Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Обыкновенные дифференциальные уравнения. Практический курс
Глава 2. Дифференциальные уравнения первого порядка
Для продолжения работы требуется
Registration
Предыдущая страница
Следующая страница
Table of contents
Введение
Глава 1. Общие теоретические положения
+
Глава 2. Дифференциальные уравнения первого порядка
-
2.1. Уравнения с разделяющимися переменными
2.1.1. Метод решения
2.1.2. Уравнения, приводящиеся к уравнениям с разделяющимися переменными
2.2.Однородныеуравнения
2.2.1.Методрешения
2.2.2. Уравнения, приводящиеся к однородным
2.3. Линейные уравнения
2.3.1. Метод решения
2.3.2. Уравнения, приводящиеся к линейным
2.4. Уравнение Риккати
2.4.1. Случаи интегрируемости уравнения Риккати
2.4.2. Метод вспомогательных переменных
2.5. Уравнения в полных дифференциалах
2.5.1. Метод решения
2.5.2. Уравнения, приводящиеся к уравнениям в полных дифференциалах
2.6. Уравнения, не разрешенные относительно производной
2.6.1. Постановка задачи
2.6.2. Уравнения первого порядка п-й степени
2.6.3. Неполные уравнения
2.6.4. Полные уравнения
2.7. Уравнения высшего порядка, приводящиеся к уравнениям первого порядка. Понижение порядка дифференциальных уравнений
2.8. Простейшие краевые задачи
Глава 3. Линейные дифференциальные уравнения высшего порядка
+
Глава 4. Системы линейных уравнений с постоянными коэффициентами
+
Глава 5. Применение операционного исчисления
+
Глава 6. Анализ поведения динамических систем на фазовой плоскости
+
Глава 7. Приближенно-аналитические методы решения дифференциальных уравнений и систем
+
Предметный указатель
Список литературы
Данный блок поддерживает скрол*