., vol. 22, no. 3, pp. 391–412, Mar. 2020, doi: 10.1002/ejhf.1741.
  111. N. Sepehrvand et al., “External Validation of the H 2 F-PEF Model in Diagnosing Patients With Heart Failure and Preserved Ejection Fraction,” Circulation, vol. 139, no. 20, pp. 2377–2379, May 2019, doi: 10.1161/CIRCULATIONAHA.118.038594.
  112. A. Barandiarán Aizpurua et al., “Validation of the HFA‐PEFF score for the diagnosis of heart failure with preserved ejection fraction,” Eur. J. Heart Fail., vol. 22, no. 3, pp. 413–421, Mar. 2020, doi: 10.1002/ejhf.1614.
  113. N. M. Hawkins, M. C. Petrie, P. S. Jhund, G. W. Chalmers, F. G. Dunn, and J. J. V. McMurray, “Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology,” Eur. J. Heart Fail., vol. 11, no. 2, pp. 130–139, Feb. 2009, doi: 10.1093/eurjhf/hfn013.
  114. E. M. Jolicœur et al., “Importance of Angina in Patients With Coronary Disease, Heart Failure, and Left Ventricular Systolic Dysfunction,” J. Am. Coll. Cardiol., vol. 66, no. 19, pp. 2092–2100, Nov. 2015, doi: 10.1016/j.jacc.2015.08.882.
  115. P. A. L. Tonino et al., “Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention,” N. Engl. J. Med., vol. 360, no. 3, pp. 213–224, Jan. 2009, doi: 10.1056/NEJMoa0807611.
  116. G. Toth et al., “Fractional Flow Reserve–Guided Versus Angiography-Guided Coronary Artery Bypass Graft Surgery,” Circulation, vol. 128, no. 13, pp. 1405–1411, Sep. 2013, doi: 10.1161/CIRCULATIONAHA.113.002740.
  117. E. J. Velazquez et al., “Coronary-Artery Bypass Surgery in Patients with Left Ventricular Dysfunction,” N. Engl. J. Med., vol. 364, no. 17, pp. 1607–1616, Apr. 2011, doi: 10.1056/NEJMoa1100356.
  118. G. A. Beller and R. C. Heede, “SPECT Imaging for Detecting Coronary Artery Disease and Determining Prognosis by Noninvasive Assessment of Myocardial Perfusion and Myocardial Viability,” J. Cardiovasc. Transl. Res., vol. 4, no. 4, pp. 416–424, Aug. 2011, doi: 10.1007/s12265-011-9290-2.
  119. R. S. B. Beanlands et al., “F-18-Fluorodeoxyglucose Positron Emission Tomography Imaging-Assisted Management of Patients With Severe Left Ventricular Dysfunction and Suspected Coronary Disease,” J. Am. Coll. Cardiol., vol. 50, no. 20, pp. 2002–2012, Nov. 2007, doi: 10.1016/j.jacc.2007.09.006.
  120. E. González-López et al., “Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction,” Eur. Heart J., vol. 36, no. 38, pp. 2585–2594, Oct. 2015, doi: 10.1093/eurheartj/ehv338.
  121. S. Longhi et al., “Identification of TTR-Related Subclinical Amyloidosis With 99mTc-DPD Scintigraphy,” JACC Cardiovasc. Imaging, vol. 7, no. 5, pp. 531–532, May 2014, doi: 10.1016/j.jcmg.2014.03.004.
  122. S. Bokhari, A. Castaño, T. Pozniakoff, S. Deslisle, F. Latif, and M. S. Maurer, “99m Tc-Pyrophosphate Scintigraphy for Differentiating Light-Chain Cardiac Amyloidosis From the Transthyretin-Related Familial and Senile Cardiac Amyloidoses,” Circ. Cardiovasc. Imaging, vol. 6, no. 2, pp. 195–201, Mar. 2013, doi: 10.1161/CIRCIMAGING.112.000132.
  123. W. A. AlJaroudi, M. Y. Desai, W. H. W. Tang, D. Phelan, M. D. Cerqueira, and W. A. Jaber, “Role of imaging in the diagnosis and management of patients with cardiac amyloidosis: State of the art review and focus on emerging nuclear techniques,” J. Nucl. Cardiol., vol. 21, no. 2, pp. 271–283, Apr. 2014, doi: 10.1007/s12350-013-9800-5.
  124. M. Saric et al., “Guidelines for the Use of Echocardiography in the Evaluation of a Cardiac Source of Embolism,” J. Am. Soc. Echocardiogr., vol. 29, no. 1, pp. 1–42, Jan. 2016, doi: 10.1016/j.echo.2015.09.011.
  125. A. Khemka and S. G. Sawada, “Dobutamine echocardiography for assessment of viability in the current era,” Curr. Opin. Cardiol., vol. 34, no. 5, pp. 484–489, Sep. 2019, doi: 10.1097/HCO.0000000000000658.
  126. L. F. Ling et al., “Identification of Therapeutic Benefit from Revascularization in Patients With Left Ventricular Systolic Dysfunction,” Circ. Cardiovasc. Imaging, vol. 6, no. 3, pp. 363–372, May 2013, doi: 10.1161/CIRCIMAGING.112.000138.
  127. R. O. Bonow et al., “Myocardial Viability and Survival in Ischemic Left Ventricular Dysfunction,” N. Engl. J. Med., vol. 364, no. 17, pp. 1617–1625, Apr. 2011, doi: 10.1056/NEJMoa1100358.
  128. C. R. deFilippi et al., “Usefulness of dobutamine echocardiography in distinguishing severe from nonsevere valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients,” Am. J. Cardiol., vol. 75, no. 2, pp. 191–194, Jan. 1995, doi: 10.1016/S0002-9149(00)80078-8.
  129. C. Tribouilloy et al., “Outcome After Aortic Valve Replacement for Low-Flow/Low-Gradient Aortic Stenosis Without Contractile Reserve on Dobutamine Stress Echocardiography,” J. Am. Coll. Cardiol., vol. 53, no. 20, pp. 1865–1873, May 2009, doi: 10.1016/j.jacc.2009.02.026.
  130. M.-A. Clavel et al., “Predictors of Outcomes in Low-Flow, Low-Gradient Aortic Stenosis,” Circulation, vol. 118, no. 14_suppl_1, Sep. 2008, doi: 10.1161/CIRCULATIONAHA.107.757427.
  131. F. Garnier et al., “Usefulness and limitations of contractile reserve evaluation in patients with low‐flow, low‐gradient aortic stenosis eligible for cardiac resynchronization therapy,” Eur. J. Heart Fail., vol. 16, no. 6, pp. 648–654, Jun. 2014, doi: 10.1002/ejhf.78.
  132. А. Г. Овчинников et al., “Диастолическая трансторакальная стресс-эхокардиография с дозированной физической нагрузкой в диагностике сердечной недостаточности с сохраненной фракцией выброса: показания, методология, интерпретация результатов Согласованное мнение экспертов, выработанн,” Кардиология, vol. 60, no. 12, pp. 48–63, Jan. 2021, doi: 10.18087/cardio.2020.12.n1219.
  133. T. Erdei, O. A. Smiseth, P. Marino, and A. G. Fraser, “A systematic review of diastolic stress tests in heart failure with preserved ejection fraction, with proposals from the <scp>EU‐FP7 MEDIA</scp> study group,” Eur. J. Heart Fail., vol. 16, no. 12, pp. 1345–1361, Dec. 2014, doi: 10.1002/ejhf.184.
  134. E. Donal et al., “Value of exercise echocardiography in heart failure with preserved ejection fraction: a substudy from the KaRen study,” Eur. Hear. J. – Cardiovasc. Imaging, p. jev144, Jun. 2015, doi: 10.1093/ehjci/jev144.
  135. S. F. Nagueh, S. M. Chang, F. Nabi, D. J. Shah, and J. D. Estep, “Cardiac Imaging in Patients With Heart Failure and Preserved Ejection Fraction,” Circ. Cardiovasc. Imaging, vol. 10, no. 9, Sep. 2017, doi: 10.1161/CIRCIMAGING.117.006547.
  136. G. R. ten Kate et al., “Computed tomography coronary imaging as a gatekeeper for invasive coronary angiography in patients with newly diagnosed heart failure of unknown aetiology,” Eur. J. Heart Fail., vol. 15, no. 9, pp. 1028–1034, Sep. 2013, doi: 10.1093/eurjhf/hft090.
  137. P. A. Sousa et al., “Role of cardiac multidetector computed tomography in the exclusion of ischemic etiology in heart failure patients,” Rev. Port. Cardiol., vol. 33, no. 10, pp. 629–636, Oct. 2014, doi: 10.1016/j.repc.2014.02.028.
  138. B. J. W. Chow et al., “Computed tomography coronary angiography for patients with heart failure (CTA-HF): a randomized controlled trial (IMAGE-HF 1C),” Eur. Hear. J. - Cardiovasc. Imaging, vol. 22, no. 9, pp. 1083–1090, Aug. 2021, doi: 10.1093/ehjci/jeaa109.
  139. F. Cademartiri et al., “Coronary CT angiography: a guide to examination, interpretation, and clinical indications,” Expert Rev. Cardiovasc. Ther., vol. 19, no. 5, pp. 413–425, May 2021, doi: 10.1080/14779072.2021.1915132.
  140. N. Carrabba et al., “Integration of CTA in the Diagnostic Workup of New Onset Chest Pain in Clinical Practice,” Biomed Res. Int., vol. 2019, pp. 1–8, Jul. 2019, doi: 10.1155/2019/2647079.
  141. C. M. Kramer, J. Barkhausen, C. Bucciarelli-Ducci, S. D. Flamm, R. J. Kim, and E. Nagel, “Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update,” J. Cardiovasc. Magn. Reson., vol. 22, no. 1, p. 17, Dec. 2020, doi: 10.1186/s12968-020-00607-1.
  142. L. M. Iles et al., “Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis,” Eur. Hear. J. - Cardiovasc. Imaging, vol. 16, no. 1, pp. 14–22, Jan. 2015, doi: 10.1093/ehjci/jeu182.
  143. A. Gulati et al., “Association of Fibrosis With Mortality and Sudden Cardiac Death in Patients With Nonischemic Dilated Cardiomyopathy,” JAMA, vol. 309, no. 9, p. 896, Mar. 2013, doi: 10.1001/jama.2013.1363.
  144. V. O. Puntmann et al., “T1-Mapping and Outcome in Nonischemic Cardiomyopathy,” JACC Cardiovasc. Imaging, vol. 9, no. 1, pp. 40–50, Jan. 2016, doi: 10.1016/j.jcmg.2015.12.001.
  145. E. K. Weidman, K. E. Dean, W. Rivera, M. L. Loftus, T. W. Stokes, and R. J. Min, “MRI safety: a report of current practice and advancements in patient preparation and screening,” Clin. Imaging, vol. 39, no. 6, pp. 935–937, Nov. 2015, doi: 10.1016/j.clinimag.2015.09.002.
  146. L. L. Tsai, A. K. Grant, K. J. Mortele, J. W. Kung, and M. P. Smith, “A Practical Guide to MR Imaging Safety: What Radiologists Need to Know,” RadioGraphics, vol. 35, no. 6, pp. 1722–1737, Oct. 2015, doi: 10.1148/rg.2015150108.
  147. U. Sechtem, P. Pflugfelder, and C. B. Higgins, “Quantification of cardiac function by conventional and cine magnetic resonance imaging,” Cardiovasc. Intervent. Radiol., vol. 10, no. 6, pp. 365–373, Nov. 1987, doi: 10.1007/BF02577347.
  148. P. M. Pattynama, H. J. Lamb, E. A. van der Velde, E. E. van der Wall, and A. de Roos, “Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis.,” Radiology, vol. 187, no. 1, pp. 261–268, Apr. 1993, doi: 10.1148/radiology.187.1.8451425.
  149. N. Reichek, “Magnetic resonance imaging for assessment of myocardial function.,” Magn. Reson. Q., vol. 7, no. 4, pp. 255–74, Oct. 1991, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/1790112
  150. L. Hudsmith†, S. Petersen†, J. Francis, M. Robson, and S. Neubauer, “Normal Human Left and Right Ventricular and Left Atrial Dimensions Using Steady State Free Precession Magnetic Resonance Imaging,” J. Cardiovasc. Magn. Reson., vol. 7, no. 5, pp. 775–782, Oct. 2005, doi: 10.1080/10976640500295516.
  151. A. Maceira, S. Prasad, M. Khan, and D. Pennell, “Normalized Left Ventricular Systolic and Diastolic Function by Steady State Free Precession Cardiovascular Magnetic Resonance,” J. Cardiovasc. Magn. Reson., vol. 8, no. 3, pp. 417–426, Jul. 2006, doi: 10.1080/10976640600572889.
  152. C. Contaldi et al., “Cardiovascular Magnetic Resonance in Right Heart and Pulmonary Circulation Disorders,” Heart Fail. Clin., vol. 17, no. 1, pp. 57–75, Jan. 2021, doi: 10.1016/j.hfc.2020.08.006.
  153. G. Pons-Lladó, F. Carreras, X. Borrás, J. Palmer, J. Llauger, and A. Bayés de Luna, “Comparison of Morphologic Assessment of Hypertrophic Cardiomyopathy by Magnetic Resonance Versus Echocardiographic Imaging,” Am. J. Cardiol., vol. 79, no. 12, pp. 1651–1656, Jun. 1997, doi: 10.1016/S0002-9149(97)00216-6.
  154. J. C. C. Moon, “Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography,” Heart, vol. 90, no. 6, pp. 645–649, Jun. 2004, doi: 10.1136/hrt.2003.014969.
  155. R. Fattori, E. Biagini, M. Lorenzini, K. Buttazzi, L. Lovato, and C. Rapezzi, “Significance of Magnetic Resonance Imaging in Apical Hypertrophic Cardiomyopathy,” Am. J. Cardiol., vol. 105, no. 11, pp. 1592–1596, Jun. 2010, doi: 10.1016/j.amjcard.2010.01.020.
  156. G. Ashrith, D. Gupta, J. Hanmer, and R. M. Weiss, “Cardiovascular magnetic resonance characterization of left ventricular non-compaction provides independent prognostic information in patients with incident heart failure or suspected cardiomyopathy,” J. Cardiovasc. Magn. Reson., vol. 16, no. 1, p. 64, Dec. 2014, doi: 10.1186/s12968-014-0064-2.
  157. Y. Choi, S. M. Kim, S.-C. Lee, S.-A. Chang, S. Y. Jang, and Y. H. Choe, “Quantification of left ventricular trabeculae using cardiovascular magnetic resonance for the diagnosis of left ventricular non-compaction: evaluation of trabecular volume and refined semi-quantitative criteria,” J. Cardiovasc. Magn. Reson., vol. 18, no. 1, p. 24, Dec. 2016, doi: 10.1186/s12968-016-0245-2.
  158. S. I. Mavrogeni et al., “The pivotal role of cardiovascular imaging in the identification and risk stratification of non-compaction cardiomyopathy patients,” Heart Fail. Rev., vol. 25, no. 6, pp. 1007–1015, Nov. 2020, doi: 10.1007/s10741-019-09898-8.
  159. A. R. Patel and C. M. Kramer, “Role of Cardiac Magnetic Resonance in the Diagnosis and Prognosis of Nonischemic Cardiomyopathy,” JACC Cardiovasc. Imaging, vol. 10, no. 10, pp. 1180–1193, Oct. 2017, doi: 10.1016/j.jcmg.2017.08.005.
  160. M. G. Trivieri et al., “Challenges in Cardiac and Pulmonary Sarcoidosis,” J. Am. Coll. Cardiol., vol. 76, no. 16, pp. 1878–1901, Oct. 2020, doi: 10.1016/j.jacc.2020.08.042.
  161. W. G. Hundley et al., “Society for Cardiovascular Magnetic Resonance (SCMR) guidelines for reporting cardiovascular magnetic resonance examinations,” J. Cardiovasc. Magn. Reson., vol. 24, no. 1, p. 29, Dec. 2022, doi: 10.1186/s12968-021-00827-z.
  162. C. Contaldi et al., “Role of Cardiac Magnetic Resonance Imaging in Heart Failure,” Heart Fail. Clin., vol. 17, no. 2, pp. 207–221, Apr. 2021, doi: 10.1016/j.hfc.2021.01.001.
  163. J. A. Gonzalez and C. M. Kramer, “Role of Imaging Techniques for Diagnosis, Prognosis and Management of Heart Failure Patients: Cardiac Magnetic Resonance,” Curr. Heart Fail. Rep., vol. 12, no. 4, pp. 276–283, Aug. 2015, doi: 10.1007/s11897-015-0261-9.
  164. A. Yoshida et al., “Direct comparison of the diagnostic capability of cardiac magnetic resonance and endomyocardial biopsy in patients with heart failure,” Eur. J. Heart Fail., vol. 15, no. 2, pp. 166–175, Feb. 2013, doi: 10.1093/eurjhf/hfs206.
  165. S. A. Abbasi et al., “Impact of cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients,” J. Cardiovasc. Magn. Reson., vol. 15, no. 1, p. 89, Dec. 2013, doi: 10.1186/1532-429X-15-89.
  166. P. Lurz et al., “Diagnostic Performance of CMR Imaging Compared With EMB in Patients With Suspected Myocarditis,” JACC Cardiovasc. Imaging, vol. 5, no. 5, pp. 513–524, May 2012, doi: 10.1016/j.jcmg.2011.11.022.
  167. I. Sobol et al., “123 Assessment of Unexplained Cardiomyopathy (CMP) — Clinical Utility of Delayed-Enhancement Cardiac Magnetic Resonance (DE-CMR) Compared to Endomyocardial Biopsy,” J. Hear. Lung Transplant., vol. 31, no. 4, p. S50, Apr. 2012, doi: 10.1016/j.healun.2012.01.127.
  168. T. D. Karamitsos and C. A. Papanastasiou, “Cardiac Magnetic Resonance T1 Mapping for Cardiac Amyloidosis: The Best Way Forward.,” JACC Cardiovasc Imaging, vol. 8, pp. S1936-878X, 2019.
  169. “Vogelsberg H., Mahrholdt H., Deluigi C.C. et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J. Am. Coll. Cardiol. 2008;51:1022–1030”.
  170. B. Da Nam, S. M. Kim, H. N. Jung, Y. Kim, and Y. H. Choe, “Comparison of quantitative imaging parameters using cardiovascular magnetic resonance between cardiac amyloidosis and hypertrophic cardiomyopathy: inversion time scout versus T1 mapping,” Int. J. Cardiovasc. Imaging, vol. 34, no. 11, pp. 1769–1777, Nov. 2018, doi: 10.1007/s10554-018-1385-2.
  171. M. Fontana et al., “Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis,” Circulation, vol. 132, no. 16, pp. 1570–1579, Oct. 2015, doi: 10.1161/CIRCULATIONAHA.115.016567.
  172. G. R. Karur et al., “Use of Myocardial T1 Mapping at 3.0 T to Differentiate Anderson-Fabry Disease from Hypertrophic Cardiomyopathy,” Radiology, vol. 288, no. 2, pp. 398–406, Aug. 2018, doi: 10.1148/radiol.2018172613.
  173. D. M. Sado et al., “Identification and Assessment of Anderson-Fabry Disease by Cardiovascular Magnetic Resonance Noncontrast Myocardial T1 Mapping,” Circ. Cardiovasc. Imaging, vol. 6, no. 3, pp. 392–398, May 2013, doi: 10.1161/CIRCIMAGING.112.000070.
  174. J. Vega-Adauy, O. O. Tok, A. Celik, A. Barutcu, and M. A. Vannan, “Comprehensive Assessment of Heart Failure with Preserved Ejection Fraction Using Cardiac MRI,” Heart Fail. Clin., vol. 17, no. 3, pp. 447–462, Jul. 2021, doi: 10.1016/j.hfc.2021.03.006.
  175. “Fontana M, Pica S, Reant P, et al. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation. 2015; 132:1570–9. [PubMed: 26362631]”.
  176. “Karur GR, Robison S, Iwanochko RM, et al. Use of myocardial T1 mapping at 3.0 T to differentiate Anderson-Fabry disease from hypertrophic cardiomyopathy. Radiology. 2018;288(2):398–406”.
  177. “Sado DM, White SK, Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circulation Cardiovascular imaging. 2013; 6:392–8. [PubMed: 23564562]”.
  178. “Jianxiong Zhang, Yunxiao Li, Qiufen Xu, et al. Cardiac Magnetic Resonance Imaging for Diagnosis of Cardiac Sarcoidosis: A Meta-Analysis. Canadian Respiratory Journal Volume 2018, 10.”.
  179. R. Bing and M. R. Dweck, “Myocardial fibrosis: why image, how to image and clinical implications,” Heart, vol. 105, no. 23, pp. 1832–1840, Dec. 2019, doi: 10.1136/heartjnl-2019-315560.
  180. A. A. Robinson, K. Chow, and M. Salerno, “Myocardial T1 and ECV Measurement,” JACC Cardiovasc. Imaging, vol. 12, no. 11, pp. 2332–2344, Nov. 2019, doi: 10.1016/j.jcmg.2019.06.031.
  181. J. C. Moon et al., “Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement,” J. Cardiovasc. Magn. Reson., vol. 15, no. 1, p. 92, Dec. 2013, doi: 10.1186/1532-429X-15-92.
  182. R. J. Kim et al., “Relationship of MRI Delayed Contrast Enhancement to Irreversible Injury, Infarct Age, and Contractile Function,” Circulation, vol. 100, no. 19, pp. 1992–2002, Nov. 1999, doi: 10.1161/01.CIR.100.19.1992.
  183. Z. Mrsic, N. Mousavi, E. Hulten, and M. S. Bittencourt, “The Prognostic Value of Late Gadolinium Enhancement in Nonischemic Heart Disease,” Magn. Reson. Imaging Clin. N. Am., vol. 27, no. 3, pp. 545–561, Aug. 2019, doi: 10.1016/j.mric.2019.04.010.
  184. Y. S. Hamirani, A. Wong, C. M. Kramer, and M. Salerno, “Effect of Microvascular Obstruction and Intramyocardial Hemorrhage by CMR on LV Remodeling and Outcomes After Myocardial Infarction,” JACC Cardiovasc. Imaging, vol. 7, no. 9, pp. 940–952, Sep. 2014, doi: 10.1016/j.jcmg.2014.06.012.
  185. A. Daoulah et al., “Cardiac resynchronization therapy in patients with postero-lateral scar by cardiac magnetic resonance: A systematic review and meta-analysis,” J. Electrocardiol., vol. 48, no. 5, pp. 783–790, Sep. 2015, doi: 10.1016/j.jelectrocard.2015.06.012.
  186. J. Acosta et al., “Scar Characterization to Predict Life-Threatening Arrhythmic Events and Sudden Cardiac Death in Patients With Cardiac Resynchronization Therapy,” JACC Cardiovasc. Imaging, vol. 11, no. 4, pp. 561–572, Apr. 2018, doi: 10.1016/j.jcmg.2017.04.021.
  187. U. C. Nguyên et al., “A novel approach for left ventricular lead placement in cardiac resynchronization therapy: Intraprocedural integration of coronary venous electroanatomic mapping with delayed enhancement cardiac magnetic resonance imaging,” Hear. Rhythm, vol. 14, no. 1, pp. 110–119, Jan. 2017, doi: 10.1016/j.hrthm.2016.09.015.
  188. R. Kočková et al., “Cardiac resynchronization therapy guided by cardiac magnetic resonance imaging: A prospective, single-centre randomized study (CMR-CRT),” Int. J. Cardiol., vol. 270, pp. 325–330, Nov. 2018, doi: 10.1016/j.ijcard.2018.06.009.
  189. F. Demirel et al., “Myocardial scar characteristics based on cardiac magnetic resonance imaging is associated with ventricular tachyarrhythmia in patients with ischemic cardiomyopathy,” Int. J. Cardiol., vol. 177, no. 2, pp. 392–399, Dec. 2014, doi: 10.1016/j.ijcard.2014.08.132.
  190. P. A. Scott, J. A. Rosengarten, N. P. Curzen, and J. M. Morgan, “Late gadolinium enhancement cardiac magnetic resonance imaging for the prediction of ventricular tachyarrhythmic events: a meta‐analysis,” Eur. J. Heart Fail., vol. 15, no. 9, pp. 1019–1027, Sep. 2013, doi: 10.1093/eurjhf/hft053.
  191. S. D. Bartolome and F. Torres, “Severe pulmonary arterial hypertension: stratification of medical therapies, mechanical support, and lung transplantation,” Heart Fail. Rev., vol. 21, no. 3, pp. 347–356, May 2016, doi: 10.1007/s10741-016-9562-7.
  192. H. Kaemmerer et al., “Pulmonary hypertension in adults with congenital heart disease: Updated recommendations from the Cologne Consensus Conference 2018,” Int. J. Cardiol., vol. 272, pp. 79–88, Dec. 2018, doi: 10.1016/j.ijcard.2018.08.078.
  193. P. B. Adamson et al., “Wireless Pulmonary Artery Pressure Monitoring Guides Management to Reduce Decompensation in Heart Failure With Preserved Ejection Fraction,” Circ. Hear. Fail., vol. 7, no. 6, pp. 935–944, Nov. 2014, doi: 10.1161/CIRCHEARTFAILURE.113.001229.
  194. A. Prasad et al., “Characterization of Static and Dynamic Left Ventricular Diastolic Function in Patients With Heart Failure With a Preserved Ejection Fraction,” Circ. Hear. Fail., vol. 3, no. 5, pp. 617–626, Sep. 2010, doi: 10.1161/CIRCHEARTFAILURE.109.867044.
  195. J.-L. Vachiéry et al., “Pulmonary hypertension due to left heart disease,” Eur. Respir. J., vol. 53, no. 1, p. 1801897, Jan. 2019, doi: 10.1183/13993003.01897-2018.
  196. G. F. Fletcher et al., “Exercise Standards for Testing and Training,” Circulation, vol. 128, no. 8, pp. 873–934, Aug. 2013, doi: 10.1161/CIR.0b013e31829b5b44.
  197. U. Corrà et al., “Cardiopulmonary exercise testing in systolic heart failure in 2014: the evolving prognostic role,” Eur. J. Heart Fail., vol. 16, no. 9, pp. 929–941, Sep. 2014, doi: 10.1002/ejhf.156.
  198. M. F. Piepoli et al., “Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation,” Eur. J. Heart Fail., vol. 13, no. 4, pp. 347–357, Apr. 2011, doi: 10.1093/eurjhf/hfr017.
  199. U. Corrà et al., “Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the Committee on Exercise Physiology and Training of the Heart Failure Association of the European Society of Cardiology,” Eur. J. Heart Fail., vol. 20, no. 1, pp. 3–15, Jan. 2018, doi: 10.1002/ejhf.979.
  200. L. T. Cooper et al., “The Role of Endomyocardial Biopsy in the Management of Cardiovascular Disease,” J. Am. Coll. Cardiol., vol. 116, no. 19, pp. 2216–2233, Nov. 2007, doi: 10.1016/j.jacc.2007.09.008.
  201. L. T. Cooper, G. J. Berry, and R. Shabetai, “Idiopathic Giant-Cell Myocarditis — Natural History and Treatment,” N. Engl. J. Med., vol. 336, no. 26, pp. 1860–1866, Jun. 1997, doi: 10.1056/NEJM199706263362603.
  202. “Effect of Enalapril on Survival in Patients with Reduced Left Ventricular Ejection Fractions and Congestive Heart Failure,” N. Engl. J. Med., vol. 325, no. 5, pp. 293–302, Aug. 1991, doi: 10.1056/NEJM199108013250501.
  203. E. J. Velazquez et al., “Angiotensin–Neprilysin Inhibition in Acute Decompensated Heart Failure,” N. Engl. J. Med., vol. 380, no. 6, pp. 539–548, Feb. 2019, doi: 10.1056/NEJMoa1812851.
  204. M. A. Pfeffer et al., “Valsartan, Captopril, or Both in Myocardial Infarction Complicated by Heart Failure, Left Ventricular Dysfunction, or Both,” N. Engl. J. Med., vol. 349, no. 20, pp. 1893–1906, Nov. 2003, doi: 10.1056/NEJMoa032292.
  205. A. P. Maggioni, I. Anand, S. O. Gottlieb, R. Latini, G. Tognoni, and J. N. Cohn, “Effects of valsartan on morbidity and mortality in patients with heart failure not receiving angiotensin-converting enzyme inhibitors,” J. Am. Coll. Cardiol., vol. 40, no. 8, pp. 1414–1421, Oct. 2002, doi: 10.1016/S0735-1097(02)02304-5.
  206. K. Dimopoulos, T. V. Salukhe, A. J. S. Coats, J. Mayet, M. Piepoli, and D. P. Francis, “Meta-analyses of mortality and morbidity effects of an angiotensin receptor blocker in patients with chronic heart failure already receiving an ACE inhibitor (alone or with a β-blocker),” Int. J. Cardiol., vol. 93, no. 2–3, pp. 105–111, Feb. 2004, doi: 10.1016/j.ijcard.2003.10.001.
  207. J. J. V. McMurray et al., “Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction,” N. Engl. J. Med., vol. 381, no. 21, pp. 1995–2008, Nov. 2019, doi: 10.1056/NEJMoa1911303.
  208. M. Packer et al., “Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure,” N. Engl. J. Med., vol. 383, no. 15, pp. 1413–1424, Oct. 2020, doi: 10.1056/NEJMoa2022190.
  209. F. Zannad et al., “SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials,” Lancet, vol. 396, no. 10254, pp. 819–829, Sep. 2020, doi: 10.1016/S0140-6736(20)31824-9.
  210. M. Packer et al., “The Effect of Carvedilol on Morbidity and Mortality in Patients with Chronic Heart Failure,” N. Engl. J. Med., vol. 334, no. 21, pp. 1349–1355, May 1996, doi: 10.1056/NEJM199605233342101.
  211. W. A. Gattis, C. M. O’Connor, J. D. Leimberger, G. M. Felker, K. F. Adams, and M. Gheorghiade, “Clinical outcomes in patients on beta-blocker therapy admitted with worsening chronic heart failure,” Am. J. Cardiol., vol. 91, no. 2, pp. 169–174, Jan. 2003, doi: 10.1016/S0002-9149(02)03104-1.
  212. H. J. Dargie and P. Lechat, “The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial.,” Lancet (London, England), vol. 353, no. 9146, pp. 9–13, Jan. 1999, doi: 10.1016/S0140-6736(98)11181-9.
  213. B. Pitt et al., “The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure,” N. Engl. J. Med., vol. 341, no. 10, pp. 709–717, Sep. 1999, doi: 10.1056/NEJM199909023411001.
  214. J. J. V. McMurray et al., “Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure,” N. Engl. J. Med., vol. 371, no. 11, pp. 993–1004, Sep. 2014, doi: 10.1056/NEJMoa1409077.
  215. “Effects of Enalapril on Mortality in Severe Congestive Heart Failure,” N. Engl. J. Med., vol. 316, no. 23, pp. 1429–1435, Jun. 1987, doi: 10.1056/NEJM198706043162301.
  216. R. Garg and S. Yusuf, “Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials.,” JAMA, vol. 273, no. 18, pp. 1450–6, May 1995, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/7654275
  217. M. Packer et al., “Comparative Effects of Low and High Doses of the Angiotensin-Converting Enzyme Inhibitor, Lisinopril, on Morbidity and Mortality in Chronic Heart Failure,” Circulation, vol. 100, no. 23, pp. 2312–2318, Dec. 1999, doi: 10.1161/01.CIR.100.23.2312.
  218. M. A. Pfeffer et al., “Effect of Captopril on Mortality and Morbidity in Patients with Left Ventricular Dysfunction after Myocardial Infarction,” N. Engl. J. Med., vol. 327, no. 10, pp. 669–677, Sep. 1992, doi: 10.1056/NEJM199209033271001.
  219. “Effect of Enalapril on Mortality and the Development of Heart Failure in Asymptomatic Patients with Reduced Left Ventricular Ejection Fractions,” N. Engl. J. Med., vol. 327, no. 10, pp. 685–691, Sep. 1992, doi: 10.1056/NEJM199209033271003.
  220. L. Køber et al., “A Clinical Trial of the Angiotensin-Converting–Enzyme Inhibitor Trandolapril in Patients with Left Ventricular Dysfunction after Myocardial Infarction,” N. Engl. J. Med., vol. 333, no. 25, pp. 1670–1676, Dec. 1995, doi: 10.1056/NEJM199512213332503.
  221. “Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators.,” Lancet (London, England), vol. 342, no. 8875, pp. 821–8, Oct. 1993, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/8104270
  222. Å. Hjalmarson et al., “Effects of Controlled-Release Metoprolol on Total Mortality, Hospitalizations, and Well-being in Patients With Heart Failure,” JAMA, vol. 283, no. 10, p. 1295, Mar. 2000, doi: 10.1001/jama.283.10.1295.
  223. H. J. Dargie, “Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: The CAPRICORN randomised trial,” Lancet, vol. 357, no. 9266, pp. 1385–1390, May 2001, doi: 10.1016/S0140-6736(00)04560-8.
  224. G. Jondeau et al., “B-CONVINCED: Beta-blocker CONtinuation Vs. INterruption in patients with Congestive heart failure hospitalizED for a decompensation episode,” Eur. Heart J., vol. 30, no. 18, pp. 2186–2192, Sep. 2009, doi: 10.1093/eurheartj/ehp323.
  225. F. Zannad et al., “Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms,” N. Engl. J. Med., vol. 364, no. 1, pp. 11–21, Jan. 2011, doi: 10.1056/NEJMoa1009492.
  226. D. N. Juurlink et al., “Rates of Hyperkalemia after Publication of the Randomized Aldactone Evaluation Study,” N. Engl. J. Med., vol. 351, no. 6, pp. 543–551, Aug. 2004, doi: 10.1056/NEJMoa040135.
  227. R. Faris, M. Flather, H. Purcell, M. Henein, P. Poole-Wilson, and A. Coats, “Current evidence supporting the role of diuretics in heart failure: a meta analysis of randomised controlled trials,” Int. J. Cardiol., vol. 82, no. 2, pp. 149–158, Feb. 2002, doi: 10.1016/S0167-5273(01)00600-3.
  228. T. P. J. Dormans, J. J. M. van Meyel, P. G. G. Gerlag, Y. Tan, F. G. M. Russel, and P. Smits, “Diuretic efficacy of high dose furosemide in severe heart failure: Bolus injection versus continuous infusion,” J. Am. Coll. Cardiol., vol. 28, no. 2, pp. 376–382, Aug. 1996, doi: 10.1016/0735-1097(96)00161-1.
  229. D. L. Vargo, W. G. Kramer, P. K. Black, W. B. Smith, T. Serpas, and D. C. Brater, “Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure*,” Clin. Pharmacol. Ther., vol. 57, no. 6, pp. 601–609, Jun. 1995, doi: 10.1016/0009-9236(95)90222-8.
  230. J. H. Patterson, K. F. Adams, M. M. Applefeld, C. N. Corder, and B. R. Masse, “Oral torsemide in patients with chronic congestive heart failure: effects on body weight, edema, and electrolyte excretion. Torsemide Investigators Group.,” Pharmacotherapy, vol. 14, no. 5, pp. 514–21, 1994, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/7997385
  231. J. Cosín and J. Díez, “Torasemide in chronic heart failure: results of the TORIC study,” Eur. J. Heart Fail., vol. 4, no. 4, pp. 507–513, Aug. 2002, doi: 10.1016/S1388-9842(02)00122-8.
  232. M. Yamato et al., “Effects of Torasemide on Left Ventricular Function and Neurohumoral Factors in Patients With Chronic Heart Failure,” Circ. J., vol. 67, no. 5, pp. 384–390, 2003, doi: 10.1253/circj.67.384.
  233. A. Ducharme et al., “Prevention of atrial fibrillation in patients with symptomatic chronic heart failure by candesartan in the Candesartan in Heart failure: assessment of Reduction in Mortality and morbidity (CHARM) program.,” Am. Heart J., vol. 151, no. 5, pp. 985–91, May 2006, doi: 10.1016/j.ahj.2005.06.036.
  234. C. B. Granger et al., “Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial,” Lancet, vol. 362, no. 9386, pp. 772–776, Sep. 2003, doi: 10.1016/S0140-6736(03)14284-5.
  235. T. G. Cohn J.N., “A randomized trial of the angiotensinreceptor blocker valsartan in chronic heart failure.,” N Engl J Med, vol. 345, no. 23, pp. 1667–1675, 2001, doi: 10.1056/NEJMoa010713.
  236. K. Swedberg et al., “Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study,” Lancet, vol. 376, no. 9744, pp. 875–885, Sep. 2010, doi: 10.1016/S0140-6736(10)61198-1.
  237. M. Böhm et al., “Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study,” Clin. Res. Cardiol., vol. 102, no. 1, pp. 11–22, Jan. 2013, doi: 10.1007/s00392-012-0467-8.
  238. K. Swedberg et al., “Effects on Outcomes of Heart Rate Reduction by Ivabradine in Patients With Congestive Heart Failure: Is There an Influence of Beta-Blocker Dose?,” J. Am. Coll. Cardiol., vol. 59, no. 22, pp. 1938–1945, May 2012, doi: 10.1016/j.jacc.2012.01.020.
  239. K. Fox, I. Ford, P. G. Steg, M. Tendera, and R. Ferrari, “Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial,” Lancet, vol. 372, no. 9641, pp. 807–816, Sep. 2008, doi: 10.1016/S0140-6736(08)61170-8.
  240. R. E. HOBBS, “Digoxin’s effect on mortality and hospitalization in heart failure: implications of the DIG study,” Cleve. Clin. J. Med., vol. 64, no. 5, pp. 234–327, May 1997, doi: 10.3949/ccjm.64.5.234.
  241. M. Gheorghiade et al., “Lack of evidence of increased mortality among patients with atrial fibrillation taking digoxin: findings from post hoc propensity-matched analysis of the AFFIRM trial,” Eur. Heart J., vol. 34, no. 20, pp. 1489–1497, May 2013, doi: 10.1093/eurheartj/eht120.
  242. E. Jorge et al., “Digoxin in advanced heart failure patients: A question of rhythm,” Rev. Port. Cardiol., vol. 32, no. 4, pp. 303–310, Apr. 2013, doi: 10.1016/j.repc.2012.11.007.
  243. M. Gheorghiade et al., “Effect of oral digoxin in high‐risk heart failure patients: a pre‐specified subgroup analysis of the DIG trial,” Eur. J. Heart Fail., vol. 15, no. 5, pp. 551–559, May 2013, doi: 10.1093/eurjhf/hft010.
  244. S. S. Rathore, J. P. Curtis, Y. Wang, M. R. Bristow, and H. M. Krumholz, “Association of Serum Digoxin Concentration and Outcomes in Patients With Heart Failure,” JAMA, vol. 289, no. 7, p. 871, Feb. 2003, doi: 10.1001/jama.289.7.871.
  245. K. F. Adams et al., “Relationship of Serum Digoxin Concentration to Mortality and Morbidity in Women in the Digitalis Investigation Group Trial,” J. Am. Coll. Cardiol., vol. 46, no. 3, pp. 497–504, Aug. 2005, doi: 10.1016/j.jacc.2005.02.091.
  246. A. Malik et al., “Digoxin Discontinuation and Outcomes in Patients With Heart Failure With Reduced Ejection Fraction,” J. Am. Coll. Cardiol., vol. 74, no. 5, pp. 617–627, Aug. 2019, doi: 10.1016/j.jacc.2019.05.064.
  247. P. P. M. et al Homma S., Thompson J.L. et al., “Warfarin and aspirin in patients with heart failure and sinus rhythm,” N Engl J Med, vol. 366, no. 20, pp. 1859–1869, May 2012, doi: 10.1056/NEJMoa1202299.
  248. F. Zannad et al., “Rivaroxaban in Patients with Heart Failure, Sinus Rhythm, and Coronary Disease,” N Engl J Med., vol. 379, no. 14, pp. 1332-1342., Oct. 2018, doi: 10.1056/NEJMoa1808848.
  249. E. M. Sulaica, T. E. Macaulay, R. R. Helbing, M. Abo-Aly, A. Abdel-Latif, and M. A. Wanat, “A comparison of anticoagulation, antiplatelet, and placebo treatment for patients with heart failure reduced ejection fraction in sinus rhythm: a systematic review and meta-analysis,” Heart Fail. Rev., vol. 25, no. 2, pp. 207–216, Mar. 2020, doi: 10.1007/s10741-019-09818-w.
  250. M. Gheorghiade et al., “Effect of Aliskiren on Postdischarge Mortality and Heart Failure Readmissions Among Patients Hospitalized for Heart Failure,” JAMA, vol. 309, no. 11, p. 1125, Mar. 2013, doi: 10.1001/jama.2013.1954.
  251. H.-H. Parving et al., “Cardiorenal End Points in a Trial of Aliskiren for Type 2 Diabetes,” N. Engl. J. Med., vol. 367, no. 23, pp. 2204–2213, Dec. 2012, doi: 10.1056/NEJMoa1208799.
  252. M. Komajda et al., “Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial,” Eur. Heart J., vol. 31, no. 7, pp. 824–831, Apr. 2010, doi: 10.1093/eurheartj/ehp604.
  253. A. V. Hernandez, A. Usmani, A. Rajamanickam, and A. Moheet, “Thiazolidinediones and Risk of Heart Failure in Patients with or at High Risk of Type 2 Diabetes Mellitus,” Am. J. Cardiovasc. Drugs, vol. 11, no. 2, pp. 115–128, Apr. 2011, doi: 10.2165/11587580-000000000-00000.
  254. E. Erdmann et al., “Pioglitazone Use and Heart Failure in Patients With Type 2 Diabetes and Preexisting Cardiovascular Disease,” Diabetes Care, vol. 30, no. 11, pp. 2773–2778, Nov. 2007, doi: 10.2337/dc07-0717.
  255. R. E. Goldstein, S. J. Boccuzzi, D. Cruess, and S. Nattel, “Diltiazem increases late-onset congestive heart failure in postinfarction patients with early reduction in ejection fraction. The Adverse Experience Committee; and the Multicenter Diltiazem Postinfarction Research Group.,” Circulation, vol. 83, no. 1, pp. 52–60, Jan. 1991, doi: 10.1161/01.CIR.83.1.52.
  256. J. N. Cohn et al., “Effect of the Calcium Antagonist Felodipine as Supplementary Vasodilator Therapy in Patients With Chronic Heart Failure Treated With Enalapril,” Circulation, vol. 96, no. 3, pp. 856–863, Aug. 1997, doi: 10.1161/01.CIR.96.3.856.
  257. S. Thackray, K. Witte, A. L. Clark, and J. G. F. Cleland, “Clinical trials update: OPTIME‐CHF, PRAISE‐2, ALL‐HAT,” Eur. J. Heart Fail., vol. 2, no. 2, pp. 209–212, Jun. 2000, doi: 10.1016/S1388-9842(00)00080-5.
  258. M. Packer et al., “Effect of Amlodipine on Morbidity and Mortality in Severe Chronic Heart Failure,” N. Engl. J. Med., vol. 335, no. 15, pp. 1107–1114, Oct. 1996, doi: 10.1056/NEJM199610103351504.
  259. C. Huerta, C. Varas-Lorenzo, J. Castellsague, and L. A. Garcia Rodriguez, “Non-steroidal anti-inflammatory drugs and risk of first hospital admission for heart failure in the general population,” Heart, vol. 92, no. 11, pp. 1610–1615, Nov. 2006, doi: 10.1136/hrt.2005.082388.
  260. D. S. Echt et al., “Mortality and Morbidity in Patients Receiving Encainide, Flecainide, or Placebo,” N. Engl. J. Med., vol. 324, no. 12, pp. 781–788, Mar. 1991, doi: 10.1056/NEJM199103213241201.
  261. “Preliminary Report: Effect of Encainide and Flecainide on Mortality in a Randomized Trial of Arrhythmia Suppression after Myocardial Infarction,” N. Engl. J. Med., vol. 321, no. 6, pp. 406–412, Aug. 1989, doi: 10.1056/NEJM198908103210629.
  262. D. Kotecha et al., “Efficacy of β blockers in patients with heart failure plus atrial fibrillation: an individual-patient data meta-analysis,” Lancet, vol. 384, no. 9961, pp. 2235–2243, Dec. 2014, doi: 10.1016/S0140-6736(14)61373-8.
  263. J. G. F. Cleland, B. M. Massie, and M. Packer, “Sudden death in heart failure: vascular or electrical?,” Eur. J. Heart Fail., vol. 1, no. 1, pp. 41–45, Mar. 1999, doi: 10.1016/S1388-9842(99)00009-4.
  264. A. S. Desai et al., “Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients,” Eur. Heart J., vol. 36, no. 30, pp. 1990–1997, Aug. 2015, doi: 10.1093/eurheartj/ehv186.
  265. J. G. F. Cleland et al., “The Heart Failure Revascularisation Trial (HEART),” Eur. J. Heart Fail., vol. 13, no. 2, pp. 227–233, Feb. 2011, doi: 10.1093/eurjhf/hfq230.
  266. J. A. Panza et al., “Inducible Myocardial Ischemia and Outcomes in Patients With Coronary Artery Disease and Left Ventricular Dysfunction,” J. Am. Coll. Cardiol., vol. 61, no. 18, pp. 1860–1870, May 2013, doi: 10.1016/j.jacc.2013.02.014.
  267. B. Mondésert et al., “Impact of revascularization in patients with sustained ventricular arrhythmias, prior myocardial infarction, and preserved left ventricular ejection fraction,” Hear. Rhythm, vol. 13, no. 6, pp. 1221–1227, Jun. 2016, doi: 10.1016/j.hrthm.2016.01.019.
  268. M. Packer et al., “Effect of Carvedilol on the Morbidity of Patients With Severe Chronic Heart Failure,” Circulation, vol. 106, no. 17, pp. 2194–2199, Oct. 2002, doi: 10.1161/01.CIR.0000035653.72855.BF.
  269. P. A. Poole-Wilson et al., “Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial,” Lancet, vol. 362, no. 9377, pp. 7–13, Jul. 2003, doi: 10.1016/S0140-6736(03)13800-7.
  270. E. A. Wyse D, Friedman PL, “A Comparison of Antiarrhythmic-Drug Therapy with Implantable Defibrillators in Patients Resuscitated from Near-Fatal Ventricular Arrhythmias,” N. Engl. J. Med., vol. 337, no. 22, pp. 1576–1584, Nov. 1997, doi: 10.1056/NEJM199711273372202.
  271. S. Connolly, “Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials,” Eur. Heart J., vol. 21, no. 24, pp. 2071–2078, Dec. 2000, doi: 10.1053/euhj.2000.2476.
  272. S. J. Connolly et al., “Canadian Implantable Defibrillator Study (CIDS),” Circulation, vol. 101, no. 11, pp. 1297–1302, Mar. 2000, doi: 10.1161/01.CIR.101.11.1297.
  273. K.-H. Kuck, R. Cappato, J. Siebels, and R. Rüppel, “Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest : the Cardiac Arrest Study Hamburg (CASH),” Circulation, vol. 102, no. 7, pp. 748–754, Aug. 2000, doi: 10.1161/01.CIR.102.7.748.
  274. O. Oscar, R. Enrique, and B. Andres, “Subanalyses of secondary prevention implantable cardioverter-defibrillator trials: antiarrhythmics versus implantable defibrillators (AVID), Canadian Implantable Defibrillator Study (CIDS), and Cardiac Arrest Study Hamburg (CASH),” Curr. Opin. Cardiol., vol. 19, no. 1, pp. 26–30, Jan. 2004, doi: 10.1097/00001573-200401000-00007.
  275. et al Al-Khatib SM, Sanders GD, Mark DB, “Implantable cardioverter defibrillators and cardiac resynchronization therapy in patients with left ventricular dysfunction: randomized trial evidence through 2004.,” Am Hear. J., vol. 149, no. 6, pp. 1020–1034, 2005, doi: 10.1016/j. ahj.2005.02.005.
  276. L. Shen et al., “Declining Risk of Sudden Death in Heart Failure,” N. Engl. J. Med., vol. 377, no. 1, pp. 41–51, Jul. 2017, doi: 10.1056/NEJMoa1609758.
  277. L. Valembois, E. Audureau, A. Takeda, W. Jarzebowski, J. Belmin, and C. Lafuente-Lafuente, “Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation,” Cochrane Database Syst. Rev., vol. 2019, no. 9, Sep. 2019, doi: 10.1002/14651858.CD005049.pub5.
  278. L. Køber et al., “Increased Mortality after Dronedarone Therapy for Severe Heart Failure,” N. Engl. J. Med., vol. 358, no. 25, pp. 2678–2687, Jun. 2008, doi: 10.1056/NEJMoa0800456.
  279. B. A. Koplan, A. J. Kaplan, S. Weiner, P. W. Jones, M. Seth, and S. A. Christman, “Heart Failure Decompensation and All-Cause Mortality in Relation to Percent Biventricular Pacing in Patients With Heart Failure,” J. Am. Coll. Cardiol., vol. 53, no. 4, pp. 355–360, Jan. 2009, doi: 10.1016/j.jacc.2008.09.043.
  280. S. J. Connolly, “Comparison of β-Blockers, Amiodarone Plus β-Blockers, or Sotalol for Prevention of Shocks From Implantable Cardioverter Defibrillators<SUBTITLE>The OPTIC Study: A Randomized Trial</SUBTITLE>,” JAMA, vol. 295, no. 2, p. 165, Jan. 2006, doi: 10.1001/jama.295.2.165.
  281. J. L. Sapp et al., “Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs,” N. Engl. J. Med., vol. 375, no. 2, pp. 111–121, Jul. 2016, doi: 10.1056/NEJMoa1513614.
  282. T. S. Baman et al., “Relationship between burden of premature ventricular complexes and left ventricular function,” Hear. Rhythm, vol. 7, no. 7, pp. 865–869, Jul. 2010, doi: 10.1016/j.hrthm.2010.03.036.
  283. D. Penela et al., “Neurohormonal, Structural, and Functional Recovery Pattern After Premature Ventricular Complex Ablation Is Independent of Structural Heart Disease Status in Patients With Depressed Left Ventricular Ejection Fraction,” J. Am. Coll. Cardiol., vol. 62, no. 13, pp. 1195–1202, Sep. 2013, doi: 10.1016/j.jacc.2013.06.012.
  284. A. Lee, R. Denman, and H. M. Haqqani, “Ventricular Ectopy in the Context of Left Ventricular Systolic Dysfunction: Risk Factors and Outcomes Following Catheter Ablation,” Hear. Lung Circ., vol. 28, no. 3, pp. 379–388, Mar. 2019, doi: 10.1016/j.hlc.2018.01.012.
  285. S. E. Mountantonakis et al., “Reversal of outflow tract ventricular premature depolarization–induced cardiomyopathy with ablation: Effect of residual arrhythmia burden and preexisting cardiomyopathy on outcome,” Hear. Rhythm, vol. 8, no. 10, pp. 1608–1614, Oct. 2011, doi: 10.1016/j.hrthm.2011.04.026.
  286. A. W. G. J. Oomen, L. R. C. Dekker, and A. Meijer, “Catheter ablation of symptomatic idiopathic ventricular arrhythmias,” Netherlands Hear. J., vol. 26, no. 4, pp. 210–216, Apr. 2018, doi: 10.1007/s12471-018-1085-5.
  287. M. Zang, T. Zhang, J. Mao, S. Zhou, and B. He, “Beneficial effects of catheter ablation of frequent premature ventricular complexes on left ventricular function,” Heart, vol. 100, no. 10, pp. 787–793, May 2014, doi: 10.1136/heartjnl-2013-305175.
  288. F. Bogun et al., “Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: Comparison with a control group without intervention,” Hear. Rhythm, vol. 4, no. 7, pp. 863–867, Jul. 2007, doi: 10.1016/j.hrthm.2007.03.003.
  289. S. N. Singh et al., “Amiodarone in Patients with Congestive Heart Failure and Asymptomatic Ventricular Arrhythmia,” N. Engl. J. Med., vol. 333, no. 2, pp. 77–82, Jul. 1995, doi: 10.1056/NEJM199507133330201.
  290. M. C. Hyman et al., “Class IC antiarrhythmic drugs for suspected premature ventricular contraction–induced cardiomyopathy,” Hear. Rhythm, vol. 15, no. 2, pp. 159–163, Feb. 2018, doi: 10.1016/j.hrthm.2017.12.018.
  291. A. Di Marco et al., “Late Gadolinium Enhancement and the Risk for Ventricular Arrhythmias or Sudden Death in Dilated Cardiomyopathy,” JACC Hear. Fail., vol. 5, no. 1, pp. 28–38, Jan. 2017, doi: 10.1016/j.jchf.2016.09.017.
  292. I. Klem et al., “Relationship of LVEF and Myocardial Scar to Long-Term Mortality Risk and Mode of Death in Patients With Nonischemic Cardiomyopathy,” Circulation, vol. 143, no. 14, pp. 1343–1358, Apr. 2021, doi: 10.1161/CIRCULATIONAHA.120.048477.
  293. M. Francone, “Role of Cardiac Magnetic Resonance in the Evaluation of Dilated Cardiomyopathy: Diagnostic Contribution and Prognostic Significance,” ISRN Radiol., vol. 2014, pp. 1–16, Feb. 2014, doi: 10.1155/2014/365404.
  294. M. S. Link, X. F. Costeas, J. L. Griffith, C. D. Colburn, N. A. M. Estes, and P. J. Wang, “High Incidence of Appropriate Implantable Cardioverter-Defibrillator Therapy in Patients With Syncope of Unknown Etiology and Inducible Ventricular Arrhythmias,” J. Am. Coll. Cardiol., vol. 29, no. 2, pp. 370–375, Feb. 1997, doi: 10.1016/S0735-1097(96)00477-9.
  295. J. J. Goldberger, H. Subačius, T. Patel, R. Cunnane, and A. H. Kadish, “Sudden Cardiac Death Risk Stratification in Patients With Nonischemic Dilated Cardiomyopathy,” J. Am. Coll. Cardiol., vol. 63, no. 18, pp. 1879–1889, May 2014, doi: 10.1016/j.jacc.2013.12.021.
  296. S. Chatterjee, J. Ghosh, E. Lichstein, S. Aikat, and D. Mukherjee, “Meta-Analysis of Cardiovascular Outcomes With Dronedarone in Patients With Atrial Fibrillation or Heart Failure,” Am. J. Cardiol., vol. 110, no. 4, pp. 607–613, Aug. 2012, doi: 10.1016/j.amjcard.2012.04.034.
  297. V. Atti et al., “Prophylactic catheter ablation of ventricular tachycardia in ischemic cardiomyopathy: a systematic review and meta-analysis of randomized controlled trials,” J. Interv. Card. Electrophysiol., vol. 53, no. 2, pp. 207–215, Nov. 2018, doi: 10.1007/s10840-018-0376-5.
  298. P. Santangeli et al., “Comparative effectiveness of antiarrhythmic drugs and catheter ablation for the prevention of recurrent ventricular tachycardia in patients with implantable cardioverter-defibrillators: A systematic review and meta-analysis of randomized controlled trials,” Hear. Rhythm, vol. 13, no. 7, pp. 1552–1559, Jul. 2016, doi: 10.1016/j.hrthm.2016.03.004.
  299. B. Dinov et al., “Outcomes in Catheter Ablation of Ventricular Tachycardia in Dilated Nonischemic Cardiomyopathy Compared With Ischemic Cardiomyopathy,” Circulation, vol. 129, no. 7, pp. 728–736, Feb. 2014, doi: 10.1161/CIRCULATIONAHA.113.003063.
  300. Z. BLANCK, A. DHALA, S. DESHPANDE, J. SRA, M. JAZAYERI, and M. AKHTAR, “Bundle Branch Reentrant Ventricular Tachycardia:,” J. Cardiovasc. Electrophysiol., vol. 4, no. 3, pp. 253–262, Jun. 1993, doi: 10.1111/j.1540-8167.1993.tb01228.x.
  301. J. Caceres et al., “Sustained bundle branch reentry as a mechanism of clinical tachycardia.,” Circulation, vol. 79, no. 2, pp. 256–270, Feb. 1989, doi: 10.1161/01.CIR.79.2.256.
  302. R. Proietti et al., “Substrate-guided ablation of haemodynamically tolerated and untolerated ventricular tachycardia in patients with structural heart disease: effect of cardiomyopathy type and acute success on long-term outcome,” Europace, vol. 17, no. 3, pp. 461–467, Mar. 2015, doi: 10.1093/europace/euu326.
  303. W. S. Tzou et al., “Ventricular Tachycardia Ablation in Severe Heart Failure,” Circ. Arrhythmia Electrophysiol., vol. 10, no. 1, Jan. 2017, doi: 10.1161/CIRCEP.116.004494.
  304. P. Maury et al., “Radio-frequency ablation as primary management of well-tolerated sustained monomorphic ventricular tachycardia in patients with structural heart disease and left ventricular ejection fraction over 30%,” Eur. Heart J., vol. 35, no. 22, pp. 1479–1485, Jun. 2014, doi: 10.1093/eurheartj/ehu040.
  305. M. CLEMENS et al., “Catheter Ablation of Ventricular Tachycardia as the First‐Line Therapy in Patients With Coronary Artery Disease and Preserved Left Ventricular Systolic Function: Long‐Term Results,” J. Cardiovasc. Electrophysiol., vol. 26, no. 10, pp. 1105–1110, Oct. 2015, doi: 10.1111/jce.12751.
  306. R. Tung et al., “Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: An International VT Ablation Center Collaborative Group study,” Hear. Rhythm, vol. 12, no. 9, pp. 1997–2007, Sep. 2015, doi: 10.1016/j.hrthm.2015.05.036.
  307. D. Muser et al., “Long-Term Outcome After Catheter Ablation of Ventricular Tachycardia in Patients With Nonischemic Dilated Cardiomyopathy,” Circ. Arrhythmia Electrophysiol., vol. 9, no. 10, Oct. 2016, doi: 10.1161/CIRCEP.116.004328.
  308. M. Ebert et al., “Prevalence and Prognostic Impact of Pathogenic Variants in Patients With Dilated Cardiomyopathy Referred for Ventricular Tachycardia Ablation,” JACC Clin. Electrophysiol., vol. 6, no. 9, pp. 1103–1114, Sep. 2020, doi: 10.1016/j.jacep.2020.04.025.
  309. M. D. Smit et al., “The importance of whether atrial fibrillation or heart failure develops first,” Eur. J. Heart Fail., vol. 14, no. 9, pp. 1030–1040, Sep. 2012, doi: 10.1093/eurjhf/hfs097.
  310. K. Swedberg et al., “Prognostic relevance of atrial fibrillation in patients with chronic heart failure on long-term treatment with beta-blockers: results from COMET,” Eur. Heart J., vol. 26, no. 13, pp. 1303–1308, Jul. 2005, doi: 10.1093/eurheartj/ehi166.
  311. U. C. Hoppe et al., “Effect of Cardiac Resynchronization on the Incidence of Atrial Fibrillation in Patients With Severe Heart Failure,” Circulation, vol. 114, no. 1, pp. 18–25, Jul. 2006, doi: 10.1161/CIRCULATIONAHA.106.614560.
  312. N. Calvo et al., “Impact of atrial fibrillation-induced tachycardiomyopathy in patients undergoing pulmonary vein isolation,” Int. J. Cardiol., vol. 168, no. 4, pp. 4093–4097, Oct. 2013, doi: 10.1016/j.ijcard.2013.07.017.
  313. P. D. Morris, T. Robinson, and K. S. Channer, “Reversible heart failure: toxins, tachycardiomyopathy and mitochondrial abnormalities,” Postgrad. Med. J., vol. 88, no. 1046, pp. 706–712, Dec. 2012, doi: 10.1136/postgradmedj-2011-130698.
  314. G. Y. H. Lip, R. Nieuwlaat, R. Pisters, D. A. Lane, and H. J. G. M. Crijns, “Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach,” Chest, vol. 137, no. 2, pp. 263–272, Feb. 2010, doi: 10.1378/chest.09-1584.
  315. J. B. Olesen et al., “Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: nationwide cohort study,” BMJ, vol. 342, no. jan31 1, pp. d124–d124, Jan. 2011, doi: 10.1136/bmj.d124.
  316. L. Friberg, M. Rosenqvist, and G. Y. H. Lip, “Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study,” Eur. Heart J., vol. 33, no. 12, pp. 1500–1510, Jun. 2012, doi: 10.1093/eurheartj/ehr488.
  317. S. J. Connolly et al., “Dabigatran versus Warfarin in Patients with Atrial Fibrillation,” N. Engl. J. Med., vol. 361, no. 12, pp. 1139–1151, Sep. 2009, doi: 10.1056/NEJMoa0905561.
  318. C. B. Granger et al., “Apixaban versus Warfarin in Patients with Atrial Fibrillation,” N. Engl. J. Med., vol. 365, no. 11, pp. 981–992, Sep. 2011, doi: 10.1056/NEJMoa1107039.
  319. M. R. Patel et al., “Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation,” N. Engl. J. Med., vol. 365, no. 10, pp. 883–891, Sep. 2011, doi: 10.1056/NEJMoa1009638.
  320. R. P. Giugliano et al., “Edoxaban versus Warfarin in Patients with Atrial Fibrillation,” N. Engl. J. Med., vol. 369, no. 22, pp. 2093–2104, Nov. 2013, doi: 10.1056/NEJMoa1310907.
  321. S. Y. Shin et al., “Identification of Markers Associated With Development of Stroke in ‘Clinically Low‐Risk’ Atrial Fibrillation Patients,” J. Am. Heart Assoc., vol. 8, no. 21, Nov. 2019, doi: 10.1161/JAHA.119.012697.
  322. P. B. Nielsen, T. B. Larsen, F. Skjøth, T. F. Overvad, and G. Y. H. Lip, “Stroke and thromboembolic event rates in atrial fibrillation according to different guideline treatment thresholds: A nationwide cohort study,” Sci. Rep., vol. 6, no. 1, p. 27410, Jun. 2016, doi: 10.1038/srep27410.
  323. J. W. Eikelboom et al., “Dabigatran versus Warfarin in Patients with Mechanical Heart Valves,” N. Engl. J. Med., vol. 369, no. 13, pp. 1206–1214, Sep. 2013, doi: 10.1056/NEJMoa1300615.
  324. A. P. Carnicelli et al., “Edoxaban for the Prevention of Thromboembolism in Patients With Atrial Fibrillation and Bioprosthetic Valves,” Circulation, vol. 135, no. 13, pp. 1273–1275, Mar. 2017, doi: 10.1161/CIRCULATIONAHA.116.026714.
  325. C. T. Ruff et al., “Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials,” Lancet, vol. 383, no. 9921, pp. 955–962, Mar. 2014, doi: 10.1016/S0140-6736(13)62343-0.
  326. O. D. Pedersen, H. Bagger, L. Køber, and C. Torp-Pedersen, “Trandolapril Reduces the Incidence of Atrial Fibrillation After Acute Myocardial Infarction in Patients With Left Ventricular Dysfunction,” Circulation, vol. 100, no. 4, pp. 376–380, Jul. 1999, doi: 10.1161/01.CIR.100.4.376.
  327. J. McMurray et al., “Antiarrhythmic effect of carvedilol after acute myocardial infarction,” J. Am. Coll. Cardiol., vol. 45, no. 4, pp. 525–530, Feb. 2005, doi: 10.1016/j.jacc.2004.09.076.
  328. K. Swedberg et al., “Eplerenone and Atrial Fibrillation in Mild Systolic Heart Failure,” J. Am. Coll. Cardiol., vol. 59, no. 18, pp. 1598–1603, May 2012, doi: 10.1016/j.jacc.2011.11.063.
  329. M. Han et al., “Renin–Angiotensin System Inhibitors Prevent the Recurrence of Atrial Fibrillation,” J. Cardiovasc. Pharmacol., vol. 62, no. 4, pp. 405–415, Oct. 2013, doi: 10.1097/FJC.0b013e3182a094a1.
  330. M. A. Brodsky, B. J. Allen, C. J. Walker, T. P. Casey, C. R. Luckett, and W. L. Henry, “Amiodarone for maintenance of sinus rhythm after conversion of atrial fibrillation in the setting of a dilated left atrium,” Am. J. Cardiol., vol. 60, no. 7, pp. 572–575, Sep. 1987, doi: 10.1016/0002-9149(87)90307-9.
  331. P. C. Deedwania, B. N. Singh, K. Ellenbogen, S. Fisher, R. Fletcher, and S. N. Singh, “Spontaneous Conversion and Maintenance of Sinus Rhythm by Amiodarone in Patients With Heart Failure and Atrial Fibrillation,” Circulation, vol. 98, no. 23, pp. 2574–2579, Dec. 1998, doi: 10.1161/01.CIR.98.23.2574.
  332. R. J. Shelton et al., “A randomised, controlled study of rate versus rhythm control in patients with chronic atrial fibrillation and heart failure: (CAFE-II Study),” Heart, vol. 95, no. 11, pp. 924–930, Jun. 2009, doi: 10.1136/hrt.2008.158931.
  333. A. Capucci, “Oral amiodarone increases the efficacy of direct-current cardioversion in restoration of sinus rhythm in patients with chronic atrial fibrillation,” Eur. Heart J., vol. 21, no. 1, pp. 66–73, Jan. 2000, doi: 10.1053/euhj.1999.1734.
  334. V. E. Hagens et al., “Rate control versus rhythm control for patients with persistent atrial fibrillation with mild to moderate heart failure: Results from the RAte Control versus Electrical cardioversion (RACE) study,” Am. Heart J., vol. 149, no. 6, pp. 1106–1111, Jun. 2005, doi: 10.1016/j.ahj.2004.11.030.
  335. I. C. Van Gelder et al., “A Comparison of Rate Control and Rhythm Control in Patients with Recurrent Persistent Atrial Fibrillation,” N. Engl. J. Med., vol. 347, no. 23, pp. 1834–1840, Dec. 2002, doi: 10.1056/NEJMoa021375.
  336. R. Hofmann, C. Steinwender, J. Kammler, A. Kypta, and F. Leisch, “Effects of a high dose intravenous bolus amiodarone in patients with atrial fibrillation and a rapid ventricular rate,” Int. J. Cardiol., vol. 110, no. 1, pp. 27–32, Jun. 2006, doi: 10.1016/j.ijcard.2005.06.048.
  337. R. HOFMANN, “Intravenous amiodarone bolus immediately controls heart rate in patients with atrial fibrillation accompanied by severe congestive heart failure,” Heart, vol. 84, no. 6, pp. 635–635, Dec. 2000, doi: 10.1136/heart.84.6.635.
  338. I. C. Van Gelder et al., “Does intensity of rate-control influence outcome in atrial fibrillation? An analysis of pooled data from the RACE and AFFIRM studies,” EP Eur., vol. 8, no. 11, pp. 935–942, Nov. 2006, doi: 10.1093/europace/eul106.
  339. S.-J. Li et al., “Prognostic Significance of Resting Heart Rate and Use of β-Blockers in Atrial Fibrillation and Sinus Rhythm in Patients With Heart Failure and Reduced Ejection Fraction,” Circ. Hear. Fail., vol. 8, no. 5, pp. 871–879, Sep. 2015, doi: 10.1161/CIRCHEARTFAILURE.115.002285.
  340. J. B. Segal et al., “The evidence regarding the drugs used for ventricular rate control.,” J. Fam. Pract., vol. 49, no. 1, pp. 47–59, Jan. 2000, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10678340
  341. O. J. Ziff et al., “Safety and efficacy of digoxin: systematic review and meta-analysis of observational and controlled trial data,” BMJ, p. h4451, Aug. 2015, doi: 10.1136/bmj.h4451.
  342. N. J. Sethi, E. E. Nielsen, S. Safi, J. Feinberg, C. Gluud, and J. C. Jakobsen, “Digoxin for atrial fibrillation and atrial flutter: A systematic review with meta-analysis and trial sequential analysis of randomised clinical trials,” PLoS One, vol. 13, no. 3, p. e0193924, Mar. 2018, doi: 10.1371/journal.pone.0193924.
  343. N. A. Chatterjee, G. A. Upadhyay, K. A. Ellenbogen, F. A. McAlister, N. K. Choudhry, and J. P. Singh, “Atrioventricular Nodal Ablation in Atrial Fibrillation,” Circ. Arrhythmia Electrophysiol., vol. 5, no. 1, pp. 68–76, Feb. 2012, doi: 10.1161/CIRCEP.111.967810.
  344. M. Brignole et al., “Cardiac resynchronization therapy in patients undergoing atrioventricular junction ablation for permanent atrial fibrillation: a randomized trial,” Eur. Heart J., vol. 32, no. 19, pp. 2420–2429, Oct. 2011, doi: 10.1093/eurheartj/ehr162.
  345. M. Brignole et al., “AV junction ablation and cardiac resynchronization for patients with permanent atrial fibrillation and narrow QRS: the APAF-CRT mortality trial,” Eur. Heart J., vol. 42, no. 46, pp. 4731–4739, Dec. 2021, doi: 10.1093/eurheartj/ehab569.
  346. S. Stavrakis, P. Garabelli, and D. W. Reynolds, “Cardiac resynchronization therapy after atrioventricular junction ablation for symptomatic atrial fibrillation: a meta-analysis,” Europace, vol. 14, no. 10, pp. 1490–1497, Oct. 2012, doi: 10.1093/europace/eus193.
  347. K. T. Ousdigian, P. P. Borek, J. L. Koehler, J. T. Heywood, P. D. Ziegler, and B. L. Wilkoff, “The Epidemic of Inadequate Biventricular Pacing in Patients With Persistent or Permanent Atrial Fibrillation and Its Association With Mortality,” Circ. Arrhythmia Electrophysiol., vol. 7, no. 3, pp. 370–376, Jun. 2014, doi: 10.1161/CIRCEP.113.001212.
  348. D. L. Hayes et al., “Cardiac resynchronization therapy and the relationship of percent biventricular pacing to symptoms and survival,” Hear. Rhythm, vol. 8, no. 9, pp. 1469–1475, Sep. 2011, doi: 10.1016/j.hrthm.2011.04.015.
  349. A. S. L. Tang et al., “Cardiac-Resynchronization Therapy for Mild-to-Moderate Heart Failure,” N. Engl. J. Med., vol. 363, no. 25, pp. 2385–2395, Dec. 2010, doi: 10.1056/NEJMoa1009540.
  350. M. Gasparini et al., “Cardiac Resynchronization Therapy in Patients With Atrial Fibrillation,” JACC Hear. Fail., vol. 1, no. 6, pp. 500–507, Dec. 2013, doi: 10.1016/j.jchf.2013.06.003.
  351. A. N. Ganesan, A. G. Brooks, K. C. Roberts-Thomson, D. H. Lau, J. M. Kalman, and P. Sanders, “Role of AV Nodal Ablation in Cardiac Resynchronization in Patients With Coexistent Atrial Fibrillation and Heart Failure,” J. Am. Coll. Cardiol., vol. 59, no. 8, pp. 719–726, Feb. 2012, doi: 10.1016/j.jacc.2011.10.891.
  352. “Rationale and design of a study assessing treatment strategies of atrial fibrillation in patients with heart failure: the Atrial Fibrillation and Congestive Heart Failure (AF-CHF) trial.,” Am. Heart J., vol. 144, no. 4, pp. 597–607, Oct. 2002, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/12360154
  353. N. F. Marrouche et al., “Catheter Ablation for Atrial Fibrillation with Heart Failure,” N. Engl. J. Med., vol. 378, no. 5, pp. 417–427, Feb. 2018, doi: 10.1056/NEJMoa1707855.
  354. D. L. Packer et al., “Effect of Catheter Ablation vs Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest Among Patients With Atrial Fibrillation,” JAMA, vol. 321, no. 13, p. 1261, Apr. 2019, doi: 10.1001/jama.2019.0693.
  355. C. Chen et al., “Catheter ablation versus medical therapy for patients with persistent atrial fibrillation: a systematic review and meta-analysis of evidence from randomized controlled trials,” J. Interv. Card. Electrophysiol., vol. 52, no. 1, pp. 9–18, Jun. 2018, doi: 10.1007/s10840-018-0349-8.
  356. G. H. Bardy et al., “Amiodarone or an Implantable Cardioverter–Defibrillator for Congestive Heart Failure,” N. Engl. J. Med., vol. 352, no. 3, pp. 225–237, Jan. 2005, doi: 10.1056/NEJMoa043399.
  357. M. Packer et al., “Effect of Carvedilol on Survival in Severe Chronic Heart Failure,” N. Engl. J. Med., vol. 344, no. 22, pp. 1651–1658, May 2001, doi: 10.1056/NEJM200105313442201.
  358. R. E. Schmieder and J. K. Rockstroh, “Efficacy and Tolerance of Low-Dose Loop Diuretics in Hypertension,” Cardiology, vol. 84, no. 2, pp. 36–42, 1994, doi: 10.1159/000176455.
  359. N. Spannbrucker, I. Achhammer, P. Metz, and M. Glocke, “Comparative study on the antihypertensive efficacy of torasemide and indapamide in patients with essential hypertension.,” Arzneimittelforschung., vol. 38, no. 1A, pp. 190–3, Jan. 1988, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/3285833
  360. C. Thomopoulos, G. Parati, and A. Zanchetti, “Effects of blood pressure-lowering treatment on cardiovascular outcomes and mortality,” J. Hypertens., vol. 36, no. 8, pp. 1637–1647, Aug. 2018, doi: 10.1097/HJH.0000000000001777.
  361. J. N. Cohn et al., “Adverse mortality effect of central sympathetic inhibition with sustained‐release moxonidine in patients with heart failure (MOXCON),” Eur. J. Heart Fail., vol. 5, no. 5, pp. 659–667, Oct. 2003, doi: 10.1016/S1388-9842(03)00163-6.
  362. “Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). ALLHAT Collaborative Research Group.,” JAMA, vol. 283, no. 15, pp. 1967–75, Apr. 2000, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10789664
  363. A. DORSZEWSKI, E. GOHMANN, B. DORSZEWSKI, G. WERNER, H. KREUZER, and H. FIGULLA, “Vasodilation by urapidil in the treatment of chronic congestive heart failure in addition to angiotensinconverting enzyme inhibitors is not beneficial: Results of a placebo-controlled, double-blind study,” J. Card. Fail., vol. 3, no. 2, pp. 91–96, Jun. 1997, doi: 10.1016/S1071-9164(97)90040-3.
  364. J. Bayliss, M. S. Norell, R. Canepa-Anson, C. Reid, P. Poole-Wilson, and G. Sutton, “Clinical importance of the renin-angiotensin system in chronic heart failure: double blind comparison of captopril and prazosin.,” BMJ, vol. 290, no. 6485, pp. 1861–1865, Jun. 1985, doi: 10.1136/bmj.290.6485.1861.
  365. GISSI-HF investigators, “Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial,” Lancet, vol. 372, no. 9645, pp. 1231–1239, Oct. 2008, doi: 10.1016/S0140-6736(08)61240-4.
  366. J. Kjekshus et al., “Rosuvastatin in Older Patients with Systolic Heart Failure,” N. Engl. J. Med., vol. 357, no. 22, pp. 2248–2261, Nov. 2007, doi: 10.1056/NEJMoa0706201.
  367. “Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF).,” Lancet (London, England), vol. 353, no. 9169, pp. 2001–7, Jun. 1999, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10376614
  368. K. Fox, I. Ford, P. G. Steg, M. Tendera, M. Robertson, and R. Ferrari, “Relationship between ivabradine treatment and cardiovascular outcomes in patients with stable coronary artery disease and left ventricular systolic dysfunction with limiting angina: a subgroup analysis of the randomized, controlled BEAUTIFUL trial,” Eur. Heart J., vol. 30, no. 19, pp. 2337–2345, Oct. 2009, doi: 10.1093/eurheartj/ehp358.
  369. C. Vitale, I. Spoletini, W. Malorni, P. Perrone-Filardi, M. Volterrani, and G. M. C. Rosano, “Efficacy of trimetazidine on functional capacity in symptomatic patients with stable exertional angina — The VASCO-angina study,” Int. J. Cardiol., vol. 168, no. 2, pp. 1078–1081, Sep. 2013, doi: 10.1016/j.ijcard.2012.11.001.
  370. C. VITALE et al., “Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease,” Eur. Heart J., vol. 25, no. 20, pp. 1814–1821, Oct. 2004, doi: 10.1016/j.ehj.2004.06.034.
  371. D. Gao, N. Ning, X. Niu, G. Hao, and Z. Meng, “Trimetazidine: a meta-analysis of randomised controlled trials in heart failure,” Heart, vol. 97, no. 4, pp. 278–286, Feb. 2011, doi: 10.1136/hrt.2010.208751.
  372. S. R. Wilson et al., “Efficacy of Ranolazine in Patients With Chronic Angina,” J. Am. Coll. Cardiol., vol. 53, no. 17, pp. 1510–1516, Apr. 2009, doi: 10.1016/j.jacc.2009.01.037.
  373. J. Wei, T. Wu, Q. Yang, M. Chen, J. Ni, and D. Huang, “Nitrates for stable angina: A systematic review and meta-analysis of randomized clinical trials,” Int. J. Cardiol., vol. 146, no. 1, pp. 4–12, Jan. 2011, doi: 10.1016/j.ijcard.2010.05.019.
  374. J. N. Cohn et al., “Effect of Vasodilator Therapy on Mortality in Chronic Congestive Heart Failure,” N. Engl. J. Med., vol. 314, no. 24, pp. 1547–1552, Jun. 1986, doi: 10.1056/NEJM198606123142404.
  375. P. Carson, S. Ziesche, G. Johnson, and J. N. Cohn, “Racial differences in response to therapy for heart failure: Analysis of the vasodilator-heart failure trials,” J. Card. Fail., vol. 5, no. 3, pp. 178–187, Sep. 1999, doi: 10.1016/S1071-9164(99)90001-5.
  376. J. N. Cohn et al., “A Comparison of Enalapril with Hydralazine–Isosorbide Dinitrate in the Treatment of Chronic Congestive Heart Failure,” N. Engl. J. Med., vol. 325, no. 5, pp. 303–310, Aug. 1991, doi: 10.1056/NEJM199108013250502.
  377. “Effect of nicorandil on coronary events in patients with stable angina: the Impact Of Nicorandil in Angina (IONA) randomised trial,” Lancet, vol. 359, no. 9314, pp. 1269–1275, Apr. 2002, doi: 10.1016/S0140-6736(02)08265-X.
  378. D. Perera et al., “Percutaneous Revascularization for Ischemic Left Ventricular Dysfunction,” N. Engl. J. Med., vol. 387, no. 15, pp. 1351–1360, Oct. 2022, doi: 10.1056/NEJMoa2206606.
  379. E. J. Velazquez et al., “Coronary-Artery Bypass Surgery in Patients with Ischemic Cardiomyopathy,” N. Engl. J. Med., vol. 374, no. 16, pp. 1511–1520, Apr. 2016, doi: 10.1056/NEJMoa1602001.
  380. M. Packer et al., “Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction,” Circulation, vol. 143, no. 4, pp. 326–336, Jan. 2021, doi: 10.1161/CIRCULATIONAHA.120.051783.
  381. F. A. Masoudi, S. E. Inzucchi, Y. Wang, E. P. Havranek, J. M. Foody, and H. M. Krumholz, “Thiazolidinediones, Metformin, and Outcomes in Older Patients With Diabetes and Heart Failure,” Circulation, vol. 111, no. 5, pp. 583–590, Feb. 2005, doi: 10.1161/01.CIR.0000154542.13412.B1.
  382. D. T. Eurich, S. R. Majumdar, F. A. McAlister, R. T. Tsuyuki, and J. A. Johnson, “Improved Clinical Outcomes Associated With Metformin in Patients With Diabetes and Heart Failure,” Diabetes Care, vol. 28, no. 10, pp. 2345–2351, Oct. 2005, doi: 10.2337/diacare.28.10.2345.
  383. M. R. MacDonald et al., “Treatment of Type 2 Diabetes and Outcomes in Patients With Heart Failure: A Nested Case–Control Study From the U.K. General Practice Research Database,” Diabetes Care, vol. 33, no. 6, pp. 1213–1218, Jun. 2010, doi: 10.2337/dc09-2227.
  384. R. Boussageon et al., “Reappraisal of Metformin Efficacy in the Treatment of Type 2 Diabetes: A Meta-Analysis of Randomised Controlled Trials,” PLoS Med., vol. 9, no. 4, p. e1001204, Apr. 2012, doi: 10.1371/journal.pmed.1001204.
  385. P. D. Home et al., “Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial,” Lancet, vol. 373, no. 9681, pp. 2125–2135, Jun. 2009, doi: 10.1016/S0140-6736(09)60953-3.
  386. B. M. Scirica et al., “Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus,” N. Engl. J. Med., vol. 369, no. 14, pp. 1317–1326, Oct. 2013, doi: 10.1056/NEJMoa1307684.
  387. J. B. Green et al., “Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes,” N. Engl. J. Med., vol. 373, no. 3, pp. 232–242, Jul. 2015, doi: 10.1056/NEJMoa1501352.
  388. J. Rosenstock et al., “Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk,” JAMA, vol. 321, no. 1, p. 69, Jan. 2019, doi: 10.1001/jama.2018.18269.
  389. D. K. McGuire et al., “Association Between Sitagliptin Use and Heart Failure Hospitalization and Related Outcomes in Type 2 Diabetes Mellitus,” JAMA Cardiol., vol. 1, no. 2, p. 126, May 2016, doi: 10.1001/jamacardio.2016.0103.
  390. R. R. Holman et al., “Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes,” N. Engl. J. Med., vol. 377, no. 13, pp. 1228–1239, Sep. 2017, doi: 10.1056/NEJMoa1612917.
  391. S. P. Marso et al., “Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes,” N. Engl. J. Med., vol. 375, no. 4, pp. 311–322, Jul. 2016, doi: 10.1056/NEJMoa1603827.
  392. M. A. Pfeffer et al., “Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome,” N. Engl. J. Med., vol. 373, no. 23, pp. 2247–2257, Dec. 2015, doi: 10.1056/NEJMoa1509225.
  393. S. P. Marso et al., “Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes,” N. Engl. J. Med., vol. 375, no. 19, pp. 1834–1844, Nov. 2016, doi: 10.1056/NEJMoa1607141.
  394. M. Husain et al., “Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes,” N. Engl. J. Med., vol. 381, no. 9, pp. 841–851, Aug. 2019, doi: 10.1056/NEJMoa1901118.
  395. H. C. Gerstein et al., “Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial,” Lancet, vol. 394, no. 10193, pp. 121–130, Jul. 2019, doi: 10.1016/S0140-6736(19)31149-3.
  396. A. Jorsal et al., “Effect of liraglutide, a glucagon‐like peptide‐1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)—a multicentre, double‐blind, randomised, placebo‐controlled trial,” Eur. J. Heart Fail., vol. 19, no. 1, pp. 69–77, Jan. 2017, doi: 10.1002/ejhf.657.
  397. K. B. Margulies et al., “Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction,” JAMA, vol. 316, no. 5, p. 500, Aug. 2016, doi: 10.1001/jama.2016.10260.
  398. D. Giugliano et al., “GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs,” Cardiovasc. Diabetol., vol. 20, no. 1, p. 189, Dec. 2021, doi: 10.1186/s12933-021-01366-8.
  399. N. M. Hawkins et al., “Bisoprolol in patients with heart failure and moderate to severe chronic obstructive pulmonary disease: a randomized controlled trial,” Eur. J. Heart Fail., vol. 11, no. 7, pp. 684–690, Jul. 2009, doi: 10.1093/eurjhf/hfp066.
  400. M. Lainscak, M. Podbregar, D. Kovacic, J. Rozman, and S. von Haehling, “Differences between bisoprolol and carvedilol in patients with chronic heart failure and chronic obstructive pulmonary disease: a randomized trial,” Respir. Med., vol. 105, pp. S44–S49, Oct. 2011, doi: 10.1016/S0954-6111(11)70010-5.
  401. A. Jabbour et al., “Differences Between Beta-Blockers in Patients With Chronic Heart Failure and Chronic Obstructive Pulmonary Disease,” J. Am. Coll. Cardiol., vol. 55, no. 17, pp. 1780–1787, Apr. 2010, doi: 10.1016/j.jacc.2010.01.024.
  402. S. R. Salpeter, T. M. Ormiston, and E. E. Salpeter, “Cardioselective beta-blockers for chronic obstructive pulmonary disease,” Cochrane Database Syst. Rev., vol. 2016, no. 8, Oct. 2005, doi: 10.1002/14651858.CD003566.pub2.
  403. H.-D. Düngen et al., “Titration to target dose of bisoprolol vs. carvedilol in elderly patients with heart failure: the CIBIS-ELD trial,” Eur. J. Heart Fail., vol. 13, no. 6, pp. 670–680, Jun. 2011, doi: 10.1093/eurjhf/hfr020.
  404. L. Tavazzi et al., “Clinical profiles and outcomes in patients with chronic heart failure and chronic obstructive pulmonary disease: An efficacy and safety analysis of SHIFT study,” Int. J. Cardiol., vol. 170, no. 2, pp. 182–188, Dec. 2013, doi: 10.1016/j.ijcard.2013.10.068.
  405. K. Swedberg et al., “Treatment of Anemia with Darbepoetin Alfa in Systolic Heart Failure,” N. Engl. J. Med., vol. 368, no. 13, pp. 1210–1219, Mar. 2013, doi: 10.1056/NEJMoa1214865.
  406. G. D. Lewis et al., “Effect of Oral Iron Repletion on Exercise Capacity in Patients With Heart Failure With Reduced Ejection Fraction and Iron Deficiency,” JAMA, vol. 317, no. 19, p. 1958, May 2017, doi: 10.1001/jama.2017.5427.
  407. P. Ponikowski et al., “Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency,” Eur. Heart J., vol. 36, no. 11, pp. 657–668, Mar. 2015, doi: 10.1093/eurheartj/ehu385.
  408. P. Ponikowski et al., “Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial,” Lancet, vol. 396, no. 10266, pp. 1895–1904, Dec. 2020, doi: 10.1016/S0140-6736(20)32339-4.
  409. P. R. Kalra et al., “Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial,” Lancet, vol. 400, no. 10369, pp. 2199–2209, Dec. 2022, doi: 10.1016/S0140-6736(22)02083-9.
  410. J. Comin-Colet et al., “The effect of intravenous ferric carboxymaltose on health-related quality of life in patients with chronic heart failure and iron deficiency: a subanalysis of the FAIR-HF study,” Eur. Heart J., vol. 34, no. 1, pp. 30–38, Jan. 2013, doi: 10.1093/eurheartj/ehr504.
  411. S. D. Anker et al., “Ferric Carboxymaltose in Patients with Heart Failure and Iron Deficiency,” N. Engl. J. Med., vol. 361, no. 25, pp. 2436–2448, Dec. 2009, doi: 10.1056/NEJMoa0908355.
  412. F. J. Graham, P. Pellicori, P. R. Kalra, I. Ford, D. Bruzzese, and J. G. F. Cleland, “Intravenous iron in patients with heart failure and iron deficiency: an updated meta‐analysis,” Eur. J. Heart Fail., vol. 25, no. 4, pp. 528–537, Apr. 2023, doi: 10.1002/ejhf.2810.
  413. H. M. Salah, G. Savarese, G. M. C. Rosano, A. P. Ambrosy, R. J. Mentz, and M. Fudim, “Intravenous iron infusion in patients with heart failure: a systematic review and study‐level meta‐analysis,” ESC Hear. Fail., vol. 10, no. 2, pp. 1473–1480, Apr. 2023, doi: 10.1002/ehf2.14310.
  414. D. Vukadinović, A. Abdin, I. Emrich, P. C. Schulze, S. von Haehling, and M. Böhm, “Efficacy and safety of intravenous iron repletion in patients with heart failure: a systematic review and meta-analysis,” Clin. Res. Cardiol., vol. 112, no. 7, pp. 954–966, Jul. 2023, doi: 10.1007/s00392-023-02207-2.
  415. S. D. Anker et al., “Effect of intravenous iron replacement on recurrent heart failure hospitalizations and cardiovascular mortality in patients with heart failure and iron deficiency: A Bayesian <scp>meta‐analysis</scp>,” Eur. J. Heart Fail., vol. 25, no. 7, pp. 1080–1090, Jul. 2023, doi: 10.1002/ejhf.2860.
  416. W. B. White et al., “Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout,” N. Engl. J. Med., vol. 378, no. 13, pp. 1200–1210, Mar. 2018, doi: 10.1056/NEJMoa1710895.
  417. A. Arfè et al., “Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study,” BMJ, p. i4857, Sep. 2016, doi: 10.1136/bmj.i4857.
  418. S. Verma et al., “Colchicine in cardiac disease: a systematic review and meta-analysis of randomized controlled trials,” BMC Cardiovasc. Disord., vol. 15, no. 1, p. 96, Dec. 2015, doi: 10.1186/s12872-015-0068-3.
  419. M. S. Maurer et al., “Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy,” N. Engl. J. Med., vol. 379, no. 11, pp. 1007–1016, Sep. 2018, doi: 10.1056/NEJMoa1805689.
  420. B. K. Gundapaneni, M. B. Sultan, D. J. Keohane, and J. H. Schwartz, “Tafamidis delays neurological progression comparably across Val30Met and non‐Val30Met genotypes in transthyretin familial amyloid polyneuropathy,” Eur. J. Neurol., vol. 25, no. 3, pp. 464–468, Mar. 2018, doi: 10.1111/ene.13510.
  421. T. Damy et al., “Efficacy and safety of tafamidis doses in the <scp>Tafamidis in Transthyretin Cardiomyopathy Clinical Trial</scp> ( <scp>ATTR‐ACT</scp> ) and long‐term extension study,” Eur. J. Heart Fail., vol. 23, no. 2, pp. 277–285, Feb. 2021, doi: 10.1002/ejhf.2027.
  422. M. B. Sultan, B. Gundapaneni, J. Schumacher, and J. H. Schwartz, “Treatment With Tafamidis Slows Disease Progression in Early-Stage Transthyretin Cardiomyopathy,” Clin. Med. Insights Cardiol., vol. 11, p. 117954681773032, Jan. 2017, doi: 10.1177/1179546817730322.
  423. T. Rutledge, V. A. Reis, S. E. Linke, B. H. Greenberg, and P. J. Mills, “Depression in Heart Failure,” J. Am. Coll. Cardiol., vol. 48, no. 8, pp. 1527–1537, Oct. 2006, doi: 10.1016/j.jacc.2006.06.055.
  424. A. H. Glassman, “Cardiovascular Effects of Tricyclic Antidepressants,” Annu. Rev. Med., vol. 35, no. 1, pp. 503–511, Feb. 1984, doi: 10.1146/annurev.me.35.020184.002443.
  425. P. Pacher, Z. Ungvari, P. P. Nanasi, S. Furst, and V. Kecskemeti, “Speculations on difference between tricyclic and selective serotonin reuptake inhibitor antidepressants on their cardiac effects. Is there any?,” Curr. Med. Chem., vol. 6, no. 6, pp. 469–80, Jun. 1999, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10213794
  426. S. Jordan, V. Koprivica, R. Chen, K. Tottori, T. Kikuchi, and C. A. Altar, “The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor.,” Eur. J. Pharmacol., vol. 441, no. 3, pp. 137–40, Apr. 2002, doi: 10.1016/s0014-2999(02)01532-7.
  427. C. M. O’Connor et al., “Safety and Efficacy of Sertraline for Depression in Patients With Heart Failure,” J. Am. Coll. Cardiol., vol. 56, no. 9, pp. 692–699, Aug. 2010, doi: 10.1016/j.jacc.2010.03.068.
  428. C. E. Angermann et al., “Effect of Escitalopram on All-Cause Mortality and Hospitalization in Patients With Heart Failure and Depression,” JAMA, vol. 315, no. 24, p. 2683, Jun. 2016, doi: 10.1001/jama.2016.7635.
  429. A. Heiat, C. P. Gross, and H. M. Krumholz, “Representation of the Elderly, Women, and Minorities in Heart Failure Clinical Trials,” Arch. Intern. Med., vol. 162, no. 15, Aug. 2002, doi: 10.1001/archinte.162.15.1682.
  430. W.-W. Seo et al., “Guideline-directed medical therapy in elderly patients with heart failure with reduced ejection fraction: a cohort study,” BMJ Open, vol. 10, no. 2, p. e030514, Feb. 2020, doi: 10.1136/bmjopen-2019-030514.
  431. M. D. Flather et al., “Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS),” Eur. Heart J., vol. 26, no. 3, pp. 215–225, Feb. 2005, doi: 10.1093/eurheartj/ehi115.
  432. D. Levy et al., “Long-Term Trends in the Incidence of and Survival with Heart Failure,” N. Engl. J. Med., vol. 347, no. 18, pp. 1397–1402, Oct. 2002, doi: 10.1056/NEJMoa020265.
  433. J. S. Gottdiener et al., “Predictors of congestive heart failure in the elderly: the cardiovascular health study,” J. Am. Coll. Cardiol., vol. 35, no. 6, pp. 1628–1637, May 2000, doi: 10.1016/S0735-1097(00)00582-9.
  434. S. D. Anker et al., “Empagliflozin in Heart Failure with a Preserved Ejection Fraction,” N. Engl. J. Med., vol. 385, no. 16, pp. 1451–1461, Oct. 2021, doi: 10.1056/NEJMoa2107038.
  435. S. D. Solomon et al., “Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction,” N. Engl. J. Med., vol. 387, no. 12, pp. 1089–1098, Sep. 2022, doi: 10.1056/NEJMoa2206286.
  436. S. D. Solomon et al., “Sacubitril/Valsartan Across the Spectrum of Ejection Fraction in Heart Failure,” Circulation, vol. 141, no. 5, pp. 352–361, Feb. 2020, doi: 10.1161/CIRCULATIONAHA.119.044586.
  437. F. R. Mc Causland et al., “Angiotensin-Neprilysin Inhibition and Renal Outcomes in Heart Failure With Preserved Ejection Fraction,” Circulation, vol. 142, no. 13, pp. 1236–1245, Sep. 2020, doi: 10.1161/CIRCULATIONAHA.120.047643.
  438. J. G. F. Cleland et al., “Beta-blockers for heart failure with reduced, mid-range, and preserved ejection fraction: an individual patient-level analysis of double-blind randomized trials,” Eur. Heart J., vol. 39, no. 1, pp. 26–35, Jan. 2018, doi: 10.1093/eurheartj/ehx564.
  439. S. D. Solomon et al., “Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction,” Eur. Heart J., vol. 37, no. 5, pp. 455–462, Feb. 2016, doi: 10.1093/eurheartj/ehv464.
  440. A. Ahmed et al., “Effects of Digoxin on Morbidity and Mortality in Diastolic Heart Failure,” Circulation, vol. 114, no. 5, pp. 397–403, Aug. 2006, doi: 10.1161/CIRCULATIONAHA.106.628347.
  441. R. F. Faris, M. Flather, H. Purcell, P. A. P. Poole-Wilson, and A. J. Coats, “Diuretics for heart failure,” in Cochrane Database of Systematic Reviews, R. F. Faris, Ed., Chichester, UK: John Wiley & Sons, Ltd, 2006. doi: 10.1002/14651858.CD003838.pub3.
  442. B. Pitt et al., “Spironolactone for Heart Failure with Preserved Ejection Fraction,” N. Engl. J. Med., vol. 370, no. 15, pp. 1383–1392, Apr. 2014, doi: 10.1056/NEJMoa1313731.
  443. P. L. Myhre et al., “Association of Natriuretic Peptides With Cardiovascular Prognosis in Heart Failure With Preserved Ejection Fraction,” JAMA Cardiol., vol. 3, no. 10, p. 1000, Oct. 2018, doi: 10.1001/jamacardio.2018.2568.
  444. J. G. F. Cleland, “The perindopril in elderly people with chronic heart failure (PEP-CHF) study,” Eur. Heart J., vol. 27, no. 19, pp. 2338–2345, Oct. 2006, doi: 10.1093/eurheartj/ehl250.
  445. S. Yusuf et al., “Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial,” Lancet, vol. 362, no. 9386, pp. 777–781, Sep. 2003, doi: 10.1016/S0140-6736(03)14285-7.
  446. B. A. Mulder et al., “Effect of nebivolol on outcome in elderly patients with heart failure and atrial fibrillation: insights from SENIORS,” Eur. J. Heart Fail., vol. 14, no. 10, pp. 1171–1178, Oct. 2012, doi: 10.1093/eurjhf/hfs100.
  447. D. J. van Veldhuisen et al., “Beta-Blockade With Nebivolol in Elderly Heart Failure Patients With Impaired and Preserved Left Ventricular Ejection Fraction,” J. Am. Coll. Cardiol., vol. 53, no. 23, pp. 2150–2158, Jun. 2009, doi: 10.1016/j.jacc.2009.02.046.
  448. A. F. Hernandez, B. G. Hammill, C. M. O’Connor, K. A. Schulman, L. H. Curtis, and G. C. Fonarow, “Clinical Effectiveness of Beta-Blockers in Heart Failure,” J. Am. Coll. Cardiol., vol. 53, no. 2, pp. 184–192, Jan. 2009, doi: 10.1016/j.jacc.2008.09.031.
  449. N. Martin, K. Manoharan, J. Thomas, C. Davies, and R. T. Lumbers, “Beta-blockers and inhibitors of the renin-angiotensin aldosterone system for chronic heart failure with preserved ejection fraction,” Cochrane Database Syst. Rev., Jun. 2018, doi: 10.1002/14651858.CD012721.pub2.
  450. J. J. McMurray et al., “Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial,” Lancet, vol. 362, no. 9386, pp. 767–771, Sep. 2003, doi: 10.1016/S0140-6736(03)14283-3.
  451. S. Park et al., “Revascularization in Patients With Left Main Coronary Artery Disease and Left Ventricular Dysfunction,” J. Am. Coll. Cardiol., vol. 76, no. 12, pp. 1395–1406, Sep. 2020, doi: 10.1016/j.jacc.2020.07.047.
  452. A. Marui et al., “Comparison of Five-Year Outcomes of Coronary Artery Bypass Grafting Versus Percutaneous Coronary Intervention in Patients With Left Ventricular Ejection Fractions ≤50% Versus >50% (from the CREDO-Kyoto PCI/CABG Registry Cohort-2),” Am. J. Cardiol., vol. 114, no. 7, pp. 988–996, Oct. 2014, doi: 10.1016/j.amjcard.2014.07.007.
  453. M. Gaudino et al., “Treatment strategies in ischaemic left ventricular dysfunction: a network meta-analysis,” Eur. J. Cardio-Thoracic Surg., vol. 59, no. 2, pp. 293–301, Jan. 2021, doi: 10.1093/ejcts/ezaa319.
  454. P. Mehta et al., “Combined Left Ventricular Assist Device and Coronary Artery Bypass Grafting Surgery: Should We Bypass the Bypass?,” ASAIO J., vol. 66, no. 1, pp. 32–37, Jan. 2020, doi: 10.1097/MAT.0000000000000956.
  455. E. V. Potapov et al., “2019 EACTS Expert Consensus on long-term mechanical circulatory support,” Eur. J. Cardiothorac. Surg., vol. 56, no. 2, pp. 230–270, Aug. 2019, doi: 10.1093/EJCTS/EZZ098.
  456. S. Bangalore, Y. Guo, Z. Samadashvili, S. Blecker, and E. L. Hannan, “Revascularization in Patients With Multivessel Coronary Artery Disease and Severe Left Ventricular Systolic Dysfunction,” Circulation, vol. 133, no. 22, pp. 2132–2140, May 2016, doi: 10.1161/CIRCULATIONAHA.115.021168.
  457. C. R. Smith et al., “Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients,” N. Engl. J. Med., vol. 364, no. 23, pp. 2187–2198, Jun. 2011, doi: 10.1056/NEJMoa1103510.
  458. F. Levy et al., “Aortic Valve Replacement for Low-Flow/Low-Gradient Aortic Stenosis,” J. Am. Coll. Cardiol., vol. 51, no. 15, pp. 1466–1472, Apr. 2008, doi: 10.1016/j.jacc.2007.10.067.
  459. J.-L. Monin et al., “Low-Gradient Aortic Stenosis,” Circulation, vol. 108, no. 3, pp. 319–324, Jul. 2003, doi: 10.1161/01.CIR.0000079171.43055.46.
  460. J. Wacławski et al., “Aortic balloon valvuloplasty as a bridge-to-decision in patients with aortic stenosis,” Adv. Interv. Cardiol., vol. 15, no. 2, pp. 195–202, 2019, doi: 10.5114/aic.2019.86012.
  461. J. Zhong et al., “Balloon Aortic Valvuloplasty in the Modern Era: A Review of Outcomes, Indications, and Technical Advances,” J. Soc. Cardiovasc. Angiogr. Interv., vol. 2, no. 4, p. 101002, Jul. 2023, doi: 10.1016/j.jscai.2023.101002.
  462. H. P. Chaliki et al., “Outcomes After Aortic Valve Replacement in Patients With Severe Aortic Regurgitation and Markedly Reduced Left Ventricular Function,” Circulation, vol. 106, no. 21, pp. 2687–2693, Nov. 2002, doi: 10.1161/01.CIR.0000038498.59829.38.
  463. P. Tornos, A. Sambola, G. Permanyer-Miralda, A. Evangelista, Z. Gomez, and J. Soler-Soler, “Long-Term Outcome of Surgically Treated Aortic Regurgitation,” J. Am. Coll. Cardiol., vol. 47, no. 5, pp. 1012–1017, Mar. 2006, doi: 10.1016/j.jacc.2005.10.049.
  464. T. Kaneko et al., “Aortic Regurgitation With Markedly Reduced Left Ventricular Function Is Not a Contraindication for Aortic Valve Replacement,” Ann. Thorac. Surg., vol. 102, no. 1, pp. 41–47, Jul. 2016, doi: 10.1016/j.athoracsur.2015.12.068.
  465. K. S. Dujardin, M. Enriquez-Sarano, H. V. Schaff, K. R. Bailey, J. B. Seward, and A. J. Tajik, “Mortality and Morbidity of Aortic Regurgitation in Clinical Practice,” Circulation, vol. 99, no. 14, pp. 1851–1857, Apr. 1999, doi: 10.1161/01.CIR.99.14.1851.
  466. E. Klodas, M. Enriquez-Sarano, A. J. Tajik, C. J. Mullany, K. R. Bailey, and J. B. Seward, “Optimizing Timing of Surgical Correction in Patients With Severe Aortic Regurgitation: Role of Symptoms,” J. Am. Coll. Cardiol., vol. 30, no. 3, pp. 746–752, Jul. 1997, doi: 10.1016/S0735-1097(97)00205-2.
  467. S.-H. Yoon et al., “Transcatheter Aortic Valve Replacement in Pure Native Aortic Valve Regurgitation,” J. Am. Coll. Cardiol., vol. 70, no. 22, pp. 2752–2763, Dec. 2017, doi: 10.1016/j.jacc.2017.10.006.
  468. J. C. Jung, M.-J. Jang, and H. Y. Hwang, “Meta-Analysis Comparing Mitral Valve Repair Versus Replacement for Degenerative Mitral Regurgitation Across All Ages,” Am. J. Cardiol., vol. 123, no. 3, pp. 446–453, Feb. 2019, doi: 10.1016/j.amjcard.2018.10.024.
  469. S. Lazam et al., “Twenty-Year Outcome After Mitral Repair Versus Replacement for Severe Degenerative Mitral Regurgitation,” Circulation, vol. 135, no. 5, pp. 410–422, Jan. 2017, doi: 10.1161/CIRCULATIONAHA.116.023340.
  470. J. Chikwe et al., “Relation of Mitral Valve Surgery Volume to Repair Rate, Durability, and Survival,” J. Am. Coll. Cardiol., vol. 69, no. 19, pp. 2397–2406, May 2017, doi: 10.1016/j.jacc.2017.02.026.
  471. T. E. David, C. M. David, W. Tsang, M. Lafreniere-Roula, and C. Manlhiot, “Long-Term Results of Mitral Valve Repair for Regurgitation Due to Leaflet Prolapse,” J. Am. Coll. Cardiol., vol. 74, no. 8, pp. 1044–1053, Aug. 2019, doi: 10.1016/j.jacc.2019.06.052.
  472. T. Feldman et al., “Percutaneous Repair or Surgery for Mitral Regurgitation,” N. Engl. J. Med., vol. 364, no. 15, pp. 1395–1406, Apr. 2011, doi: 10.1056/NEJMoa1009355.
  473. N. Buzzatti et al., “Transcatheter or surgical repair for degenerative mitral regurgitation in elderly patients: A propensity-weighted analysis,” J. Thorac. Cardiovasc. Surg., vol. 158, no. 1, pp. 86-94.e1, Jul. 2019, doi: 10.1016/j.jtcvs.2019.01.023.
  474. G. W. Stone et al., “Transcatheter Mitral-Valve Repair in Patients with Heart Failure,” N. Engl. J. Med., vol. 379, no. 24, pp. 2307–2318, Dec. 2018, doi: 10.1056/NEJMoa1806640.
  475. A. J. S. Coats et al., “The management of secondary mitral regurgitation in patients with heart failure: a joint position statement from the Heart Failure Association (HFA), European Association of Cardiovascular Imaging (EACVI), European Heart Rhythm Association (EHRA), and Eur,” Eur. Heart J., vol. 42, no. 13, pp. 1254–1269, Mar. 2021, doi: 10.1093/eurheartj/ehab086.
  476. C. Godino et al., “MitraClip in secondary mitral regurgitation as a bridge to heart transplantation: 1-year outcomes from the International MitraBridge Registry,” J. Hear. Lung Transplant., vol. 39, no. 12, pp. 1353–1362, Dec. 2020, doi: 10.1016/j.healun.2020.09.005.
  477. G. D. Dreyfus, P. J. Corbi, K. M. J. Chan, and T. Bahrami, “Secondary Tricuspid Regurgitation or Dilatation: Which Should Be the Criteria for Surgical Repair?,” Ann. Thorac. Surg., vol. 79, no. 1, pp. 127–132, Jan. 2005, doi: 10.1016/j.athoracsur.2004.06.057.
  478. N. R. Van de Veire et al., “Tricuspid annuloplasty prevents right ventricular dilatation and progression of tricuspid regurgitation in patients with tricuspid annular dilatation undergoing mitral valve repair,” J. Thorac. Cardiovasc. Surg., vol. 141, no. 6, pp. 1431–1439, Jun. 2011, doi: 10.1016/j.jtcvs.2010.05.050.
  479. J. Chikwe, S. Itagaki, A. Anyanwu, and D. H. Adams, “Impact of Concomitant Tricuspid Annuloplasty on Tricuspid Regurgitation, Right Ventricular Function, and Pulmonary Artery Hypertension After Repair of Mitral Valve Prolapse,” J. Am. Coll. Cardiol., vol. 65, no. 18, pp. 1931–1938, May 2015, doi: 10.1016/j.jacc.2015.01.059.
  480. V. Badhwar et al., “Performing Concomitant Tricuspid Valve Repair at the Time of Mitral Valve Operations Is Not Associated With Increased Operative Mortality,” Ann. Thorac. Surg., vol. 103, no. 2, pp. 587–593, Feb. 2017, doi: 10.1016/j.athoracsur.2016.06.004.
  481. A. A. Brescia et al., “Outcomes of Guideline-Directed Concomitant Annuloplasty for Functional Tricuspid Regurgitation,” Ann. Thorac. Surg., vol. 109, no. 4, pp. 1227–1232, Apr. 2020, doi: 10.1016/j.athoracsur.2019.07.035.
  482. M. Hamandi et al., “Outcomes of Isolated Tricuspid Valve Surgery Have Improved in the Modern Era,” Ann. Thorac. Surg., vol. 108, no. 1, pp. 11–15, Jul. 2019, doi: 10.1016/j.athoracsur.2019.03.004.
  483. A. N. Kadri et al., “Outcomes of patients with severe tricuspid regurgitation and congestive heart failure,” Heart, vol. 105, no. 23, pp. 1813–1817, Dec. 2019, doi: 10.1136/heartjnl-2019-315004.
  484. S. Cazeau et al., “Effects of Multisite Biventricular Pacing in Patients with Heart Failure and Intraventricular Conduction Delay,” N. Engl. J. Med., vol. 344, no. 12, pp. 873–880, Mar. 2001, doi: 10.1056/NEJM200103223441202.
  485. J. G. F. Cleland et al., “The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure,” N. Engl. J. Med., vol. 352, no. 15, pp. 1539–1549, Apr. 2005, doi: 10.1056/NEJMoa050496.
  486. J. G. F. Cleland et al., “Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase],” Eur. Heart J., vol. 27, no. 16, pp. 1928–1932, Jul. 2006, doi: 10.1093/eurheartj/ehl099.
  487. J. G. F. Cleland et al., “Long‐term mortality with cardiac resynchronization therapy in the Cardiac Resynchronization‐Heart Failure (CARE‐HF) trial,” Eur. J. Heart Fail., vol. 14, no. 6, pp. 628–634, Jun. 2012, doi: 10.1093/eurjhf/hfs055.
  488. M. R. Bristow et al., “Cardiac-Resynchronization Therapy with or without an Implantable Defibrillator in Advanced Chronic Heart Failure,” N. Engl. J. Med., vol. 350, no. 21, pp. 2140–2150, May 2004, doi: 10.1056/NEJMoa032423.
  489. J. G. Cleland et al., “An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure,” Eur. Heart J., vol. 34, no. 46, pp. 3547–3556, Dec. 2013, doi: 10.1093/eurheartj/eht290.
  490. A. J. Moss et al., “Cardiac-Resynchronization Therapy for the Prevention of Heart-Failure Events,” N. Engl. J. Med., vol. 361, no. 14, pp. 1329–1338, Oct. 2009, doi: 10.1056/NEJMoa0906431.
  491. I. Goldenberg et al., “Survival with Cardiac-Resynchronization Therapy in Mild Heart Failure,” N. Engl. J. Med., vol. 370, no. 18, pp. 1694–1701, May 2014, doi: 10.1056/NEJMoa1401426.
  492. C. Linde, W. T. Abraham, M. R. Gold, M. St. John Sutton, S. Ghio, and C. Daubert, “Randomized Trial of Cardiac Resynchronization in Mildly Symptomatic Heart Failure Patients and in Asymptomatic Patients With Left Ventricular Dysfunction and Previous Heart Failure Symptoms,” J. Am. Coll. Cardiol., vol. 52, no. 23, pp. 1834–1843, Dec. 2008, doi: 10.1016/j.jacc.2008.08.027.
  493. C. Daubert et al., “Prevention of Disease Progression by Cardiac Resynchronization Therapy in Patients With Asymptomatic or Mildly Symptomatic Left Ventricular Dysfunction,” J. Am. Coll. Cardiol., vol. 54, no. 20, pp. 1837–1846, Nov. 2009, doi: 10.1016/j.jacc.2009.08.011.
  494. C. Linde et al., “Long-term impact of cardiac resynchronization therapy in mild heart failure: 5-year results from the REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) study,” Eur. Heart J., vol. 34, no. 33, pp. 2592–2599, Sep. 2013, doi: 10.1093/eurheartj/eht160.
  495. B. Woods et al., “Individual patient data network meta-analysis of mortality effects of implantable cardiac devices,” Heart, vol. 101, no. 22, pp. 1800–1806, Nov. 2015, doi: 10.1136/heartjnl-2015-307634.
  496. A. B. Curtis et al., “Biventricular Pacing for Atrioventricular Block and Systolic Dysfunction,” N. Engl. J. Med., vol. 368, no. 17, pp. 1585–1593, Apr. 2013, doi: 10.1056/NEJMoa1210356.
  497. C. Leclercq, “Comparative effects of permanent biventricular and right-univentricular pacing in heart failure patients with chronic atrial fibrillation,” Eur. Heart J., vol. 23, no. 22, pp. 1780–1787, Nov. 2002, doi: 10.1053/euhj.2002.3232.
  498. M. L. A.-C. I. Brignole M, Pokushalov E, Pentimalli F, Palmisano P, Chieffo E, Occhetta E, Quartieri F, Calo L, Ungar A, “A randomized controlled trial of atrioventricular junction ablation and cardiac resynchronization therapy in patients with permanent atrial fibrillation and narrow QRS,” Eur Hear. J, no. 39, pp. 3999-4008., 2018, doi: 10.1093/eurheartj/ehy555.
  499. Y. S. Yin J, Hu H, Wang Y, Xue M, Li X, Cheng W, Li X, “Effects of atrioventricular nodal ablation on permanent atrial fibrillation patients with cardiac resynchronization therapy: a systematic review and meta-analysis,” Clin Cardiol, no. 37, pp. 707-715., 2014, doi: 10.1002/clc.22312.
  500. R. N. DOSHI et al., “Left Ventricular‐Based Cardiac Stimulation Post AV Nodal Ablation Evaluation (The PAVE Study),” J. Cardiovasc. Electrophysiol., vol. 16, no. 11, pp. 1160–1165, Nov. 2005, doi: 10.1111/j.1540-8167.2005.50062.x.
  501. D. G. Jones et al., “A Randomized Trial to Assess Catheter Ablation Versus Rate Control in the Management of Persistent Atrial Fibrillation in Heart Failure,” J. Am. Coll. Cardiol., vol. 61, no. 18, pp. 1894–1903, May 2013, doi: 10.1016/j.jacc.2013.01.069.
  502. R. M. Gage, K. V. Burns, and A. J. Bank, “Echocardiographic and clinical response to cardiac resynchronization therapy in heart failure patients with and without previous right ventricular pacing,” Eur. J. Heart Fail., vol. 16, no. 11, pp. 1199–1205, Nov. 2014, doi: 10.1002/ejhf.143.
  503. R. C. Funck et al., “Characteristics of a large sample of candidates for permanent ventricular pacing included in the Biventricular Pacing for Atrio-ventricular Block to Prevent Cardiac Desynchronization Study (BioPace),” EP Eur., vol. 16, no. 3, pp. 354–362, Mar. 2014, doi: 10.1093/europace/eut343.
  504. J. F. Beshai et al., “Cardiac-Resynchronization Therapy in Heart Failure with Narrow QRS Complexes,” N. Engl. J. Med., vol. 357, no. 24, pp. 2461–2471, Dec. 2007, doi: 10.1056/NEJMoa0706695.
  505. J. Steffel et al., “The effect of QRS duration on cardiac resynchronization therapy in patients with a narrow QRS complex: a subgroup analysis of the EchoCRT trial,” Eur. Heart J., vol. 36, no. 30, pp. 1983–1989, Aug. 2015, doi: 10.1093/eurheartj/ehv242.
  506. R. Zusterzeel et al., “Cardiac Resynchronization Therapy in Women,” JAMA Intern. Med., vol. 174, no. 8, p. 1340, Aug. 2014, doi: 10.1001/jamainternmed.2014.2717.
  507. F. M. Kusumoto et al., “HRS/ACC/AHA Expert Consensus Statement on the Use of Implantable Cardioverter-Defibrillator Therapy in Patients Who Are Not Included or Not Well Represented in Clinical Trials,” J. Am. Coll. Cardiol., vol. 64, no. 11, pp. 1143–1177, Sep. 2014, doi: 10.1016/j.jacc.2014.04.008.
  508. P. S. Sharma et al., “Permanent His-bundle pacing as an alternative to biventricular pacing for cardiac resynchronization therapy: A multicenter experience,” Hear. Rhythm, vol. 15, no. 3, pp. 413–420, Mar. 2018, doi: 10.1016/j.hrthm.2017.10.014.
  509. P. Vijayaraman et al., “Permanent His bundle pacing: Recommendations from a Multicenter His Bundle Pacing Collaborative Working Group for standardization of definitions, implant measurements, and follow-up,” Hear. Rhythm, vol. 15, no. 3, pp. 460–468, Mar. 2018, doi: 10.1016/j.hrthm.2017.10.039.
  510. F. Giraldi et al., “Long-Term Effectiveness of Cardiac Resynchronization Therapy in Heart Failure Patients With Unfavorable Cardiac Veins Anatomy,” J. Am. Coll. Cardiol., vol. 58, no. 5, pp. 483–490, Jul. 2011, doi: 10.1016/j.jacc.2011.02.065.
  511. R. Barba-Pichardo, A. Manovel Sánchez, J. M. Fernández-Gómez, P. Moriña-Vázquez, J. Venegas-Gamero, and M. Herrera-Carranza, “Ventricular resynchronization therapy by direct His-bundle pacing using an internal cardioverter defibrillator,” EP Eur., vol. 15, no. 1, pp. 83–88, Jan. 2013, doi: 10.1093/europace/eus228.
  512. W. Huang et al., “Benefits of Permanent His Bundle Pacing Combined With Atrioventricular Node Ablation in Atrial Fibrillation Patients With Heart Failure With Both Preserved and Reduced Left Ventricular Ejection Fraction,” J. Am. Heart Assoc., vol. 6, no. 4, Apr. 2017, doi: 10.1161/JAHA.116.005309.
  513. P. Deshmukh, D. A. Casavant, M. Romanyshyn, and K. Anderson, “Permanent, Direct His-Bundle Pacing,” Circulation, vol. 101, no. 8, pp. 869–877, Feb. 2000, doi: 10.1161/01.CIR.101.8.869.
  514. E. Occhetta et al., “Prevention of Ventricular Desynchronization by Permanent Para-Hisian Pacing After Atrioventricular Node Ablation in Chronic Atrial Fibrillation,” J. Am. Coll. Cardiol., vol. 47, no. 10, pp. 1938–1945, May 2006, doi: 10.1016/j.jacc.2006.01.056.
  515. M. Abdelrahman et al., “Clinical Outcomes of His Bundle Pacing Compared to Right Ventricular Pacing,” J. Am. Coll. Cardiol., vol. 71, no. 20, pp. 2319–2330, May 2018, doi: 10.1016/j.jacc.2018.02.048.
  516. P. Vijayaraman, A. Naperkowski, K. A. Ellenbogen, and G. Dandamudi, “Electrophysiologic Insights Into Site of Atrioventricular Block,” JACC Clin. Electrophysiol., vol. 1, no. 6, pp. 571–581, Dec. 2015, doi: 10.1016/j.jacep.2015.09.012.
  517. M. St John Sutton et al., “Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril.,” Circulation, vol. 89, no. 1, pp. 68–75, Jan. 1994, doi: 10.1161/01.CIR.89.1.68.
  518. H. Søholm et al., “Repeated echocardiography after first ever ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention – is it necessary?,” Eur. Hear. J. Acute Cardiovasc. Care, vol. 4, no. 6, pp. 528–536, Dec. 2015, doi: 10.1177/2048872614556000.
  519. M. A. Daubert et al., “Cardiac remodeling after large ST-elevation myocardial infarction in the current therapeutic era,” Am. Heart J., vol. 223, pp. 87–97, May 2020, doi: 10.1016/j.ahj.2020.02.017.
  520. D. S. Chew et al., “Change in Left Ventricular Ejection Fraction Following First Myocardial Infarction and Outcome,” JACC Clin. Electrophysiol., vol. 4, no. 5, pp. 672–682, May 2018, doi: 10.1016/j.jacep.2017.12.015.
  521. A. J. Moss et al., “Prophylactic Implantation of a Defibrillator in Patients with Myocardial Infarction and Reduced Ejection Fraction,” N. Engl. J. Med., vol. 346, no. 12, pp. 877–883, Mar. 2002, doi: 10.1056/NEJMoa013474.
  522. A. S. Desai, J. C. Fang, W. H. Maisel, and K. L. Baughman, “Implantable Defibrillators for the Prevention of Mortality in Patients With Nonischemic Cardiomyopathy,” JAMA, vol. 292, no. 23, p. 2874, Dec. 2004, doi: 10.1001/jama.292.23.2874.
  523. G. D. Sanders, M. A. Hlatky, and D. K. Owens, “Cost-Effectiveness of Implantable Cardioverter–Defibrillators,” N. Engl. J. Med., vol. 353, no. 14, pp. 1471–1480, Oct. 2005, doi: 10.1056/NEJMsa051989.
  524. A. E. Buxton, K. L. Lee, J. D. Fisher, M. E. Josephson, E. N. Prystowsky, and G. Hafley, “A Randomized Study of the Prevention of Sudden Death in Patients with Coronary Artery Disease,” N. Engl. J. Med., vol. 341, no. 25, pp. 1882–1890, Dec. 1999, doi: 10.1056/NEJM199912163412503.
  525. K. A. Gatzoulis et al., “Arrhythmic risk stratification in post-myocardial infarction patients with preserved ejection fraction: the PRESERVE EF study,” Eur. Heart J., vol. 40, no. 35, pp. 2940–2949, Sep. 2019, doi: 10.1093/eurheartj/ehz260.
  526. S. H. Hohnloser et al., “Prophylactic Use of an Implantable Cardioverter–Defibrillator after Acute Myocardial Infarction,” N. Engl. J. Med., vol. 351, no. 24, pp. 2481–2488, Dec. 2004, doi: 10.1056/NEJMoa041489.
  527. B. A. Steinberg et al., “Outcomes of Implantable Cardioverter-Defibrillator Use in Patients With Comorbidities,” JACC Hear. Fail., vol. 2, no. 6, pp. 623–629, Dec. 2014, doi: 10.1016/j.jchf.2014.06.007.
  528. C. E. Raphael et al., “The effect of duration of follow-up and presence of competing risk on lifespan-gain from implantable cardioverter defibrillator therapy: who benefits the most?,” Eur. Heart J., vol. 36, no. 26, pp. 1676–1688, Jul. 2015, doi: 10.1093/eurheartj/ehv102.
  529. R. J. H. Miller, J. G. Howlett, D. V. Exner, P. M. Campbell, A. D. M. Grant, and S. B. Wilton, “Baseline Functional Class and Therapeutic Efficacy of Common Heart Failure Interventions: A Systematic Review and Meta-analysis,” Can. J. Cardiol., vol. 31, no. 6, pp. 792–799, Jun. 2015, doi: 10.1016/j.cjca.2014.12.031.
  530. D. Erkapic et al., “Long-term benefit of implantable cardioverter/defibrillator therapy after elective device replacement: results of the INcidence free SUrvival after ICD REplacement (INSURE) trial—a prospective multicentre study,” Eur. Heart J., vol. 34, no. 2, pp. 130–137, Jan. 2013, doi: 10.1093/eurheartj/ehs177.
  531. V. Kini et al., “Appropriateness of Primary Prevention Implantable Cardioverter-Defibrillators at the Time of Generator Replacement,” J. Am. Coll. Cardiol., vol. 63, no. 22, pp. 2388–2394, Jun. 2014, doi: 10.1016/j.jacc.2014.03.025.
  532. F. M. Merchant, P. Jones, S. Wehrenberg, M. S. Lloyd, and L. A. Saxon, “Incidence of Defibrillator Shocks After Elective Generator Exchange Following Uneventful First Battery Life,” J. Am. Heart Assoc., vol. 3, no. 6, Dec. 2014, doi: 10.1161/JAHA.114.001289.
  533. S.-C. Yap et al., “Evaluation of the need of elective implantable cardioverter-defibrillator generator replacement in primary prevention patients without prior appropriate ICD therapy,” Heart, vol. 100, no. 15, pp. 1188–1192, Aug. 2014, doi: 10.1136/heartjnl-2014-305535.
  534. A. A. ALSHEIKH‐ALI, M. HOMER, P. V. MADDUKURI, B. KALSMITH, N. A. M. ESTES, and M. S. LINK, “Time‐Dependence of Appropriate Implantable Defibrillator Therapy in Patients with Ischemic Cardiomyopathy,” J. Cardiovasc. Electrophysiol., vol. 19, no. 8, pp. 784–789, Aug. 2008, doi: 10.1111/j.1540-8167.2008.01111.x.
  535. F. Ader et al., “FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype‐phenotype correlations,” Clin. Genet., vol. 96, no. 4, pp. 317–329, Oct. 2019, doi: 10.1111/cge.13594.
  536. E. Kayvanpour et al., “Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals,” Clin. Res. Cardiol., vol. 106, no. 2, pp. 127–139, Feb. 2017, doi: 10.1007/s00392-016-1033-6.
  537. M. F. Ortiz-Genga et al., “Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies,” J. Am. Coll. Cardiol., vol. 68, no. 22, pp. 2440–2451, Dec. 2016, doi: 10.1016/j.jacc.2016.09.927.
  538. M. M. G. van den Hoogenhof et al., “RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy Related to Disturbed Calcium Handling,” Circulation, vol. 138, no. 13, pp. 1330–1342, Sep. 2018, doi: 10.1161/CIRCULATIONAHA.117.031947.
  539. M. Gigli et al., “Genetic Risk of Arrhythmic Phenotypes in Patients With Dilated Cardiomyopathy,” J. Am. Coll. Cardiol., vol. 74, no. 11, pp. 1480–1490, Sep. 2019, doi: 10.1016/j.jacc.2019.06.072.
  540. K. Wahbi et al., “Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies,” Circulation, vol. 140, no. 4, pp. 293–302, Jul. 2019, doi: 10.1161/CIRCULATIONAHA.118.039410.
  541. I. A. W. van Rijsingen et al., “Risk Factors for Malignant Ventricular Arrhythmias in Lamin A/C Mutation Carriers,” J. Am. Coll. Cardiol., vol. 59, no. 5, pp. 493–500, Jan. 2012, doi: 10.1016/j.jacc.2011.08.078.
  542. M. Thuillot et al., “External validation of risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers,” Eur. J. Heart Fail., vol. 21, no. 2, pp. 253–254, Feb. 2019, doi: 10.1002/ejhf.1384.
  543. B. León Salas et al., “Subcutaneous implantable cardioverter‐defibrillator in primary and secondary prevention of sudden cardiac death: A meta‐analysis,” Pacing Clin. Electrophysiol., vol. 42, no. 9, pp. 1253–1268, Sep. 2019, doi: 10.1111/pace.13774.
  544. А. А. Сафиуллина et al., “Эффективность модуляции сердечной сократимости у пациентов с хронической сердечной недостаточностью и фибрилляцией предсердий: результаты 12-месячного наблюдения,” Терапевтический архив, vol. 94, no. 9, pp. 1078–1084, Oct. 2022, doi: 10.26442/00403660.2022.09.201840.
  545. W. T. Abraham et al., “A Randomized Controlled Trial to Evaluate the Safety and Efficacy of Cardiac Contractility Modulation,” JACC Hear. Fail., vol. 6, no. 10, pp. 874–883, Oct. 2018, doi: 10.1016/j.jchf.2018.04.010.
  546. A. Kadish et al., “A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure,” Am. Heart J., vol. 161, no. 2, pp. 329-337.e2, Feb. 2011, doi: 10.1016/j.ahj.2010.10.025.
  547. M. M. Borggrefe et al., “Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure,” Eur. Heart J., vol. 29, no. 8, pp. 1019–1028, Mar. 2008, doi: 10.1093/eurheartj/ehn020.
  548. P. Wiegn et al., “Safety, Performance, and Efficacy of Cardiac Contractility Modulation Delivered by the 2-Lead Optimizer Smart System,” Circ. Hear. Fail., vol. 13, no. 4, Apr. 2020, doi: 10.1161/CIRCHEARTFAILURE.119.006512.
  549. F. Giallauria, G. Cuomo, A. Parlato, N. Y. Raval, J. Kuschyk, and A. J. Stewart Coats, “A comprehensive individual patient data meta‐analysis of the effects of cardiac contractility modulation on functional capacity and heart failure‐related quality of life,” ESC Hear. Fail., vol. 7, no. 5, pp. 2922–2932, Oct. 2020, doi: 10.1002/ehf2.12902.
  550. O. H. Frazier et al., “Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device,” Ann. Thorac. Surg., vol. 53, no. 6, pp. 1080–1090, Jun. 1992, doi: 10.1016/0003-4975(92)90393-I.
  551. J. Garbade et al., “Postmarket Experience With HeartMate 3 Left Ventricular Assist Device: 30-Day Outcomes From the ELEVATE Registry,” Ann. Thorac. Surg., vol. 107, no. 1, pp. 33–39, Jan. 2019, doi: 10.1016/j.athoracsur.2018.07.092.
  552. U. P. Jorde et al., “Results of the Destination Therapy Post-Food and Drug Administration Approval Study With a Continuous Flow Left Ventricular Assist Device,” J. Am. Coll. Cardiol., vol. 63, no. 17, pp. 1751–1757, May 2014, doi: 10.1016/j.jacc.2014.01.053.
  553. J. K. Kirklin et al., “Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device,” J. Hear. Lung Transplant., vol. 33, no. 1, pp. 12–22, Jan. 2014, doi: 10.1016/j.healun.2013.11.001.
  554. M. R. Mehra et al., “Healthcare Resource Use and Cost Implications in the MOMENTUM 3 Long-Term Outcome Study,” Circulation, vol. 138, no. 18, pp. 1923–1934, Oct. 2018, doi: 10.1161/CIRCULATIONAHA.118.035722.
  555. M. R. Mehra et al., “A Fully Magnetically Levitated Left Ventricular Assist Device — Final Report,” N. Engl. J. Med., vol. 380, no. 17, pp. 1618–1627, Apr. 2019, doi: 10.1056/NEJMoa1900486.
  556. I. Netuka et al., “Fully Magnetically Levitated Left Ventricular Assist System for Treating Advanced HF,” J. Am. Coll. Cardiol., vol. 66, no. 23, pp. 2579–2589, Dec. 2015, doi: 10.1016/j.jacc.2015.09.083.
  557. E. A. Rose et al., “The REMATCH trial: rationale, design, and end points,” Ann. Thorac. Surg., vol. 67, no. 3, pp. 723–730, Mar. 1999, doi: 10.1016/S0003-4975(99)00042-9.
  558. J. D. Schmitto, J. S. Hanke, S. V. Rojas, M. Avsar, and A. Haverich, “First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate III),” J. Hear. Lung Transplant., vol. 34, no. 6, pp. 858–860, Jun. 2015, doi: 10.1016/j.healun.2015.03.001.
  559. R. C. Starling et al., “Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients,” JACC Hear. Fail., vol. 5, no. 7, pp. 518–527, Jul. 2017, doi: 10.1016/j.jchf.2017.02.016.
  560. R. S. Taylor et al., “Impact of Exercise Rehabilitation on Exercise Capacity and Quality-of-Life in Heart Failure,” J. Am. Coll. Cardiol., vol. 73, no. 12, pp. 1430–1443, Apr. 2019, doi: 10.1016/j.jacc.2018.12.072.
  561. R. S. Taylor et al., “Impact of exercise‐based cardiac rehabilitation in patients with heart failure (ExTraMATCH II) on mortality and hospitalisation: an individual patient data meta‐analysis of randomised trials,” Eur. J. Heart Fail., vol. 20, no. 12, pp. 1735–1743, Dec. 2018, doi: 10.1002/ejhf.1311.
  562. A. Pandey et al., “Exercise Training in Patients With Heart Failure and Preserved Ejection Fraction,” Circ. Hear. Fail., vol. 8, no. 1, pp. 33–40, Jan. 2015, doi: 10.1161/CIRCHEARTFAILURE.114.001615.
  563. R. S. Taylor et al., “Exercise-Based Rehabilitation for Heart Failure,” JACC Hear. Fail., vol. 7, no. 8, pp. 691–705, Aug. 2019, doi: 10.1016/j.jchf.2019.04.023.
  564. R. S. Taylor et al., “Exercise-based cardiac rehabilitation for chronic heart failure: the EXTRAMATCH II individual participant data meta-analysis,” Health Technol. Assess. (Rockv)., vol. 23, no. 25, pp. 1–98, May 2019, doi: 10.3310/hta23250.
  565. D. W. Kitzman et al., “Effect of Endurance Exercise Training on Endothelial Function and Arterial Stiffness in Older Patients With Heart Failure and Preserved Ejection Fraction,” J. Am. Coll. Cardiol., vol. 62, no. 7, pp. 584–592, Aug. 2013, doi: 10.1016/j.jacc.2013.04.033.
  566. H. Ismail, J. McFarlane, and N. A. Smart, “Is Exercise Training Beneficial for Heart Failure Patients Taking β‐Adrenergic Blockers? A Systematic Review and Meta‐Analysis,” Congest. Hear. Fail., vol. 19, no. 2, pp. 61–69, Mar. 2013, doi: 10.1111/chf.12000.
  567. D. W. Kitzman et al., “Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients With Heart Failure With Preserved Ejection Fraction,” JAMA, vol. 315, no. 1, p. 36, Jan. 2016, doi: 10.1001/jama.2015.17346.
  568. M. Ambrosetti et al., “Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology,” Eur. J. Prev. Cardiol., vol. 28, no. 5, pp. 460–495, May 2021, doi: 10.1177/2047487320913379.
  569. N. Smart and T. H. Marwick, “Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity,” Am. J. Med., vol. 116, no. 10, pp. 693–706, May 2004, doi: 10.1016/j.amjmed.2003.11.033.
  570. B. J. R. Buckley et al., “Cardiac rehabilitation and all-cause mortality in patients with heart failure: a retrospective cohort study,” Eur. J. Prev. Cardiol., vol. 28, no. 15, pp. 1704–1710, Dec. 2021, doi: 10.1093/eurjpc/zwab035.
  571. S. Stewart, A. J. Vandenbroek, S. Pearson, and J. D. Horowitz, “Prolonged Beneficial Effects of a Home-Based Intervention on Unplanned Readmissions and Mortality Among Patients With Congestive Heart Failure,” Arch. Intern. Med., vol. 159, no. 3, p. 257, Feb. 1999, doi: 10.1001/archinte.159.3.257.
  572. L. Anderson et al., “Home-based versus centre-based cardiac rehabilitation,” Cochrane Database Syst. Rev., vol. 2017, no. 10, Jun. 2017, doi: 10.1002/14651858.CD007130.pub4.
  573. Y.-W. Chen et al., “Home-based cardiac rehabilitation improves quality of life, aerobic capacity, and readmission rates in patients with chronic heart failure,” Medicine (Baltimore)., vol. 97, no. 4, p. e9629, Jan. 2018, doi: 10.1097/MD.0000000000009629.
  574. C. C. Lang et al., “A randomised controlled trial of a facilitated home-based rehabilitation intervention in patients with heart failure with preserved ejection fraction and their caregivers: the REACH-HFpEF Pilot Study,” BMJ Open, vol. 8, no. 4, p. e019649, Apr. 2018, doi: 10.1136/bmjopen-2017-019649.
  575. A.-D. Zwisler et al., “Home-based cardiac rehabilitation for people with heart failure: A systematic review and meta-analysis,” Int. J. Cardiol., vol. 221, pp. 963–969, Oct. 2016, doi: 10.1016/j.ijcard.2016.06.207.
  576. A. H. Cavalheiro, J. Silva Cardoso, A. Rocha, E. Moreira, and L. F. Azevedo, “Effectiveness of Tele-rehabilitation Programs in Heart Failure: A Systematic Review and Meta-analysis,” Heal. Serv. Insights, vol. 14, p. 117863292110216, Jan. 2021, doi: 10.1177/11786329211021668.
  577. H. M. Dalal et al., “The effects and costs of home-based rehabilitation for heart failure with reduced ejection fraction: The REACH-HF multicentre randomized controlled trial,” Eur. J. Prev. Cardiol., vol. 26, no. 3, pp. 262–272, Feb. 2019, doi: 10.1177/2047487318806358.
  578. “Федеральный закон от 29.07.2017 N 242-ФЗ ‘О внесении изменений в отдельные законодательные акты Российской Федерации по вопросам применения информационных технологий в сфере охраны Здоровья’”, [Online]. Available: https://www.garant.ru/products/ipo/prime/doc/716328
  579. R. J. Thomas et al., “Home-Based Cardiac Rehabilitation: A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology,” Circulation, vol. 140, no. 1, Jul. 2019, doi: 10.1161/CIR.0000000000000663.
  580. E. Piotrowicz et al., “Quality of life in heart failure patients undergoing hybrid comprehensive telerehabilitation versus usual care – results of the Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomized Clinical Trial,” Arch. Med. Sci., Aug. 2020, doi: 10.5114/aoms.2020.98350.
  581. “Приказ Министерства здравоохранения РФ от 31 июля 2020 г. N 778н ‘О Порядке организации медицинской реабилитации взрослых’ Зарегистрировано в Минюсте РФ 25 сентября 2020 г. Регистрационный № 60039”, [Online]. Available: https://www.garant.ru/products/ipo/prime/doc/74581688/
  582. M. Lainscak et al., “Self‐care management of heart failure: practical recommendations from the Patient Care Committee of the Heart Failure Association of the European Society of Cardiology,” Eur. J. Heart Fail., vol. 13, no. 2, pp. 115–126, Feb. 2011, doi: 10.1093/eurjhf/hfq219.
  583. M. Schou et al., “Extended heart failure clinic follow-up in low-risk patients: a randomized clinical trial (NorthStar),” Eur. Heart J., vol. 34, no. 6, pp. 432–442, Feb. 2013, doi: 10.1093/eurheartj/ehs235.
  584. G. Gelbrich et al., “Effects of structured heart failure disease management on mortality and morbidity depend on patients’ mood: results from the Interdisciplinary Network for Heart Failure Study.,” Eur. J. Heart Fail., vol. 16, no. 10, pp. 1133–1141, Oct. 2014, doi: 10.1002/ejhf.150.
  585. K. Kamiya et al., “Multidisciplinary Cardiac Rehabilitation and Long-Term Prognosis in Patients With Heart Failure,” Circ. Hear. Fail., vol. 13, no. 10, Oct. 2020, doi: 10.1161/CIRCHEARTFAILURE.119.006798.
  586. “Рекомендации по диспансерному наблюдению больных с сердечно-сосудистыми заболеваниями //авторский коллектив под редакцией академика Е.И. Чазова. Москва, 2014 г”.
  587. N. H. Jonkman et al., “What Are Effective Program Characteristics of Self-Management Interventions in Patients With Heart Failure? An Individual Patient Data Meta-analysis,” J. Card. Fail., vol. 22, no. 11, pp. 861–871, Nov. 2016, doi: 10.1016/j.cardfail.2016.06.422.
  588. Г. Е. Иванова et al., “Применение международной классификации функционирования в процессе медицинской реабилитации. Вестник восстановительной медицины.,” vol. 6, no. 88, pp. 2–77, 2018.
  589. “www.icf-research-branch.org/download/category/12-cardiovascularandrespiratoryconditions”.
  590. “https://www.icf-research-branch.org/download/send/12-cardiovascularandrespiratoryconditions/162-brief-icf-core-set-for-cardiopulmonary-conditions-in-post-acute-care”.
  591. R. J. Thomas et al., “2018 ACC/AHA Clinical Performance and Quality Measures for Cardiac Rehabilitation,” J. Am. Coll. Cardiol., vol. 71, no. 16, pp. 1814–1837, Apr. 2018, doi: 10.1016/j.jacc.2018.01.004.
  592. M. F. Piepoli et al., “Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery,” Eur. J. Prev. Cardiol., vol. 21, no. 6, pp. 664–681, Jun. 2014, doi: 10.1177/2047487312449597.
  593. P. M. Seferovic et al., “Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology,” Eur. J. Heart Fail., vol. 21, no. 10, pp. 1169–1186, Oct. 2019, doi: 10.1002/ejhf.1531.
  594. M. Ambrosetti et al., “Delphi consensus recommendations on how to provide cardiovascular rehabilitation in the COVID-19 era,” Eur. J. Prev. Cardiol., vol. 28, no. 5, pp. 541–557, May 2021, doi: 10.1093/eurjpc/zwaa080.
  595. N. Pogosova et al., “Psychosocial aspects in cardiac rehabilitation: From theory to practice. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation of the European Society of Cardiology,” Eur. J. Prev. Cardiol., vol. 22, no. 10, pp. 1290–1306, Oct. 2015, doi: 10.1177/2047487314543075.
  596. M. Sommaruga et al., “Best practice in psychological activities in cardiovascular prevention and rehabilitation: Position Paper,” Monaldi Arch. Chest Dis., vol. 88, no. 2, Jul. 2018, doi: 10.4081/monaldi.2018.966.
  597. P. Agostoni et al., “Multiparametric prognostic scores in chronic heart failure with reduced ejection fraction: a long‐term comparison,” Eur. J. Heart Fail., vol. 20, no. 4, pp. 700–710, Apr. 2018, doi: 10.1002/ejhf.989.
  598. M. Guazzi et al., “Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations,” Circulation, vol. 126, no. 18, pp. 2261–2274, Oct. 2012, doi: 10.1161/CIR.0b013e31826fb946.
  599. K. E. Flynn et al., “Effects of Exercise Training on Health Status in Patients With Chronic Heart Failure,” JAMA, vol. 301, no. 14, p. 1451, Apr. 2009, doi: 10.1001/jama.2009.457.
  600. K. Nolte et al., “Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: the Ex-DHF-P trial,” Eur. J. Prev. Cardiol., vol. 22, no. 5, pp. 582–593, May 2015, doi: 10.1177/2047487314526071.
  601. L. B. Cooper et al., “Psychosocial Factors, Exercise Adherence, and Outcomes in Heart Failure Patients,” Circ. Hear. Fail., vol. 8, no. 6, pp. 1044–1051, Nov. 2015, doi: 10.1161/CIRCHEARTFAILURE.115.002327.
  602. H. Ismail, J. R. McFarlane, A. H. Nojoumian, G. Dieberg, and N. A. Smart, “Clinical Outcomes and Cardiovascular Responses to Different Exercise Training Intensities in Patients With Heart Failure,” JACC Hear. Fail., vol. 1, no. 6, pp. 514–522, Dec. 2013, doi: 10.1016/j.jchf.2013.08.006.
  603. L. Long et al., “Exercise-based cardiac rehabilitation for adults with heart failure,” Cochrane Database Syst. Rev., vol. 2019, no. 1, Jan. 2019, doi: 10.1002/14651858.CD003331.pub5.
  604. B. Bjarnason-Wehrens et al., “Exercise-based cardiac rehabilitation in patients with reduced left ventricular ejection fraction: The Cardiac Rehabilitation Outcome Study in Heart Failure (CROS-HF): A systematic review and meta-analysis,” Eur. J. Prev. Cardiol., vol. 27, no. 9, pp. 929–952, Jun. 2020, doi: 10.1177/2047487319854140.
  605. “Recommendations for exercise training in chronic heart failure patients,” Eur. Heart J., vol. 22, no. 2, pp. 125–135, Jan. 2001, doi: 10.1053/euhj.2000.2440.
  606. A. Cowie, M. K. Thow, M. H. Granat, and S. L. Mitchell, “Effects of home versus hospital-based exercise training in chronic heart failure,” Int. J. Cardiol., vol. 158, no. 2, pp. 296–298, Jul. 2012, doi: 10.1016/j.ijcard.2012.04.117.
  607. E. Piotrowicz et al., “A new model of home‐based telemonitored cardiac rehabilitation in patients with heart failure: effectiveness, quality of life, and adherence,” Eur. J. Heart Fail., vol. 12, no. 2, pp. 164–171, Feb. 2010, doi: 10.1093/eurjhf/hfp181.
  608. A. Mezzani et al., “Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitat,” Eur. J. Prev. Cardiol., vol. 20, no. 3, pp. 442–467, Jun. 2013, doi: 10.1177/2047487312460484.
  609. M. Gomes Neto, A. R. Durães, L. S. R. Conceição, M. B. Saquetto, Ø. Ellingsen, and V. O. Carvalho, “High intensity interval training versus moderate intensity continuous training on exercise capacity and quality of life in patients with heart failure with reduced ejection fraction: A systematic review and meta-analysis,” Int. J. Cardiol., vol. 261, pp. 134–141, Jun. 2018, doi: 10.1016/j.ijcard.2018.02.076.
  610. Ø. Ellingsen et al., “High-Intensity Interval Training in Patients With Heart Failure With Reduced Ejection Fraction,” Circulation, vol. 135, no. 9, pp. 839–849, Feb. 2017, doi: 10.1161/CIRCULATIONAHA.116.022924.
  611. M. J. Haykowsky, M. P. Timmons, C. Kruger, M. McNeely, D. A. Taylor, and A. M. Clark, “Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions.,” Am. J. Cardiol., vol. 111, no. 10, pp. 1466–9, May 2013, doi: 10.1016/j.amjcard.2013.01.303.
  612. G. van Halewijn, J. Deckers, H. Y. Tay, R. van Domburg, K. Kotseva, and D. Wood, “Lessons from contemporary trials of cardiovascular prevention and rehabilitation: A systematic review and meta-analysis,” Int. J. Cardiol., vol. 232, pp. 294–303, Apr. 2017, doi: 10.1016/j.ijcard.2016.12.125.
  613. D. Jewiss, C. Ostman, and N. A. Smart, “The effect of resistance training on clinical outcomes in heart failure: A systematic review and meta-analysis,” Int. J. Cardiol., vol. 221, pp. 674–681, Oct. 2016, doi: 10.1016/j.ijcard.2016.07.046.
  614. C. Giuliano, A. Karahalios, C. Neil, J. Allen, and I. Levinger, “The effects of resistance training on muscle strength, quality of life and aerobic capacity in patients with chronic heart failure — A meta-analysis,” Int. J. Cardiol., vol. 227, pp. 413–423, Jan. 2017, doi: 10.1016/j.ijcard.2016.11.023.
  615. F. V. Santos et al., “Resistance exercise enhances oxygen uptake without worsening cardiac function in patients with systolic heart failure: a systematic review and meta-analysis,” Heart Fail. Rev., vol. 23, no. 1, pp. 73–89, Jan. 2018, doi: 10.1007/s10741-017-9658-8.
  616. I. D. Laoutaris et al., “Combined aerobic/resistance/inspiratory muscle training as the ‘optimum’ exercise programme for patients with chronic heart failure: ARISTOS-HF randomized clinical trial,” Eur. J. Prev. Cardiol., vol. 28, no. 15, pp. 1626–1635, Dec. 2021, doi: 10.1093/eurjpc/zwaa091.
  617. I. C. De Jesus, F. J. de Menezes Junior, P. C. B. Bento, A. Wiens, J. Mota, and N. Leite, “Effect of combined interval training on the cardiorespiratory fitness in heart failure patients: a systematic review and meta-analysis,” Brazilian J. Phys. Ther., vol. 24, no. 1, pp. 8–19, Jan. 2020, doi: 10.1016/j.bjpt.2019.04.001.
  618. S. Adamopoulos et al., “Combined aerobic/inspiratory muscle training vs. aerobic training in patients with chronic heart failure: The Vent-HeFT trial: a European prospective multicentre randomized trial.,” Eur. J. Heart Fail., vol. 16, no. 5, pp. 574–82, May 2014, doi: 10.1002/ejhf.70.
  619. M.-H. Wang and M.-L. Yeh, “Respiratory training interventions improve health status of heart failure patients: A systematic review and network meta-analysis of randomized controlled trails,” World J. Clin. Cases, vol. 7, no. 18, pp. 2760–2775, Sep. 2019, doi: 10.12998/wjcc.v7.i18.2760.
  620. S.-J. Lin, J. McElfresh, B. Hall, R. Bloom, and K. Farrell, “Inspiratory muscle training in patients with heart failure: a systematic review.,” Cardiopulm. Phys. Ther. J., vol. 23, no. 3, pp. 29–36, Sep. 2012, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/22993500
  621. D. Montemezzo, G. A. Fregonezi, D. A. Pereira, R. R. Britto, and W. D. Reid, “Influence of Inspiratory Muscle Weakness on Inspiratory Muscle Training Responses in Chronic Heart Failure Patients: A Systematic Review and Meta-Analysis,” Arch. Phys. Med. Rehabil., vol. 95, no. 7, pp. 1398–1407, Jul. 2014, doi: 10.1016/j.apmr.2014.02.022.
  622. R. L. Ploesteanu, A. C. Nechita, D. Turcu, B. N. Manolescu, S. C. Stamate, and M. Berteanu, “Effects of neuromuscular electrical stimulation in patients with heart failure - review.,” J. Med. Life, vol. 11, no. 2, pp. 107–118, 2018, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/30140316
  623. M. Gomes Neto, F. A. Oliveira, H. F. C. dos Reis, E. de Sousa Rodrigues-, H. S. Bittencourt, and V. O. Carvalho, “Effects of Neuromuscular Electrical Stimulation on Physiologic and Functional Measurements in Patients With Heart Failure,” J. Cardiopulm. Rehabil. Prev., vol. 36, no. 3, pp. 157–166, May 2016, doi: 10.1097/HCR.0000000000000151.
  624. C. Feltner et al., “Transitional Care Interventions to Prevent Readmissions for Persons With Heart Failure,” Ann. Intern. Med., vol. 160, no. 11, p. 774, Jun. 2014, doi: 10.7326/M14-0083.
  625. F. A. McAlister, S. Stewart, S. Ferrua, and J. J. J. V. McMurray, “Multidisciplinary strategies for the management of heart failure patients at high risk for admission,” J. Am. Coll. Cardiol., vol. 44, no. 4, pp. 810–819, Aug. 2004, doi: 10.1016/j.jacc.2004.05.055.
  626. C. O. Phillips, S. M. Wright, D. E. Kern, R. M. Singa, S. Shepperd, and H. R. Rubin, “Comprehensive Discharge Planning With Postdischarge Support for Older Patients With Congestive Heart Failure,” JAMA, vol. 291, no. 11, p. 1358, Mar. 2004, doi: 10.1001/jama.291.11.1358.
  627. P. A. Heidenreich et al., “2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines,” Circulation, vol. 145, no. 18, May 2022, doi: 10.1161/CIR.0000000000001063.
  628. T. A. McDonagh et al., “2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure,” Eur. Heart J., vol. 42, no. 36, pp. 3599–3726, Sep. 2021, doi: 10.1093/eurheartj/ehab368.
  629. N. S. Beckett et al., “Treatment of hypertension in patients 80 years of age or older,” N. Engl. J. Med., vol. 358, no. 18, pp. 1887–1898, May 2008, doi: 10.1056/NEJMOA0801369.
  630. S. Sciarretta, F. Palano, G. Tocci, R. Baldini, and M. Volpe, “Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk,” Arch. Intern. Med., vol. 171, no. 5, pp. 384–394, Mar. 2011, doi: 10.1001/ARCHINTERNMED.2010.427.
  631. J. Wright et al., “A Randomized Trial of Intensive versus Standard Blood-Pressure Control,” N. Engl. J. Med., vol. 373, no. 22, pp. 2103–2116, Nov. 2015, doi: 10.1056/NEJMOA1511939.
  632. B. M. Scirica et al., “Intensive statin therapy and the risk of hospitalization for heart failure after an acute coronary syndrome in the PROVE IT-TIMI 22 study,” J. Am. Coll. Cardiol., vol. 47, no. 11, pp. 2326–2331, Jun. 2006, doi: 10.1016/J.JACC.2006.03.034.
  633. B. Zinman et al., “Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes,” N. Engl. J. Med., vol. 373, no. 22, pp. 17–18, 2015, doi: 10.1056/NEJMOA1504720.
  634. B. Neal et al., “Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes,” vol. 377, no. 7, pp. 644–657, Aug. 2017, Accessed: Sep. 19, 2024. [Online]. Available: https://www.nejm.org/doi/full/10.1056/NEJMoa1611925
  635. S. D. Wiviott et al., “Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes,” N. Engl. J. Med., vol. 380, no. 4, pp. 347–357, Jan. 2019, doi: 10.1056/NEJMOA1812389.
  636. T. Wolf et al., “Relationship of current and past smoking to mortality and morbidity in patients with left ventricular dysfunction,” J. Am. Coll. Cardiol., vol. 37, no. 6, pp. 1677–1682, 2001, doi: 10.1016/S0735-1097(01)01195-0.
  637. A. Goncalves et al., “Alcohol consumption and risk of heart failure: the Atherosclerosis Risk in Communities Study,” Eur. Heart J., vol. 36, no. 15, pp. 939–945, Apr. 2015, doi: 10.1093/EURHEARTJ/EHU514.
  638. A. Pandey et al., “Dose-Response Relationship Between Physical Activity and Risk of Heart Failure: A Meta-Analysis,” Circulation, vol. 132, no. 19, pp. 1786–1794, Nov. 2015, doi: 10.1161/CIRCULATIONAHA.115.015853.
  639. R. Padwal et al., “The obesity paradox in heart failure patients with preserved versus reduced ejection fraction: a meta-analysis of individual patient data,” Int. J. Obes. (Lond)., vol. 38, no. 8, pp. 1110–1114, 2014, doi: 10.1038/IJO.2013.203.
  640. “Приказ Минздрава России от 15 марта 2022 №168н «Об утверждении Порядка проведения диспансерного наблюдения за взрослыми».”.
  641. K. F. Adams et al., “Characteristics and outcomes of patients hospitalized for heart failure in the United States: Rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE),” Am. Heart J., vol. 149, no. 2, pp. 209–216, Feb. 2005, doi: 10.1016/j.ahj.2004.08.005.
  642. V. Harjola et al., “Clinical picture and risk prediction of short‐term mortality in cardiogenic shock,” Eur. J. Heart Fail., vol. 17, no. 5, pp. 501–509, May 2015, doi: 10.1002/ejhf.260.
  643. M. S. Nieminen et al., “EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population,” Eur. Heart J., vol. 27, no. 22, pp. 2725–2736, Apr. 2006, doi: 10.1093/eurheartj/ehl193.
  644. M. Gheorghiade et al., “Systolic Blood Pressure at Admission, Clinical Characteristics, and Outcomes in Patients Hospitalized With Acute Heart Failure,” JAMA, vol. 296, no. 18, p. 2217, Nov. 2006, doi: 10.1001/jama.296.18.2217.
  645. А. . Арутюнов, А. К. Рылова, and Г. П. Арутюнов, “Регистр госпитализированных пациентов с декомпенсацией кровообращения (Павловский регистр). Сообщение 1. Современная клиническая характеристика пациента с декомпенсацией кровообращения. Клинические фенотипы пациентов,” Сердечная недостаточность, vol. 15, no. 1, pp. 23–32, 2014.
  646. G. D. Schiff, S. Fung, T. Speroff, and R. A. McNutt, “Decompensated heart failure: symptoms, patterns of onset, and contributing factors,” Am. J. Med., vol. 114, no. 8, pp. 625–630, Jun. 2003, doi: 10.1016/S0002-9343(03)00132-3.
  647. C. M. O’Connor, W. G. Stough, D. S. Gallup, V. Hasselblad, and M. Gheorghiade, “Demographics, Clinical Characteristics, and Outcomes of Patients Hospitalized for Decompensated Heart Failure: Observations From the IMPACT-HF Registry,” J. Card. Fail., vol. 11, no. 3, pp. 200–205, Apr. 2005, doi: 10.1016/j.cardfail.2004.08.160.
  648. M. A. E. Valente et al., “Diuretic response in acute heart failure: clinical characteristics and prognostic significance,” Eur. Heart J., vol. 35, no. 19, pp. 1284–1293, May 2014, doi: 10.1093/eurheartj/ehu065.
  649. C. В. Виллевальде et al., “Принципы организации медицинской помощи пациентам с сердечной недостаточностью в системе управления сердечно-сосудистыми рисками: фокус на преемственность и маршрутизацию пациентов. Практические материалы,” Российский кардиологический журнал, vol. 26, no. 3S, p. 4558, Oct. 2021, doi: 10.15829/1560-4071-2021-4558.
  650. S. Shepperd et al., “Discharge planning from hospital to home,” in Cochrane Database of Systematic Reviews, S. Shepperd, Ed., Chichester, UK: John Wiley & Sons, Ltd, 2010. doi: 10.1002/14651858.CD000313.pub3.
  651. A. Bielecka-Dabrowa, B. Godoy, J. C. Schefold, M. Koziolek, M. Banach, and S. von Haehling, “Decompensated Heart Failure and Renal Failure: What Is the Current Evidence?,” Curr. Heart Fail. Rep., vol. 15, no. 4, pp. 224–238, Aug. 2018, doi: 10.1007/s11897-018-0397-5.
  652. A. Mebazaa et al., “Short-term survival by treatment among patients hospitalized with acute heart failure: the global ALARM-HF registry using propensity scoring methods,” Intensive Care Med., vol. 37, no. 2, pp. 290–301, Feb. 2011, doi: 10.1007/s00134-010-2073-4.
  653. И. В. Фомин et al., “ПОНЯТИЕ СТАБИЛЬНОСТИ ТЕЧЕНИЯ ХСН -ПРИЕМЛЕМО ЛИ ОНО ДЛЯ РОССИЙСКОЙ ПРАКТИКИ?,” Кардиология, no. S3, pp. 55–63, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/29782290
  654. S. Stewart, “Financial aspects of heart failure programs of care,” Eur. J. Heart Fail., vol. 7, no. 3, pp. 423–428, Mar. 2005, doi: 10.1016/j.ejheart.2005.01.001.
  655. A. A. Shafie, Y. P. Tan, and C. H. Ng, “Systematic review of economic burden of heart failure,” Heart Fail. Rev., vol. 23, no. 1, pp. 131–145, Jan. 2018, doi: 10.1007/s10741-017-9661-0.
  656. F. A. McAlister, F. M. . Lawson, K. K. Teo, and P. W. Armstrong, “A systematic review of randomized trials of disease management programs in heart failure,” Am. J. Med., vol. 110, no. 5, pp. 378–384, Apr. 2001, doi: 10.1016/S0002-9343(00)00743-9.
  657. Н. Г. Виноградова, Д. С. Поляков, И. В. Фомин, and М. М. Жиркова, “Прогноз жизни пациентов с хронической сердечной недостаточностью и фибрилляцией предсердий в зависимости от контроля гемодинамических показателей и толерантности к физической нагрузке на фоне базисной терапии,” Кардиология, vol. 59, no. 4S, pp. 51–58, May 2019, doi: 10.18087/cardio.2622.
  658. Н. Г. Виноградова, “Городской центр лечения хронической сердечной недостаточности: организация работы и эффективность лечения пациентов с хронической сердечной недостаточностью,” Кардиология, vol. 59, no. 2S, pp. 31–39, Mar. 2019, doi: 10.18087/cardio.2621.
  659. Н. Г. Виноградова, Д. С. Поляков, И. В. Фомин, and М. М. Жиркова, “Efficacy of therapy for chronic heart failure at the outpatient stage in the conditions of a municipal center for CHF,” Журнал сердечная недостаточность, vol. 17, pp. 270–278, 2017, doi: 10.18087/rhfj.2017.4.2355.
  660. И. В. Фомин, Н. Г. Виноградова, and Ф. М.И., “Эффективность наблюдения пациентов в условиях специализированного центра лечения хронической сердечной недостаточности,” Неотложная кардиология и кардиоваскулярные риски, vol. 2, no. 1, pp. 221–229, 2018.
  661. S. C. Inglis et al., “Structured telephone support or telemonitoring programmes for patients with chronic heart failure,” in Cochrane Database of Systematic Reviews, S. C. Inglis, Ed., Chichester, UK: John Wiley & Sons, Ltd, 2010. doi: 10.1002/14651858.CD007228.pub2.
  662. F. Koehler et al., “Telemedical Interventional Monitoring in Heart Failure (TIM‐HF), a randomized, controlled intervention trial investigating the impact of telemedicine on mortality in ambulatory patients with heart failure: study design,” Eur. J. Heart Fail., vol. 12, no. 12, pp. 1354–1362, Dec. 2010, doi: 10.1093/eurjhf/hfq199.
  663. B. W. Jack, “A Reengineered Hospital Discharge Program to Decrease Rehospitalization,” Ann. Intern. Med., vol. 150, no. 3, p. 178, Feb. 2009, doi: 10.7326/0003-4819-150-3-200902030-00007.
  664. A. Linden and S. Butterworth, “A comprehensive hospital-based intervention to reduce readmissions for chronically ill patients: a randomized controlled trial.,” Am. J. Manag. Care, vol. 20, no. 10, pp. 783–92, Oct. 2014, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/25365681
  665. B. J. Wakefield, S. A. Boren, P. S. Groves, and V. S. Conn, “Heart Failure Care Management Programs,” J. Cardiovasc. Nurs., vol. 28, no. 1, pp. 8–19, Jan. 2013, doi: 10.1097/JCN.0b013e318239f9e1.
  666. H. G. C. Van Spall et al., “Comparative effectiveness of transitional care services in patients discharged from the hospital with heart failure: a systematic review and network meta‐analysis,” Eur. J. Heart Fail., vol. 19, no. 11, pp. 1427–1443, Nov. 2017, doi: 10.1002/ejhf.765.
  667. H. G. C. Van Spall et al., “Effect of Patient-Centered Transitional Care Services on Clinical Outcomes in Patients Hospitalized for Heart Failure,” JAMA, vol. 321, no. 8, p. 753, Feb. 2019, doi: 10.1001/jama.2019.0710.
  668. J. Sochalski et al., “What Works In Chronic Care Management: The Case Of Heart Failure,” Health Aff., vol. 28, no. 1, pp. 179–189, Jan. 2009, doi: 10.1377/hlthaff.28.1.179.
  669. H. M. Krumholz et al., “Randomized trial of an education and support intervention to preventreadmission of patients with heart failure,” J. Am. Coll. Cardiol., vol. 39, no. 1, pp. 83–89, Jan. 2002, doi: 10.1016/S0735-1097(01)01699-0.
  670. S. Stewart and J. D. Horowitz, “Home-Based Intervention in Congestive Heart Failure,” Circulation, vol. 105, no. 24, pp. 2861–2866, Jun. 2002, doi: 10.1161/01.CIR.0000019067.99013.67.
  671. И. В. Фомин and Н. Г. Виноградова, “Организация специализированной медицинской помощи больным с хронической сердечной недостаточностью,” Кардиосоматика, vol. 8, no. 3, pp. 10–15, 2017, doi: 10.26442/2221-7185_8.3.10-15.
  672. S. S. Setoguchi S, Stevenson LW, “Repeated hospitalizations predict mortality in the community population with heart failure. American Heart Journal.,” Am. Heart J., vol. 154, no. 2, pp. 260–266, 2007, doi: 10.1016 / j. ahj. 2007.01.041.
  673. A. Maggioni, U. Dahlström, G. Filippatos, O. C. Chioncel, and M. Leiro, “EURObservational Research Programme: regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot).,” Eur J Hear. Fail., vol. 15, no. 7, pp. 808–817, 2013, doi: 10.1093 / eurjhf / hft050.
  674. Y. C. Fonarow G., Stough W., Abraham W., Albert N., Gheorghiade M., Greenberg B., O’Connor C., Sun J., “Characteristics, Treatments, and Outcomes of Patients With Preserved Systolic Function Hospitalized for Heart Failure.,” J. Am. Coll. Cardiol., vol. 50, no. 8, pp. 768–777, 2007, doi: 10.1016/j.jacc.2007.04.064.
  675. F. S. Alon D, Stein GY, Korenfeld R, “Predictors and outcomes of infection-related hospital admissions of heart failure patients.,” PLoS One., no. 8, p. e72476, 2013, doi: 10.1371/journal.pone.0072476.
  676. G. Fonarow, W. Abraham, and N. Albert, “Factors Identified as Precipitating Hospital Admissions for Heart Failure and Clinical Outcomes. Findings From OPTIMIZE-HF.,” Arch Intern Med., vol. 168, no. 8, pp. 847–854, 2008, doi: 10.1001/archinte.168.8.847.
  677. L. M. Sandoval C, Walter SD, Krueger P, Smieja M, Smith A, Yusuf S, “Risk of hospitalization during influenza season among a cohort of patients with congestive heart failure,” Epidemiol Infect, vol. 135, pp. 574–582, 2007, doi: 10.1017/S095026880600714X.
  678. O. Vardeny et al., “Influenza Vaccination in Patients With Chronic Heart Failure,” JACC Hear. Fail., vol. 4, no. 2, pp. 152–158, Feb. 2016, doi: 10.1016/j.jchf.2015.10.012.
  679. H. Mohseni, A. Kiran, R. Khorshidi, and K. Rahimi, “Influenza vaccination and risk of hospitalization in patients with heart failure: a self-controlled case series study,” Eur. Heart J., p. ehw411, Sep. 2016, doi: 10.1093/eurheartj/ehw411.
  680. E. Kopel, R. Klempfner, and I. Goldenberg, “Influenza vaccine and survival in acute heart failure,” Eur. J. Heart Fail., vol. 16, no. 3, pp. 264–270, Mar. 2014, doi: 10.1002/ejhf.14.
  681. D. Modin et al., “Influenza Vaccine in Heart Failure,” Circulation, vol. 139, no. 5, pp. 575–586, Jan. 2019, doi: 10.1161/CIRCULATIONAHA.118.036788.
  682. C. D. Antunes MM, Duarte GS, Brito D, Borges M, Costa J, Ferreira JJ, Pinto FJ et al., “Pneumococcal vaccination in adults at very high risk or with established cardiovascular disease: systematic review and meta-analysis,” Eur. Hear. J. - Qual. Care Clin. Outcomes, vol. 7, no. 1, pp. 97–106, Jan. 2021, doi: 10.1093/ehjqcco/qcaa030.
  683. D. M. Clive and J. S. Stoff, “Renal Syndromes Associated with Nonsteroidal Antiinflammatory Drugs,” N. Engl. J. Med., vol. 310, no. 9, pp. 563–572, Mar. 1984, doi: 10.1056/NEJM198403013100905.
  684. V. J. Dzau, M. Packer, L. S. Lilly, S. L. Swartz, N. K. Hollenberg, and G. H. Williams, “Prostaglandins in Severe Congestive Heart Failure,” N. Engl. J. Med., vol. 310, no. 6, pp. 347–352, Feb. 1984, doi: 10.1056/NEJM198402093100603.
  685. F. A. VAN DEN OUWELAND, F. W. J. GRIBNAU, and R. H. B. MEYBOOM, “CONGESTIVE HEART FAILURE DUE TO NONSTEROIDAL ANTI-INFLAMMATORY DRUGS IN THE ELDERLY,” Age Ageing, vol. 17, no. 1, pp. 8–16, 1988, doi: 10.1093/ageing/17.1.8.
  686. P. Ungprasert, N. Srivali, and C. Thongprayoon, “Nonsteroidal Anti‐inflammatory Drugs and Risk of Incident Heart Failure: A Systematic Review and Meta‐analysis of Observational Studies,” Clin. Cardiol., vol. 39, no. 2, pp. 111–118, Feb. 2016, doi: 10.1002/clc.22502.
  687. R. Doukky, E. Avery, A. Mangla, F. Collado, Z. Ibrahim, and P. M-F, “Impact of Dietary Sodium Restriction on Heart Failure Outcomes.,” JACC Hear. Fail., vol. 4, no. 1, pp. 24–5, 2016, doi: 10.1016 / j. jchf. 2015.08.007.
  688. D. P. P. Paterna S, Gaspare P, Fasullo S, Sarullo FM, “Normalsodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clinical Science.,” Clin. Sci., vol. 114, no. 3, pp. 221–230, 2008, doi: 10.1042 / CS2007019.
  689. C. Stein et al., “Are the recommendation of sodium and fluid restriction in heart failure patients changing over the past years? A systematic review and meta-analysis,” Clin. Nutr. ESPEN, vol. 49, pp. 129–137, Jun. 2022, doi: 10.1016/j.clnesp.2022.03.032.
  690. E. Driggin et al., “Nutrition Assessment and Dietary Interventions in Heart Failure,” J. Am. Coll. Cardiol., vol. 79, no. 16, pp. 1623–1635, Apr. 2022, doi: 10.1016/j.jacc.2022.02.025.
  691. R. De Vecchis, A. Paccone, and M. Di Maio, “Effects of a Restricted Water Intake on Various Clinical and Laboratory Outcomes in Patients With Heart Failure: A Meta-Analysis of Randomized Controlled Trials,” Minerva Cardioangiol ., 2020, doi: 10.23736/S0026-4725.20.05072-0.
  692. C. R. Walsh et al., “Alcohol Consumption and Risk for Congestive Heart Failure in the Framingham Heart Study,” Ann. Intern. Med., vol. 136, no. 3, p. 181, Feb. 2002, doi: 10.7326/0003-4819-136-3-200202050-00005.
  693. M. G. Crespo‐Leiro et al., “Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology,” Eur. J. Heart Fail., vol. 20, no. 11, pp. 1505–1535, Nov. 2018, doi: 10.1002/ejhf.1236.
  694. M. A. Brisco et al., “Relevance of Changes in Serum Creatinine During a Heart Failure Trial of Decongestive Strategies: Insights From the DOSE Trial,” J. Card. Fail., vol. 22, no. 10, pp. 753–760, Oct. 2016, doi: 10.1016/j.cardfail.2016.06.423.
  695. B. A. Bart et al., “Ultrafiltration in Decompensated Heart Failure with Cardiorenal Syndrome,” N. Engl. J. Med., vol. 367, no. 24, pp. 2296–2304, Dec. 2012, doi: 10.1056/NEJMoa1210357.
  696. M. R. Costanzo et al., “Ultrafiltration Versus Intravenous Diuretics for Patients Hospitalized for Acute Decompensated Heart Failure,” J. Am. Coll. Cardiol., vol. 49, no. 6, pp. 675–683, Feb. 2007, doi: 10.1016/j.jacc.2006.07.073.
  697. M. Brännström and K. Boman, “Effects of person‐centred and integrated chronic heart failure and palliative home care. <scp>PREFER</scp> : a randomized controlled study,” Eur. J. Heart Fail., vol. 16, no. 10, pp. 1142–1151, Oct. 2014, doi: 10.1002/ejhf.151.
  698. L. H. Lund et al., “Association between enrolment in a heart failure quality registry and subsequent mortality—a nationwide cohort study,” Eur. J. Heart Fail., vol. 19, no. 9, pp. 1107–1116, Sep. 2017, doi: 10.1002/ejhf.762.
  699. J. Comín‐Colet et al., “Efficacy and safety of intermittent intravenous outpatient administration of levosimendan in patients with advanced heart failure: the LION‐HEART multicentre randomised trial,” Eur. J. Heart Fail., vol. 20, no. 7, pp. 1128–1136, Jul. 2018, doi: 10.1002/ejhf.1145.
  700. T. Nizamic et al., “Ambulatory Inotrope Infusions in Advanced Heart Failure,” JACC Hear. Fail., vol. 6, no. 9, pp. 757–767, Sep. 2018, doi: 10.1016/j.jchf.2018.03.019.
  701. C. A. Theochari et al., “Heart transplantation versus left ventricular assist devices as destination therapy or bridge to transplantation for 1-year mortality: a systematic review and meta-analysis,” Ann. Cardiothorac. Surg., vol. 7, no. 1, pp. 3–11, Jan. 2018, doi: 10.21037/acs.2017.09.18.
  702. N. Sahlollbey, C. K. S. Lee, A. Shirin, and P. Joseph, “The impact of palliative care on clinical and patient‐centred outcomes in patients with advanced heart failure: a systematic review of randomized controlled trials,” Eur. J. Heart Fail., vol. 22, no. 12, pp. 2340–2346, Dec. 2020, doi: 10.1002/ejhf.1783.
  703. J. B. Bjork, K. K. Alton, V. V. Georgiopoulou, J. Butler, and A. P. Kalogeropoulos, “Defining Advanced Heart Failure: A Systematic Review of Criteria Used in Clinical Trials,” J. Card. Fail., vol. 22, no. 7, pp. 569–577, Jul. 2016, doi: 10.1016/j.cardfail.2016.03.003.
  704. S. L. Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, “Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure,” J Am Coll Cardiol, vol. 41, no. 10, pp. 1797–1804, 2003, doi: 10.1016/s0735-1097(03)00309-7.
  705. M. R. Chakko S, Woska D, Martinez H, de Marchena E, Futterman L, Kessler KM, “Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care,” Am J Med, no. 90, pp. 353–359., 1991, doi: 10.1016/0002-9343(91)80016-f.
  706. Y. M. Hummel et al., “Echocardiographic estimation of left ventricular and pulmonary pressures in patients with heart failure and preserved ejection fraction: a study utilizing simultaneous echocardiography and invasive measurements,” Eur. J. Heart Fail., vol. 19, no. 12, pp. 1651–1660, Dec. 2017, doi: 10.1002/ejhf.957.
  707. M. A. Quiñones et al., “Echocardiographic predictors of clinical outcome in patients with left ventricular dysfunction enrolled in the SOLVD registry and trials: significance of left ventricular hypertrophy. A list of participating hospitals, central agencies and personnel app,” J. Am. Coll. Cardiol., vol. 35, no. 5, pp. 1237–1244, Apr. 2000, doi: 10.1016/S0735-1097(00)00511-8.
  708. M. Wong et al., “Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure,” J. Am. Coll. Cardiol., vol. 43, no. 11, pp. 2022–2027, Jun. 2004, doi: 10.1016/j.jacc.2003.12.053.
  709. A. Rossi et al., “Left atrial volume provides independent and incremental information compared with exercise tolerance parameters in patients with heart failure and left ventricular systolic dysfunction,” Heart, vol. 93, no. 11, pp. 1420–1425, Nov. 2007, doi: 10.1136/hrt.2006.101261.
  710. I. A. Paraskevaidis et al., “Multidimensional contractile reserve predicts adverse outcome in patients with severe systolic heart failure: a 4‐year follow‐up study,” Eur. J. Heart Fail., vol. 19, no. 7, pp. 846–861, Jul. 2017, doi: 10.1002/ejhf.787.
  711. D. Lichtenstein, N. Lascols, G. Mezière, and A. Gepner, “Ultrasound diagnosis of alveolar consolidation in the critically ill.,” Intensive Care Med., vol. 30, pp. 276–281, 2004.
  712. E. Platz et al., “Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients,” Eur. Heart J., vol. 37, no. 15, pp. 1244–1251, Apr. 2016, doi: 10.1093/eurheartj/ehv745.
  713. N. C. Wang, “Clinical Implications of QRS Duration in Patients Hospitalized With Worsening Heart Failure and Reduced Left Ventricular Ejection Fraction,” JAMA, vol. 299, no. 22, p. 2656, Jun. 2008, doi: 10.1001/jama.299.22.2656.
  714. N. M. Hawkins et al., “Prevalence and prognostic implications of electrocardiographic left ventricular hypertrophy in heart failure: Evidence from the CHARM programme,” Heart, vol. 93, no. 1, pp. 59–64, 2007, doi: 10.1136/hrt.2005.083949.
  715. A. Mebazaa et al., “Recommendations on pre‐hospital & early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emer,” Eur. J. Heart Fail., vol. 17, no. 6, pp. 544–558, Jun. 2015, doi: 10.1002/ejhf.289.
  716. G. L. Smith et al., “Renal Impairment and Outcomes in Heart Failure,” J. Am. Coll. Cardiol., vol. 47, no. 10, pp. 1987–1996, May 2006, doi: 10.1016/j.jacc.2005.11.084.
  717. J. M. ter Maaten et al., “Hypochloremia, Diuretic Resistance, and Outcome in Patients With Acute Heart Failure,” Circ. Hear. Fail., vol. 9, no. 8, Aug. 2016, doi: 10.1161/CIRCHEARTFAILURE.116.003109.
  718. J. Núñez et al., “CA125-Guided Diuretic Treatment Versus Usual Care in Patients With Acute Heart Failure and Renal Dysfunction,” Am. J. Med., vol. 133, no. 3, pp. 370-380.e4, Mar. 2020, doi: 10.1016/j.amjmed.2019.07.041.
  719. M. Nikolaou et al., “Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure,” Eur. Heart J., vol. 34, no. 10, pp. 742–749, Mar. 2013, doi: 10.1093/eurheartj/ehs332.
  720. M. Möckel et al., “Improve Management of acute heart failure with ProcAlCiTonin in EUrope: results of the randomized clinical trial IMPACT EU Biomarkers in Cardiology (BIC) 18,” Eur. J. Heart Fail., vol. 22, no. 2, pp. 267–275, Feb. 2020, doi: 10.1002/ejhf.1667.
  721. T. B. Horwich, J. Patel, W. R. MacLellan, and G. C. Fonarow, “Cardiac Troponin I Is Associated With Impaired Hemodynamics, Progressive Left Ventricular Dysfunction, and Increased Mortality Rates in Advanced Heart Failure,” Circulation, vol. 108, no. 7, pp. 833–838, Aug. 2003, doi: 10.1161/01.CIR.0000084543.79097.34.
  722. U. Nellessen, S. Goder, R. Schobre, M. Abawi, H. Hecker, and S. Tschöke, “Serial analysis of troponin I levels in patients with ischemic and nonischemic dilated cardiomyopathy,” Clin. Cardiol., vol. 29, no. 5, pp. 219–224, May 2006, doi: 10.1002/clc.4960290510.
  723. E. Perna et al., “Ongoing myocardial injury in stable severe heart failure: value of cardiac troponin T monitoring for high-risk patient identifica,” Circulation, vol. 16, no. 110, pp. 2376–82, 2004, doi: 10.1161/01.CIR.0000145158.33801.F3.
  724. G. C. Fonarow, W. F. Peacock, C. O. Phillips, M. M. Givertz, and M. Lopatin, “Admission B-Type Natriuretic Peptide Levels and In-Hospital Mortality in Acute Decompensated Heart Failure,” J. Am. Coll. Cardiol., vol. 49, no. 19, pp. 1943–1950, May 2007, doi: 10.1016/j.jacc.2007.02.037.
  725. “Januzzi JL Jr, Chen-Tournoux AA, Moe G. Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am J Cardiol. 2008;101:29–38.”.
  726. D. A. Pascual-Figal et al., “Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure,” Eur. J. Heart Fail., vol. 13, no. 7, pp. 718–725, Jul. 2011, doi: 10.1093/eurjhf/hfr047.
  727. “Santaguida PL, Don-Wauchope AC, Ali U, et al. Incremental value of natriuretic peptide measurement in acute decompensated heart failure (ADHF): a systematic review. Heart Fail Rev. 2014;19:507–19”.
  728. J. L. Januzzi et al., “NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients,” Eur. Heart J., vol. 27, no. 3, pp. 330–337, Feb. 2006, doi: 10.1093/eurheartj/ehi631.
  729. “Bettencourt P, Azevedo A, Pimenta J, et al. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004;110:2168–74.”.
  730. A. Maisel et al., “Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT),” J. Am. Coll. Cardiol., vol. 44, no. 6, pp. 1328–1333, Sep. 2004, doi: 10.1016/j.jacc.2004.06.015.
  731. S. Stienen et al., “Challenging the two concepts in determining the appropriate pre‐discharge N‐terminal pro‐brain natriuretic peptide treatment target in acute decompensated heart failure patients: absolute or relative discharge levels?,” Eur. J. Heart Fail., vol. 17, no. 9, pp. 936–944, Sep. 2015, doi: 10.1002/ejhf.320.
  732. D. Tomasoni, C. M. Lombardi, M. Sbolli, G. Cotter, and M. Metra, “Acute heart failure: More questions than answers,” Prog. Cardiovasc. Dis., vol. 63, no. 5, pp. 599–606, Sep. 2020, doi: 10.1016/j.pcad.2020.04.007.
  733. J. H. Park, S. Balmain, C. Berry, J. J. Morton, and J. J. V McMurray, “Potentially detrimental cardiovascular effects of oxygen in patients with chronic left ventricular systolic dysfunction,” Heart, vol. 96, no. 7, pp. 533–538, Apr. 2010, doi: 10.1136/hrt.2009.175257.
  734. F. M. Vital, M. T. Ladeira, and Á. N. Atallah, “Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema,” Cochrane Database Syst. Rev., May 2013, doi: 10.1002/14651858.CD005351.pub3.
  735. C.-L. Weng, “Meta-analysis: Noninvasive Ventilation in Acute Cardiogenic Pulmonary Edema,” Ann. Intern. Med., vol. 152, no. 9, p. 590, May 2010, doi: 10.7326/0003-4819-152-9-201005040-00009.
  736. A. Gray et al., “A multicentre randomised controlled trial of the use of continuous positive airway pressure and non-invasive positive pressure ventilation in the early treatment of patients presenting to the emergency department with severe acute cardiogenic pulmonary oe,” Health Technol. Assess. (Rockv)., vol. 13, no. 33, Jul. 2009, doi: 10.3310/hta13330.
  737. J. Masip et al., “Indications and practical approach to non-invasive ventilation in acute heart failure,” Eur. Heart J., vol. 39, no. 1, pp. 17–25, Jan. 2018, doi: 10.1093/eurheartj/ehx580.
  738. V. Harjola et al., “Comprehensive in‐hospital monitoring in acute heart failure: applications for clinical practice and future directions for research. A statement from the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardio,” Eur. J. Heart Fail., vol. 20, no. 7, pp. 1081–1099, Jul. 2018, doi: 10.1002/ejhf.1204.
  739. R. C. Wuerz and S. A. Meador, “Effects of prehospital medications on mortality and length of stay in congestive heart failure,” Ann. Emerg. Med., vol. 21, no. 6, pp. 669–674, Jun. 1992, doi: 10.1016/S0196-0644(05)82777-5.
  740. M. Metra et al., “Acute heart failure: Multiple clinical profiles and mechanisms require tailored therapy,” Int. J. Cardiol., vol. 144, no. 2, pp. 175–179, Oct. 2010, doi: 10.1016/j.ijcard.2010.04.003.
  741. G. M. Felker et al., “Diuretic Strategies in Patients with Acute Decompensated Heart Failure,” N. Engl. J. Med., vol. 364, no. 9, pp. 797–805, Mar. 2011, doi: 10.1056/NEJMoa1005419.
  742. O. Chioncel et al., “Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the <scp>ESC</scp> Heart Failure Long‐Term Registry,” Eur. J. Heart Fail., vol. 19, no. 10, pp. 1242–1254, Oct. 2017, doi: 10.1002/ejhf.890.
  743. W. Mullens et al., “The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology,” Eur. J. Heart Fail., vol. 21, no. 2, pp. 137–155, Feb. 2019, doi: 10.1002/ejhf.1369.
  744. A. Wakai et al., “Nitrates for acute heart failure syndromes,” Cochrane Database Syst. Rev., vol. 2021, no. 5, Aug. 2013, doi: 10.1002/14651858.CD005151.pub2.
  745. P. Levy et al., “Treatment of Severe Decompensated Heart Failure With High-Dose Intravenous Nitroglycerin: A Feasibility and Outcome Analysis,” Ann. Emerg. Med., vol. 50, no. 2, pp. 144–152, Aug. 2007, doi: 10.1016/j.annemergmed.2007.02.022.
  746. N. Kozhuharov et al., “Effect of a Strategy of Comprehensive Vasodilation vs Usual Care on Mortality and Heart Failure Rehospitalization Among Patients With Acute Heart Failure,” JAMA, vol. 322, no. 23, p. 2292, Dec. 2019, doi: 10.1001/jama.2019.18598.
  747. Y. Freund et al., “Effect of an Emergency Department Care Bundle on 30-Day Hospital Discharge and Survival Among Elderly Patients With Acute Heart Failure,” JAMA, vol. 324, no. 19, p. 1948, Nov. 2020, doi: 10.1001/jama.2020.19378.
  748. J. Simpson et al., “Is heart rate a risk marker in patients with chronic heart failure and concomitant atrial fibrillation? Results from the <scp>MAGGIC</scp> meta‐analysis,” Eur. J. Heart Fail., vol. 17, no. 11, pp. 1182–1191, Nov. 2015, doi: 10.1002/ejhf.346.
  749. Z.-Y. Hou et al., “Acute treatment of recent-onset atrial fibrillation and flutter with a tailored dosing regimen of intravenous amiodarone,” Eur. Heart J., vol. 16, no. 4, pp. 521–528, Apr. 1995, doi: 10.1093/oxfordjournals.eurheartj.a060945.
  750. G. Delle Karth et al., “Amiodarone versus diltiazem for rate control in critically ill patients with atrial tachyarrhythmias,” Crit. Care Med., vol. 29, no. 6, pp. 1149–1153, Jun. 2001, doi: 10.1097/00003246-200106000-00011.
  751. “Clemo H, Wood M, Gilligan D, Ellenbogen K. Intravenous amiodarone for acute heart rate control in the critically ill patient with atrial tachyarrhythmias. Am J Cardiol 1998;81:594–598.”.
  752. “Prins KW, Neill JM, Tyler JO, Eckman PM, Duval S. Effects of beta-blocker withdrawal in acute decompensated heart failure: a systematic review and meta-analysis. JACC Heart Fail 2015;3: 647–653.”.
  753. A. A. Bhagat, S. J. Greene, M. Vaduganathan, G. C. Fonarow, and J. Butler, “Initiation, Continuation, Switching, and Withdrawal of Heart Failure Medical Therapies During Hospitalization,” JACC Hear. Fail., vol. 7, no. 1, pp. 1–12, Jan. 2019, doi: 10.1016/j.jchf.2018.06.011.
  754. A. Mebazaa et al., “Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF): a multinational, open-label, randomised, trial,” Lancet, vol. 400, no. 10367, pp. 1938–1952, Dec. 2022, doi: 10.1016/S0140-6736(22)02076-1.
  755. F. G. Komajda M, Cowie MR, Tavazzi L, Ponikowski P, Anker SD et al., “Physicians’ guideline adherence is associated with better prognosis in outpatients with heart failure with reduced ejection fraction: the QUALIFY international registry,” Eur. J. Heart Fail., vol. 19, no. 11, pp. 1414–1423, Nov. 2017, doi: 10.1002/ejhf.887.
  756. L. H. Lund, K. D. Aaronson, and D. M. Mancini, “Predicting survival in ambulatory patients with severe heart failure on beta-blocker therapy,” Am. J. Cardiol., vol. 92, no. 11, pp. 1350–1354, Dec. 2003, doi: 10.1016/j.amjcard.2003.08.027.
  757. R. Wachter et al., “Initiation of sacubitril/valsartan in haemodynamically stabilised heart failure patients in hospital or early after discharge: primary results of the randomised TRANSITION study,” Eur. J. Heart Fail., vol. 21, no. 8, pp. 998–1007, Aug. 2019, doi: 10.1002/ejhf.1498.
  758. A. A. Voors et al., “The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial,” Nat. Med., vol. 28, no. 3, pp. 568–574, Mar. 2022, doi: 10.1038/s41591-021-01659-1.
  759. J. Tromp et al., “Sodium–glucose co‐transporter 2 inhibition in patients hospitalized for acute decompensated heart failure: rationale for and design of the <scp>EMPULSE</scp> trial,” Eur. J. Heart Fail., vol. 23, no. 5, pp. 826–834, May 2021, doi: 10.1002/ejhf.2137.
  760. G. C. Fonarow, “Risk Stratification for In-Hospital Mortality in Acutely Decompensated Heart Failure<SUBTITLE>Classification and Regression Tree Analysis</SUBTITLE>,” JAMA, vol. 293, no. 5, p. 572, Feb. 2005, doi: 10.1001/jama.293.5.572.
  761. T. Thorvaldsen, L. Benson, M. Ståhlberg, U. Dahlström, M. Edner, and L. H. Lund, “Triage of Patients With Moderate to Severe Heart Failure,” J. Am. Coll. Cardiol., vol. 63, no. 7, pp. 661–671, Feb. 2014, doi: 10.1016/j.jacc.2013.10.017.
  762. O. Chioncel et al., “Patterns of intensive care unit admissions in patients hospitalized for heart failure,” J. Cardiovasc. Med., vol. 16, no. 5, pp. 331–340, May 2015, doi: 10.2459/JCM.0000000000000030.
  763. J. N. Njoroge et al., “Expanded algorithm for managing patients with acute decompensated heart failure,” Heart Fail. Rev., vol. 23, no. 4, pp. 597–607, Jul. 2018, doi: 10.1007/s10741-018-9697-9.
  764. J. H. Huston, R. Ferre, P. S. Pang, O. Chioncel, J. Butler, and S. Collins, “Optimal Endpoints of Acute Heart Failure Therapy,” Am. J. Ther., vol. 25, no. 4, pp. e465–e474, Jul. 2018, doi: 10.1097/MJT.0000000000000792.
  765. O. Chioncel et al., “Improving Postdischarge Outcomes in Acute Heart Failure,” Am. J. Ther., vol. 25, no. 4, pp. e475–e486, Jul. 2018, doi: 10.1097/MJT.0000000000000791.
  766. A. A. Voors et al., “Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure,” Eur. J. Heart Fail., vol. 19, no. 5, pp. 627–634, May 2017, doi: 10.1002/ejhf.785.
  767. O. Chioncel et al., “Natriuretic peptide-guided management in heart failure,” J. Cardiovasc. Med., vol. 17, no. 8, pp. 556–568, Aug. 2016, doi: 10.2459/JCM.0000000000000329.
  768. T. Breidthardt et al., “Impact of haemoconcentration during acute heart failure therapy on mortality and its relationship with worsening renal function,” Eur. J. Heart Fail., vol. 19, no. 2, pp. 226–236, Feb. 2017, doi: 10.1002/ejhf.667.
  769. L. Klein, “Treating Hemodynamic Congestion Is the Key to Prevent Heart Failure Hospitalizations ∗,” JACC Hear. Fail., vol. 4, no. 5, pp. 345–347, May 2016, doi: 10.1016/j.jchf.2016.03.004.
  770. D. Bensimhon et al., “The use of the reds noninvasive lung fluid monitoring system to assess readiness for discharge in patients hospitalized with acute heart failure: A pilot study,” Hear. Lung, vol. 50, no. 1, pp. 59–64, Jan. 2021, doi: 10.1016/j.hrtlng.2020.07.003.
  771. A. Lala et al., “Early use of remote dielectric sensing after hospitalization to reduce heart failure readmissions,” ESC Hear. Fail., vol. 8, no. 2, pp. 1047–1054, Apr. 2021, doi: 10.1002/ehf2.13026.
  772. С. Н. Терещенко, И. А. Черемисина, and А. А. Сафиуллина, “Возможности улучшения терапии хронической сердечной недостаточности по результатам многоцентрового наблюдательного исследования BYHEART,” Терапевтический архив, vol. 94, no. 4, pp. 517–523, May 2022, doi: 10.26442/00403660.2022.04.201450.
  773. С. Н. Терещенко, И. А. Черемисина, and А. А. Сафиуллина, “Эффективность неотона у больных с хронической сердечной недостаточностью в зависимости от фракции выброса левого желудочка. Субанализ исследования BYHEART,” Российский кардиологический журнал, vol. 27, no. 11, p. 5276, Dec. 2022, doi: 10.15829/1560-4071-2022-5276.
  774. П. В. Мазин, Р. Ф. Хафизьянова, В. П. Мазин, and В. В. Краснова, “META-ANALYSIS OF ADJUVANT PHOSPHOCREATINE EFFICACY IN TREATMENT OF CONGESTIVE HEART FAILURE,” Вятский медицинский вестник, no. 4, pp. 92–99, 2022, doi: 10.24412/2220-7880-2022-4-92-99.
  775. Z. Jing, “Efficacy of sacubitril valsartan combined with sodium creatine phosphate in the treatment of chronic heart failure.,” Chinese J. Pract. Med., no. 47, 2020, doi: 10.3760/cma.j.cn115689-20200604-02804.
  776. В. П. Михин, Т. А. Николенко, and Н. И. Громнацкий, “Эффективность креатинфосфата в составе комплексной терапии у больных с хронической сердечной недостаточностью, перенесших инфаркт миокарда с подъемом сегмента ST,” Лечебное дело, no. 1, pp. 64-70., 2020, doi: 10.24411/2071-5315-2020-12194.
  777. I. Grazioli, G. Melzi, and E. Strumia, “Multicenter controlled study of creatine phosphate in the treatment of heart failure,” Curr. Ther. Res., vol. 52, no. 2, pp. 271–280, Aug. 1992, doi: 10.1016/S0011-393X(05)80478-3.
  778. W. Peng, “Clinical effect of sodium creatine phosphate in the treatment of chronic heart failure.,” Chinese Med., vol. 9, no. 8, 2013, doi: 10.3760/cma.j.issn.1673-4777.013.09.004.
  779. X. H. Li, Y. Q. Xing, X. Zhang, and E. Al, “Clinical efficacy of exogenous phosphocreatine in the treatment of elderly patients with chronic heart failure and its impact on heart failure markers,” Pract. J. Card. Cereb. Pneumal Vasc. Dis., vol. 28, no. 6, pp. 42–46.
  780. А. . Симаков, Д. В. Поливаева, and Е. И. Рязанова, “Оптимизация терапии хронической сердечной недостаточности у пациентов с ишемической болезнью сердца,” Кардиология и сердечно-сосудистая хирургия, vol. 7, no. 5, pp. 20–23, 2014.
  781. “Adams KF, Abraham WT, Yancy CW, Boscardin WJ. Risk stratification for inhospital mortality in acutely decompensated heart failure classification and regression tree analysis. JAMA 2015;293:572–580”.
  782. N. H. Jonkman et al., “Do Self-Management Interventions Work in Patients With Heart Failure?,” Circulation, vol. 133, no. 12, pp. 1189–1198, Mar. 2016, doi: 10.1161/CIRCULATIONAHA.115.018006.
  783. E. Gayat et al., “Heart failure oral therapies at discharge are associated with better outcome in acute heart failure: a propensity‐score matched study,” Eur. J. Heart Fail., vol. 20, no. 2, pp. 345–354, Feb. 2018, doi: 10.1002/ejhf.932.
  784. K. K. Lee, J. Yang, A. F. Hernandez, A. E. Steimle, and A. S. Go, “Post-discharge Follow-up Characteristics Associated With 30-Day Readmission After Heart Failure Hospitalization,” Med. Care, vol. 54, no. 4, pp. 365–372, Apr. 2016, doi: 10.1097/MLR.0000000000000492.
  785. D. L. Edmonston et al., “Association of post-discharge specialty outpatient visits with readmissions and mortality in high-risk heart failure patients,” Am. Heart J., vol. 212, pp. 101–112, Jun. 2019, doi: 10.1016/j.ahj.2019.03.005.
  786. W. Ouwerkerk et al., “Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: a prospective European study,” Eur. Heart J., vol. 38, no. 24, pp. 1883–1890, Jun. 2017, doi: 10.1093/eurheartj/ehx026.
  787. Z. Iakobishvili et al., “Use of intravenous morphine for acute decompensated heart failure in patients with and without acute coronary syndromes,” Acute Card. Care, vol. 13, no. 2, pp. 76–80, Jun. 2011, doi: 10.3109/17482941.2011.575165.
  788. W. F. Peacock, J. E. Hollander, D. B. Diercks, M. Lopatin, G. Fonarow, and C. L. Emerman, “Morphine and outcomes in acute decompensated heart failure: an ADHERE analysis,” Emerg. Med. J., vol. 25, no. 4, pp. 205–209, Apr. 2008, doi: 10.1136/emj.2007.050419.
  789. “Intravenous Nesiritide vs Nitroglycerin for Treatment of Decompensated Congestive Heart Failure,” JAMA, vol. 287, no. 12, Mar. 2002, doi: 10.1001/jama.287.12.1531.
  790. U. N. Khot et al., “Nitroprusside in Critically Ill Patients with Left Ventricular Dysfunction and Aortic Stenosis,” N. Engl. J. Med., vol. 348, no. 18, pp. 1756–1763, May 2003, doi: 10.1056/NEJMoa022021.
  791. Z. L. Cox, R. Hung, D. J. Lenihan, and J. M. Testani, “Diuretic Strategies for Loop Diuretic Resistance in Acute Heart Failure,” JACC Hear. Fail., vol. 8, no. 3, pp. 157–168, Mar. 2020, doi: 10.1016/j.jchf.2019.09.012.
  792. J. C. Jentzer, T. A. DeWald, and A. F. Hernandez, “Combination of Loop Diuretics With Thiazide-Type Diuretics in Heart Failure,” J. Am. Coll. Cardiol., vol. 56, no. 19, pp. 1527–1534, Nov. 2010, doi: 10.1016/j.jacc.2010.06.034.
  793. W. Mullens et al., “Acetazolamide in Acute Decompensated Heart Failure with Volume Overload,” N. Engl. J. Med., vol. 387, no. 13, pp. 1185–1195, Sep. 2022, doi: 10.1056/NEJMoa2203094.
  794. C. Maack et al., “Treatments targeting inotropy,” Eur. Heart J., vol. 40, no. 44, pp. 3626–3644, Nov. 2019, doi: 10.1093/eurheartj/ehy600.
  795. A. Mebazaa et al., “Levosimendan vs. dobutamine: outcomes for acute heart failure patients on β‐blockers in SURVIVE†,” Eur. J. Heart Fail., vol. 11, no. 3, pp. 304–311, Mar. 2009, doi: 10.1093/eurjhf/hfn045.
  796. C. M. O’Connor et al., “Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: Insights from the Flolan International Randomized Survival Trial (FIRST),” Am. Heart J., vol. 138, no. 1, pp. 78–86, Jul. 1999, doi: 10.1016/S0002-8703(99)70250-4.
  797. A. Belletti et al., “The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials,” Br. J. Anaesth., vol. 115, no. 5, pp. 656–675, Nov. 2015, doi: 10.1093/bja/aev284.
  798. A. Mebazaa et al., “Long‐term safety of intravenous cardiovascular agents in acute heart failure: results from the European Society of Cardiology Heart Failure Long‐Term Registry,” Eur. J. Heart Fail., vol. 20, no. 2, pp. 332–341, Feb. 2018, doi: 10.1002/ejhf.991.
  799. M. Packer et al., “Effect of Levosimendan on the Short-Term Clinical Course of Patients With Acutely Decompensated Heart Failure,” JACC Hear. Fail., vol. 1, no. 2, pp. 103–111, Apr. 2013, doi: 10.1016/j.jchf.2012.12.004.
  800. D. De Backer et al., “Comparison of Dopamine and Norepinephrine in the Treatment of Shock,” N. Engl. J. Med., vol. 362, no. 9, pp. 779–789, Mar. 2010, doi: 10.1056/NEJMoa0907118.
  801. B. Levy et al., “Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction,” J. Am. Coll. Cardiol., vol. 72, no. 2, pp. 173–182, Jul. 2018, doi: 10.1016/j.jacc.2018.04.051.
  802. V. Léopold et al., “Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients,” Intensive Care Med., vol. 44, no. 6, pp. 847–856, Jun. 2018, doi: 10.1007/s00134-018-5222-9.
  803. J. A. Russell, “Vasopressor therapy in critically ill patients with shock,” Intensive Care Med., vol. 45, no. 11, pp. 1503–1517, Nov. 2019, doi: 10.1007/s00134-019-05801-z.
  804. S. M. Perman et al., “2023 American Heart Association Focused Update on Adult Advanced Cardiovascular Life Support: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care,” Circulation, vol. 149, no. 5, pp. E254–E273, Jan. 2024, doi: 10.1161/CIR.0000000000001194.
  805. A. U. Khand, A. C. Rankin, W. Martin, J. Taylor, I. Gemmell, and J. G. . Cleland, “Carvedilol alone or in combination with digoxin for the management of atrial fibrillation in patients with heart failure?,” J. Am. Coll. Cardiol., vol. 42, no. 11, pp. 1944–1951, Dec. 2003, doi: 10.1016/j.jacc.2003.07.020.
  806. “Dentali F, Douketis JD, Gianni M, LimW, Crowther M. Meta-analysis: anticoagulant prophylaxis to prevent symptomatic venous thromboembolism in hospitalized medical patients. Ann Intern Med 2007;146:278–288”.
  807. “Sintek MA, Gdowski M, Lindman BR, Nassif M, Lavine KJ, Novak E, Bach RG, Silvestry SC, Mann DL, Joseph SM. Intra-aortic balloon counterpulsation in patients with chronic heart failure and cardiogenic shock: clinical response and predictors of stabilizatio”.
  808. M. Seyfarth et al., “A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction.,” JACC, no. 52, pp. 1584–1588, 2008, doi: 10.1016/j.jacc.2008.05.065.
  809. D. Ouweneel et al., “Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction,” J Am Coll, vol. 69, no. 3, pp. 278–287, 2017, doi: 10.1016/j.jacc.2016.10.022.
  810. S. Dhruva, J. Ross, B. Mortazavi, N. Hurley, and E. Al, “Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump With In-Hospital Mortality and Major Bleeding Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock,” JAMA, vol. 323, no. 8, pp. 734–745, 2020, doi: 10.1001/jama.2020.0254.
  811. B. Schrage, K. Ibrahim, T. Loehn, N. Werner, J. Sinning, and E. Al, “Impella support for acute myocardial infarction complicated by cardiogenic shock.,” Circulation, no. 139, pp. 1249–1258, 2019, doi: 10.1161/CIRCULATIONAHA.118.036614.
  812. B. Kar, I. Gregoric, S. Basra, G. Idelchik, and P. Loyalka, “The percutaneous ventricular assist device in severe refractory cardiogenic shock.,” JAСC, no. 57, pp. 688–696, 2011, doi: 10.1016/j.jacc.2010.08.613.
  813. D. Ouweneel et al., “Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis.,” Intensive Care Med, vol. 42, pp. 1992–1934, 2016, doi: 10.1007/s00134-016-4536-8.
  814. A. Combes, S. Price, A. S. Slutsky, and D. Brodie, “Temporary circulatory support for cardiogenic shock,” Lancet, vol. 396, no. 10245, pp. 199–212, Jul. 2020, doi: 10.1016/S0140-6736(20)31047-3.
  815. F. Pappalardo et al., “Concomitant implantation of Impella ® on top of veno‐arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock,” Eur. J. Heart Fail., vol. 19, no. 3, pp. 404–412, Mar. 2017, doi: 10.1002/ejhf.668.
  816. M. B. Anderson et al., “Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device,” J. Hear. Lung Transplant., vol. 34, no. 12, pp. 1549–1560, Dec. 2015, doi: 10.1016/j.healun.2015.08.018.
  817. H. Thiele et al., “Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial,” Lancet, vol. 382, no. 9905, pp. 1638–1645, Nov. 2013, doi: 10.1016/S0140-6736(13)61783-3.
  818. H. Thiele et al., “Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction,” Circulation, vol. 139, no. 3, pp. 395–403, Jan. 2019, doi: 10.1161/CIRCULATIONAHA.118.038201.
  819. Ю. Н. Беленков and В. Ю. Мареев, Принципы рационального лечения хронической сердечной недостаточности. M.: Media Medica, 2000.
  820. G. H. Guyatt et al., “The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure.,” Can. Med. Assoc. J., vol. 132, no. 8, pp. 919–23, Apr. 1985, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/3978515
  821. P. Faggiano, A. D’Aloia, A. Gualeni, L. Brentana, and L. D. Cas, “The 6 minute walking test in chronic heart failure: indications, interpretation and limitations from a review of the literature,” Eur. J. Heart Fail., vol. 6, no. 6, pp. 687–691, Oct. 2004, doi: 10.1016/j.ejheart.2003.11.024.
  822. D. Zielińska, J. Bellwon, A. Rynkiewicz, and M. A. Elkady, “Prognostic Value of the Six-Minute Walk Test in Heart Failure Patients Undergoing Cardiac Surgery: A Literature Review,” Rehabil. Res. Pract., vol. 2013, pp. 1–5, 2013, doi: 10.1155/2013/965494.
  823. L. Ingle, J. G. Cleland, and A. L. Clark, “The Long-Term Prognostic Significance of 6-Minute Walk Test Distance in Patients with Chronic Heart Failure,” Biomed Res. Int., vol. 2014, pp. 1–7, 2014, doi: 10.1155/2014/505969.
  824. L. Ingle, J. G. Cleland, and A. L. Clark, “The relation between repeated 6-minute walk test performance and outcome in patients with chronic heart failure,” Ann. Phys. Rehabil. Med., vol. 57, no. 4, pp. 244–253, Jun. 2014, doi: 10.1016/j.rehab.2014.03.004.
  825. B. Pollentier et al., “Examination of the six minute walk test to determine functional capacity in people with chronic heart failure: a systematic review.,” Cardiopulm. Phys. Ther. J., vol. 21, no. 1, pp. 13–21, Mar. 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20467515
  826. P. Palau, E. Domínguez, E. Núñez, J. Sanchis, E. Santas, and J. Núñez, “Six-minute walk test in moderate to severe heart failure with preserved ejection fraction: Useful for functional capacity assessment?,” Int. J. Cardiol., vol. 203, pp. 800–802, Jan. 2016, doi: 10.1016/j.ijcard.2015.11.074.
  827. D. E. Forman et al., “6-Min Walk Test Provides Prognostic Utility Comparable to Cardiopulmonary Exercise Testing in Ambulatory Outpatients With Systolic Heart Failure,” J. Am. Coll. Cardiol., vol. 60, no. 25, pp. 2653–2661, Dec. 2012, doi: 10.1016/j.jacc.2012.08.1010.
  828. L. A. Kaminsky and M. S. Tuttle, “Functional Assessment of Heart Failure Patients,” Heart Fail. Clin., vol. 11, no. 1, pp. 29–36, Jan. 2015, doi: 10.1016/j.hfc.2014.08.002.

Для продолжения работы требуется Registration
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
Список литературы
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу