Поиск
Озвучивание недоступно Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Часть IV. Физиология систем внутренних органов

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25.1.1.4. Азотистый баланс

Соотношение количества азота, поступившего в организм с пищей и выделенного из него, называется азотистым балансом. Поскольку основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества поступившего и разрушенного в организме белка.

Количество азота, поступившего с пищей, всегда больше количества усвоенного азота, так как часть его теряется с калом. Усвоение азота вычисляют по разности содержания его в принятой пище и в кале. Зная количество усвоенного азота, легко вычислить общее количество усвоенного организмом белка, так как в белке содержится в среднем 16% азота, то есть 1 г азота содержится в 6,25 г белка. Следовательно, умножив найденное количество азота на 6,25, можно определить количество усвоенного белка.

У взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище.

В случаях, когда поступление азота превышает его выделение, говорят о положительном азотистом балансе. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при увеличении массы тела. Он отмечается в период роста организма, во время беременности, в периоде выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках, сопровождающихся увеличением массы мышц. В этих условиях происходит задержка азота в организме (ретенция азота).

Когда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азотистом балансе. Отрицательный азотистый баланс отмечается при белковом голодании, а также в случаях, когда в организм не поступают отдельные необходимые для синтеза белков аминокислоты.

Из кишечника в кровь всасываются главным образом аминокислоты, реже — полипептиды и нерасщепленные белки. Концентрация аминокислот в плазме крови колеблется в пределах 350–650 мг/л, они используются в клетках для синтеза белка. Белки в организме не депонируются, то есть не откладываются в запас, поэтому при поступлении с пищей значительного количества белка только часть его расходуется на пластические цели, большая же часть — на энергетические цели. В процессе глюконеогенеза большая часть аминокислот преобразуется в углеводы; почти все аминокислоты могут участвовать в кетогенезе, то есть преобразовываться в липиды.

Значительная часть белков, содержащихся в плазме крови, образуется в печени; 20–50% глобулинов, в основном гамма-глобулины, синтезируются в лимфоидной ткани. При заболеваниях почек ежедневно с мочой может теряться до 20 г белка, и все это количество может восполняться процессами синтеза. Соотношение количества плазменных и тканевых белков стабильно даже при голодании и составляет 1:33.

Распад белка в организме протекает непрерывно. Степень распада белка обусловлена характером питания. Минимальные затраты белка в условиях белкового голодания наблюдаются при питании углеводами. В этих условиях выделение азота может быть в 3–3,5 раза меньше, чем при полном голодании. Углеводы при этом выполняют сберегающую белки роль.

Средний период полураспада белков тела человека приближается к 80 сут; при этом для мышечных белков величина его приближается к 180 сут, для белков плазмы крови — к 10 сут, гормоны пептидной и белковой природы существуют лишь несколько минут. Ежедневно в различных частях тела синтезируется и расщепляется около 400 г белка. Примерно 2/3 аминокислот, освобождающихся при распаде белка, вновь используется для его синтеза, 1/3 аминокислот окисляется в энергетических цепях, при этом вначале происходит их дезаминирование в печени с участием аминотрансфераз. Продукты превращения аминокислот вступают в цикл Кребса, в результате часть химической энергии белка переходит в молекулы АТФ.

При белковом голодании даже в случаях достаточного поступления в организм жиров, углеводов, минеральных солей, воды и витаминов происходит постепенно нарастающая потеря массы тела, зависящая от того, что затраты тканевых белков (минимальные в этих условиях и равные коэффициенту изнашивания) не компенсируются поступлением белков с пищей, поэтому длительное белковое голодание в конечном счете, так же как и полное голодание, неизбежно приводит к смерти. Особенно тяжело переносит белковое голодание растущий организм, у которого в этом случае происходит не только потеря массы тела, но и остановка роста, обусловленная недостатком пластического материала, необходимого для построения клеточных структур.

25.1.1.5. Регуляция обмена белков

Нейроэндокринная регуляция обмена белков осуществляется рядом гормонов.

СТГ повышает транспорт аминокислот в клетки и синтез белка. Этому частично способствует его катаболическое действие на жировой обмен, что снижает скорость окисления аминокислот. Инсулин повышает поступление в клетки аминокислот, но аналогичное влияние инсулина на углеводный обмен ограничивает использование аминокислот в энергетическом обмене. Глюкокортикоиды вызывают уменьшение концентрации белка в большинстве клеток, повышение концентрации аминокислот в плазме крови, увеличение синтеза ферментов глюконеогенеза в печени. Анаболический эффект тестостерона реализуется главным образом в мышечной ткани. Эстрогены действуют подобно тестостерону, но их эффект значительно меньше. Тироксин повышает скорость обменных реакций во всех клетках. При ограничении поступления с пищей жиров и углеводов он мобилизует белки для энергетического использования. Если же углеводов, жиров и аминокислот в организме достаточно, тироксин способствует повышению синтеза белка.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Предыдущая страница

Следующая страница

Часть IV. Физиология систем внутренних органов
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу

Table of contents

Часть IV. Физиология систем внутренних органов-
Глава 21. Кровь
Глава 22. Кровообращение
22.1. Деятельность сердца
22.2. Физиология сосудистой системы
22.4. Кровообращение в отдельных органах и его регуляция
Глава 23. Дыхание
23.1. Внешнее дыхание
Глава 24. Пищеварение
24.1. Общие представления о пищеварении
24.3. Секреторная функция пищеварительного тракта
Глава 25. Метаболизм и терморегуляция
25.5. Температура тела и ее регуляция
Глава 26. Физиология почек и мочевыделительной системы
Глава 27. Водный и электролитный баланс. Регуляция кислотно-основного равновесия
Глава 28. Защитные системы организма
Данный блок поддерживает скрол*