26. Döhner H. et al. Genomic aberrations and survival in chronic lymphocytic leukemia // N. Engl. J. Med. 2000. Vol. 343, N 26. P. 1910–1916. DOI: https://doi.org/10.1056/NEJM200012283432602
27. Catherwood M.A. et al. Relevance of TP53 for CLL diagnostics // J. Clin. Pathol. 2019. Vol. 72, N 5. P. 343–346. DOI: https://doi.org/10.1136/jclinpath2018205622 Epub 2019 Feb 2. PMID: 30712002.
28. Baliakas P. et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact // Blood. 2019. Vol. 133, N 11. P. 1205–1216. DOI: https://doi.org/10.1182/blood201809873083
29. Kröber A. et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia // Blood. 2002. Vol. 100, N 4. P. 1410–1416.
30. Zenz T. et al. From pathogenesis to treatment of chronic lymphocytic leukaemia // Nat. Rev. Cancer. 2010. Vol. 10, N 1. P. 37–50. DOI: https://doi.org/10.1038/nrc2764
31. Ten Hacken E. et al. The importance of B cell receptor isotypes and stereotypes in chronic lymphocytic leukemia // Leukemia. 2019. Vol. 33, N 2. P. 287–298. DOI: https://doi.org/10.1038/s413750180303x
32. Hamblin T.J. et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia // Blood. 1999. Vol. 94, N 6. P. 1848–1854.
33. Damle R.N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia // Blood. 1999. Vol. 94, N 6. P. 1840–1847.
34. Thompson P.A. et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves longterm diseasefree survival in IGHVmutated chronic lymphocytic leukemia // Blood. 2016. Vol. 127, N 3. P. 303–309. DOI: https://doi.org/10.1182/blood201509667675
35. Agathangelidis A. et al. Higherorder connections between stereotyped subsets: implications for improved patient classification in CLL // Blood. 2021. Vol. 137, N 10. P. 1365–1376. DOI: https://doi.org/10.1182/blood.2020007039 PMID: 32992344.
36. Baliakas P. et al. European Research Initiative on CLL (ERIC). Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia // Haematologica. 2019. Vol. 104, N 2. P. 360–369. DOI: https://doi.org/10.3324/haematol.2018.195032 Epub 2018 Sep 27. PMID: 30262567; PMCID: PMC6355487.
37. Dartigeas C. et al.; CLL 2007 SA Investigators; French Innovative Leukemia Organization (FILO). Rituximab maintenance versus observation following abbreviated induction with chemoimmunotherapy in elderly patients with previously untreated chronic lymphocytic leukaemia (CLL 2007 SA): an openlabel, randomised phase 3 study // Lancet Haematol. 2018. Vol. 5, N 2. P. e82–e94. DOI: https://doi.org/10.1016/S23523026(17)302351 Epub 2017 Dec 20. PMID: 29275118.
38. Tertian G. et al. Fatal intravascular autoimmune hemolytic anemia after fludarabine treatment for chronic lymphocytic leukemia // Hematol. Cell Ther. 1996. Vol. 38, N 4. P. 359–360. DOI: https://doi.org/10.1007/s0028299603593
39. Longo G. et al. Fludarabine and autoimmune hemolytic anemia in chronic lymphocytic leukemia // Eur. J. Haematol. 1997. Vol. 59, N 2. P. 124–125. DOI: https://doi.org/10.1111/j.16000609.1997.tb00737.x
40. Taha H.M., Narasihman P., Venkatesh L., Cawley M., Kaplan B. Fludarabinerelated hemolytic anemia in chronic lymphocytic leukemia and lymphoproliferative disorders // Am. J. Hematol. 1998. Vol. 59, N 4. P. 316. DOI: https://doi.org/10.1002/(sici)10968652(199812)59:4<316::aidajh8>3.0.co;2g
41. Gonzalez H. et al. Severe autoimmune hemolytic anemia in eight patients treated with fludarabine // Hematol. Cell Ther. 1998. Vol. 40, N 3. P. 113–118.
42. Martell R.E. et al. Analysis of age, estimated creatinine clearance and pretreatment hematologic parameters as predictors of fludarabine toxicity in patients treated for chronic lymphocytic leukemia: a CALGB (9011) coordinated intergroup study // Cancer Chemother. Pharmacol. 2002. Vol. 50, N 1. P. 37–45. DOI: https://doi.org/10.1007/s0028000204435
43. Hersh M.R. et al. Pharmacokinetic study of fludarabine phosphate (NSC 312887) // Cancer Chemother. Pharmacol. 1986. Vol. 17. P. 277–280.
44. Lichtman S.M. et al. Development of a fludarabine phosphate (FAMP) dosing formula in patients with renal insufficiency based on a pharmacokinetic (PK) study in patients with and without renal impairment // Proc. Am. Soc. Clin. Oncol. 1998. Vol. 17. Abstr. 845.
45. Leporrier M. et al. Pure redcell aplasia with fludarabine for chronic lymphocytic leukaemia // Lancet. 1993. Vol. 342, N 8870. P. 555.
46. Elefante A., Czuczman M.S. Bendamustine for the treatment of indolent nonHodgkin’s lymphoma and chronic lymphocytic leukemia // Am. J. Health Syst. Pharm. 2010. Vol. 67, N 9. P. 713–723. DOI: https://doi.org/10.2146/ ajhp090328
47. Cuneo A. et al. Appropriate use of bendamustine in firstline therapy of chronic lymphocytic leukemia. Recommendations from SIE, SIES, GITMO Group // Leuk. Res. 2014. Vol. 38, N 11. P. 1269–1277. DOI: https://doi.org/10.1016/j.leukres.2014.06.017
48. Eichhorst B. et al. Firstline chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, openlabel, randomised, phase 3, noninferiority trial // Lancet Oncol. 2016. Vol. 17, N 7. P. 928–942. DOI: https://doi.org/10.1016/S14702045(16)300511
49. Ahn I.E. et al. Early progression of disease as a predictor of survival in chronic lymphocytic leukemia // Blood Adv. 2017. Vol. 1, N 25. P. 2433–2443. DOI: https://doi.org/10.1182/bloodadvances.2017011262 Epub 2017 Nov 28.