[1] Blumeyer A. et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men. // J. Dtsch. Dermatol. Ges. 2011 Т. 9 Suppl 6 С. S1–57.
[2] Sawant N, Chikhalkar S, Mehta V, Ravi M, Madke B, Khopkar U. Androgenetic Alopecia: Quality-of-life and Associated Lifestyle Patterns. Int J Trichology. 2010 Jul;2(2):81-5/
[3] Saitoh M., Uzuka M., Sakamoto M. Human hair cycle. // J. Invest. Dermatol. 1970 Т. 54 С. 65–81.
[4] Божченко А.А., Самцов А.В. Поражение сально-волосяного аппарата при андрогенетической алопеции: некоторые аспекты нарушений тканевого метаболизма и современные подходы к их коррекции // Вестник Российской Военно-медицинской Академии. 2009 № 1(25). С. 59–63.
[5] Kunz M, Seifert B, Trüeb RM. Seasonality of hair shedding in healthy women complaining of hair loss. Dermatology. 2009;219(2):105-10
[6] Randall V.A., Ebling F.J. Seasonal changes in human hair growth. // Br. J. Dermatol. 1991 Т. 124 С. 146–151.
[7] Courtois M, Loussouarn G, Hourseau C, Grollier JF. Hair cycle and alopecia. Skin Pharmacol. 1994;7(1-2):84-9
[8] Whiting DA. Diagnostic and predictive value of horizontal sections of scalp biopsy specimens in male pattern androgenetic alopecia. J Am AcadDermatol. 1993 May;28(5 Pt 1):755-63. doi: 10.1016/0190-9622(93)70106-4. Erratum in: J Am AcadDermatol 1993 Oct;29(4):554
[9] Rathnayake D., Sinclair R. Male androgenetic alopecia. // Expert Opin. Pharmacother. 2010 Т. 11 № 8 С. 1295–304.
[10] Kligman A.M. The comparative histopathology of male-pattern baldness and senescent baldness. // Clin. Dermatol. 1988 Т. 6 № 4 С. 108–18.
[11] Randall V.A. Molecular Basis of Androgenetic Alopecia // Aging Hair. 2010 С. 9–24.
[12] Randall V.A., Hibberts N.A., Hamada K. A comparison of the culture and growth of dermal papilla cells from hair follicles from non-balding and balding (androgenetic alopecia) scalp. // Br. J. Dermatol. 1996 Т. 134 С. 437–444.
[13] Chen CC, Wang L, Plikus MV, Jiang TX, Murray PJ, Ramos R, Guerrero-Juarez CF, Hughes MW, Lee OK, Shi S, Widelitz RB, Lander AD, Chuong CM. Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell. 2015 Apr 9;161(2):277-90
[14] Chen CC, Chuong CM. Multi-layered environmental regulation on the homeostasis of stem cells: the saga of hair growth and alopecia. J Dermatol Sci. 2012 Apr;66(1):3-11
[15] Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann C. Human skin stem cells and the ageing process. ExpGerontol. 2008 Nov;43(11):986-97
[16] Aoi N. et al. 1α,25-dihydroxyvitamin D3 modulates the hair-inductive capacity of dermal papilla cells: therapeutic potential for hair regeneration. // Stem Cells Transl. Med. 2012 Т. 1 № 8 С. 615–26
[17] Ryu S, Lee Y, Hyun MY, Choi SY, Jeong KH, Park YM, Kang H, Park KY, Armstrong CA, Johnson A, Song PI, Kim BJ. Mycophenolate antagonizes IFN-γ-induced catagen-likechanges via β-catenin activation in human dermal papilla cells and hair follicles. Int J Mol Sci. 2014 Sep 22;15(9):16800-15
[18] Wang, J. M. & Zhang, J. T. (2012). Progress in Relevant Growth Factors Promoting the Growth of Hair Follicle. American Journal of Animal and Veterinary Sciences, 7(2), 104-111
[19] Rushton D.H. et al. Natural progression of male pattern baldness in young men. // Clin. Exp. Dermatol. 1991 Т. 16 № 3 С. 188–92.
[20] Trueb R.M., Lee W.S. Male Alopecia : Guide to Successful Management. : Springer International Publishing AG, 2014
[21] Ellis J. A., Stebbing M., Harrap St. B. Genetic Analysis of Male Pattern Baldness and the 5α-Reductase Genes. Journal of Investigative Dermatology, 1998;110(6):849-853
[22] Batrinos M.L. The endocrinology of baldness. // Hormones (Athens). 2014 Т. 13 № 2 С. 197–212.
[23] Hillmer A.M. et al. Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. // Am. J. Hum. Genet. 2005; 77(1): 140–148.
[24] Levy-Nissenbaum E. et al. Confirmation of the association between male pattern baldness and the androgen receptor gene. // Eur. J. Dermatol. 2005 Т. 15 № 5 С. 339–40.
[25] Zhuo F.L. et al. Androgen receptor gene polymorphisms and risk for androgenetic alopecia: a meta-analysis. // Clin. Exp. Dermatol. 2012 Т. 37 № 2 С. 104–11.
[26] Ellis J.A., Stebbing M., Harrap S.B. Male pattern baldness is not associated with established cardiovascular risk factors in the general population. // Clin. Sci. (Lond). 2001 Т. 100 № 4 С. 401–4.
[27] Price V.H. Androgenetic alopecia in women // Journal of Investigative Dermatology Symposium Proceedings. , 2003 С. 24–27.
[28] Yip L. et al. Gene-wide association study between the aromatase gene (CYP19A1) and female pattern hair loss // Br. J. Dermatol. 2009 Т. 161 С. 289–294.
[29] Prodi D.A. et al. EDA2R is associated with androgenetic alopecia. // J. Invest. Dermatol.2008 Т. 128 № 9 С. 2268–70.
[30] Hillmer A.M. et al. Genome-wide scan and fine-mapping linkage study of androgenetic alopecia reveals a locus on chromosome 3q26. // Am. J. Hum. Genet. 2008 Т. 82 № 3 С. 737–43.
[31] Richards J.B. et al. Male-pattern baldness susceptibility locus at 20p11. // Nat. Genet. 2008 Т. 40 № 11 С. 1282–4.
[32] Heilmann S., Amy K. Kiefer, Nadine Fricker, et al. Androgenetic Alopecia: Identification of Four Genetic Risk Loci and Evidence for the Contribution of WNT Signaling to Its Etiology. Journal of Investigative Dermatology, 2013; 133(6):1489-1496, doi.org/10.1038/jid.2013.43.
[33] Marcińska M. et al. Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness. // PLoS One. 2015 Т. 10 № 5 С. e0127852.
[34] Ellis J.A., Stebbing M., Harrap S.B. Polymorphism of the androgen receptor gene is associated with male pattern baldness // J. Invest. Dermatol. 2001a. Т. 116 С. 452–455.