61. Bologna L. et al. Mechanism of action of type II, glycoengineered, antiCD20 monoclonal antibody GA101 in Bchronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab // J. Immunol. 2011. Vol. 186, N 6. P. 3762–3769.
62. Rafiq S. et al. Comparative assessment of clinically utilized CD20directed antibodies in chronic lymphocytic leukemia cells reveals divergent NK cell, monocyte, and macrophage properties // J. Immunol. 2013. Vol. 190, N 6. P. 2702–2711.
63. Kohrt H.E. et al. Ibrutinib antagonizes rituximabdependent NK cellmediated cytotoxicity // Blood. 2014. Vol. 123, N 12. P. 1957–1960.
64. Khurana D. et al. Differential regulation of human NK cellmediated cytotoxicity by the tyrosine kinase Itk // J. Immunol. 2007. Vol. 178, N 6. P. 3575–3582.
65. Fabio Da R. et al. Ibrutinib interferes with the cellmediated antitumor activities of therapeutic CD20 antibodies: implications for combination therapy // Haematologica. 2015. Vol. 100, N 1. P. 77–86.
66. Golay J., Greta U., Martino I. The specific Bruton tyrosine kinase inhibitor acalabrutinib (ACP196) shows favorable in vitro activity against chronic lymphocytic leukemia B cells with CD20 antibodies // Haematologica. 2017. Vol. 102, N 10. P. e400–e403.
67. Borge M. et al. Ibrutinib impairs the phagocytosis of rituximabcoated leukemic cells from chronic lymphocytic leukemia patients by human macrophages // Haematologica. 2015. Vol. 100, N 4. P. e140–e142.
68. VanDerMeid K.R. et al. Cellular cytotoxicity of nextgeneration CD20 monoclonal antibodies // Cancer Immunol. Res. 2018. Vol. 6, N 10. P. 1150.
69. de Rooij M.F. et al. The clinically active BTK inhibitor PCI32765 targets Bcell receptor and chemokinecontrolled adhesion and migration in chronic lymphocytic leukemia // Blood. 2012. Vol. 119, N 11. P. 2590–2594.
70. Herman S.E. et al. Ibrutinibinduced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study // Leukemia. 2014. Vol. 28, N 11. P. 2188–2196.
71. von Tresckow J. et al. CLL2BIG: sequential treatment with bendamustine, ibrutinib and obinutuzumab (GA101) in chronic lymphocytic leukemia // Leukemia. 2019. Vol. 33, N 5. P. 1161–1172.
72. Cramer P., von Tresckow J., Robrecht S., Bahlo J., AlSawaf O., Langerbeins P. et al. Bendamustine followed by ofatumumab and ibrutinib in patients with chronic lymphocytic leukemia (CLL): CLL2BIO trial of the German CLL Study Group (GCLLSG) // Blood. 2017. Vol. 130. P. S494–S1494.
73. Woyach J.A. et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy // Blood. 2014. Vol. 123, N 12. P. 1810–1817.
74. Hallek M. et al. The HELIOS trial protocol: a phase III study of ibrutinib in combination with bendamustine and rituximab in relapsed/refractory chronic lymphocytic leukemia // Future Oncol. 2015. Vol. 11, N 1. P. 51–59.
75. Jones J.A. et al. Use of anticoagulants and antiplatelet in patients with chronic lymphocytic leukaemia treated with singleagent ibrutinib // Br. J. Haematol. 2017. Vol. 178, N 2. P. 286–291.
76. Dmitrieva E.A. et al. Platelet function and bleeding in chronic lymphocytic leukemia and mantle cell lymphoma patients on ibrutinib // J. Thromb. Haemost. 2020. Vol. 18, N 10. P. 2672–2684.
77. Bye A.P. et al. Ibrutinib inhibits platelet integrin alphaIIbbeta3 outsidein signaling and thrombus stability but not adhesion to collagen // Arterioscler. Thromb. Vasc. Biol. 2015. Vol. 35, N 11. P. 2326–2335.
78. Levade M. et al. Targeting kinases in cancer therapies: adverse effects on blood platelets // Curr. Pharm. Des. 2016. Vol. 22, N 16. P. 2315–2322.
79. Kamel S. et al. Ibrutinib inhibits collagenmediated but not ADPmediated platelet aggregation // Leukemia. 2015. Vol. 29, N 4. P. 783–787.
80. Kazianka L. et al. Ristocetininduced platelet aggregation for monitoring of bleeding tendency in CLL treated with ibrutinib // Leukemia. 2017. Vol. 31, N 5. P. 1117–1122.
81. Lipsky A.H., Lozier J.N., Wiestner A. Response to comment on incidence and risk factors of bleedingrelated adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib // Haematologica. 2016. Vol. 101, N 3. P. e124–e125.
82. Pulte D. et al. CD39 activity correlates with stage and inhibits platelet reactivity in chronic lymphocytic leukemia // J. Transl. Med. 2007. Vol. 5. P. 23.
83. Series J. et al. Differences and similarities in the effects of ibrutinib and acalabrutinib on platelet functions // Haematologica. 2019. Vol. 104, N 11. P. 2292–2299.
84. Mozaffarian D. et al. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association // Circulation. 2015. Vol. 131, N 4. P. e29–e322.
85. Leong D.P. et al. The risk of atrial fibrillation with ibrutinib use: a systematic review and metaanalysis // Blood. 2016. Vol. 128, N 1. P. 138–140.
86. Tang C.P.S., McMullen J., Tam C. Cardiac side effects of Bruton tyrosine kinase (BTK) inhibitors // Leuk. Lymphoma. 2018. Vol. 59, N 7. P. 1554–1564.
87. Brown J.R. et al. Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials // Haematologica. 2017. Vol. 102, N 10. P. 1796–1805.
88. Thompson P.A. et al. Atrial fibrillation in CLL patients treated with ibrutinib. An international retrospective study // Br. J. Haematol. 2016. Vol. 175, N 3. P. 462–466.
89. Maddocks K., Jones J.A. Bruton tyrosine kinase inhibition in chronic lymphocytic leukemia // Semin. Oncol. 2016. Vol. 43, N 2. P. 251–259.
90. Fauchier L. et al. Causes of death and influencing factors in patients with atrial fibrillation // Am. J. Med. 2016. Vol. 129, N 12. P. 1278–1287.