Поиск
Озвучивание недоступно Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы к Главе 6

1. Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction // Semin. Cancer Biol. 2011. Vol. 21. P. 183–199.

2. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation // Cell. 2011. Vol. 144. P. 646–674.

3. Carette J.E., Pruszak J., Varadarajan M., Blomen V.A., Gokhale S., Camargo F.D. et al. Generation of iPSCs from cultured human malignant cells // Blood. 2010. Vol. 115. P. 4039–4042.

4. Hochedlinger K., Blelloch R., Brennan C., Yamada Y., Kim M., Chin L. et al. Reprogramming of a melanoma genome by nuclear transplantation // Genes Dev. 2004. Vol. 18. P. 1875–1885.

5. McClellan J.S., Dove C., Gentles A.J., Ryan C.E., Majeti R. Reprogramming of primary human Philadelphia chromosome­positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages // Proc. Natl Acad. Sci. USA. 2015. Vol. 112. P. 4074–4079.

6. Cavalli G., Heard E. Advances in epigenetics link genetics to the environment and disease // Nature. 2019. Vol. 571. P. 489–499.

7. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell. 2007. Vol. 131. P. 861–872.

8. Teng I.W., Hou P.C., Lee K.D., Chu P.Y., Yeh K.T., Jin V.X. et al. Targeted methylation of two tumor suppressor genes is sufficient to transform mesenchymal stem cells into cancer stem/initiating cells // Cancer Res. 2011. Vol. 71. P. 4653–4663.

9. Russo V.E.A., Martienssen R.A., Riggs A.D. Epigenetic Mechanisms of Gene Regulationed. Cold Spring Harbor Laboratory Press, 1996.

10. Bernstein B.E., Meissner A., Lander E.S. The mammalian epigenome // Cell. 2007. Vol. 128. P. 669–681.

11. Mikkelsen T.S., Ku M., Jaffe D.B., Issac B., Lieberman E., Giannoukos G. et al. Genome­wide maps of chromatin state in pluripotent and lineage­committed cells // Nature. 2007. Vol. 448. P. 553–560.

12. Aran D., Sabato S., Hellman A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes // Genome Biol. 2013. Vol. 14. P. R21.

13. Doni Jayavelu N., Jajodia A., Mishra A., Hawkins R.D. Candidate silencer elements for the human and mouse genomes // Nat. Commun. 2020. Vol. 11. P. 1061.

14. Flavahan W.A., Drier Y., Liau B.B., Gillespie S.M., Venteicher A.S., Stemmer­Rachamimov A.O. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas // Nature. 2016. Vol. 529. P. 110–114.

15. Herold M., Bartkuhn M., Renkawitz R. CTCF: insights into insulator function during development // Development. 2012. Vol. 139. P. 1045–1057.

16. Rowley M.J., Corces V.G. Organizational principles of 3D genome architecture // Nat. Rev. Genet. 2018. Vol. 19. P. 789–800.

17. Zheng H., Xie W. The role of 3D genome organization in development and cell differentiation // Nat. Rev. Mol. Cell Biol. 2019. Vol. 20. P. 535–550.

18. Wang L.Q., Wong K.Y., Li Z.H., Chim C.S. Epigenetic silencing of tumor suppressor long non­coding RNA BM742401 in chronic lymphocytic leukemia // Oncotarget. 2016. Vol. 7. P. 82 400–82 410.

19. Wang L.Q., Kwong Y.L., Kho C.S., Wong K.F., Wong K.Y., Ferracin M. et al. Epigenetic inactivation of miR­9 family microRNAs in chronic lymphocytic leukemia – implications on constitutive activation of NFkappaB pathway // Mol. Cancer. 2013. Vol. 12. P. 173.

20. Wang L.Q., Kwong Y.L., Wong K.F., Kho C.S., Jin D.Y., Tse E. et al. Epigenetic inactivation of mir-34b/c in addition to mir­34a and DAPK1 in chronic lymphocytic leukemia // J. Transl. Med. 2014. Vol. 12. P. 52.

21. Wang L.Q., Wong K.Y., Rosen A., Chim C.S. Epigenetic silencing of tumor suppressor miR­3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways // Oncotarget. 2015. Vol. 6. P. 44 422–44 436.

22. Wong K.Y., Yim R.L., Kwong Y.L., Leung C.Y., Hui P.K., Cheung F. et al. Epigenetic inactivation of the MIR129­2 in hematological malignancies // J. Hematol. Oncol. 2013. Vol. 6. P. 16.

23. Selbach M., Schwanhausser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by microRNAs // Nature. 2008. Vol. 455. P. 58–63.

24. Baylin S.B., Jones P.A. Epigenetic determinants of cancer // Cold Spring Harb. Perspect. Biol. 2016. Vol. 8, N 9. Article ID a019505.

25. Strahl B.D., Allis C.D. The language of covalent histone modifications // Nature. 2000. Vol. 403. P. 41–45.

26. Mohammad H.P., Barbash O., Creasy C.L. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer // Nat. Med. 2019. Vol. 25. P. 403–418.

27. Biswas S., Rao C.M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy // Eur. J. Pharmacol. 2018. Vol. 837. P. 8–24.

28. Stewart­Morgan K.R., Petryk N., Groth A. Chromatin replication and epigenetic cell memory // Nat. Cell Biol. 2020. Vol. 22, N 4. P. 361–371.

29. Gardiner­Garden M., Frommer M. CpG islands in vertebrate genomes // J. Mol. Biol. 1987. Vol. 196. P. 261–282.

30. Skvortsova K., Stirzaker C., Taberlay P. The DNA methylation landscape in cancer // Essays Biochem. 2019. Vol. 63. P. 797–811.

31. Doi A., Park I.H., Wen B., Murakami P., Aryee M.J., Irizarry R. et al. Differential methylation of tissue­ and cancer­specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts // Nat. Genet. 2009. Vol. 41. P. 1350–1353.

32. Gray S.G. (ed.). Epigenetic Cancer Therapy. Amsterdam, etc. : Academic Press, 2015. 748 p.

33. Li E., Beard C., Jaenisch R. Role for DNA methylation in genomic imprinting // Nature. 1993. Vol. 366. P. 362–365.

34. Maunakea A.K., Nagarajan R.P., Bilenky M., Ballinger T.J., D’Souza C., Fouse S.D. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters // Nature. 2010. Vol. 466. P. 253–257.

35. Esteller M. Aberrant DNA methylation as a cancer­inducing mechanism // Annu. Rev. Pharmacol. Toxicol. 2005. Vol. 45. P. 629–656.

36. Feinberg A.P., Ohlsson R., Henikoff S. The epigenetic progenitor origin of human cancer // Nat. Rev. Genet. 2006. Vol. 7. P. 21–33.

37. Goelz S.E., Vogelstein B., Hamilton S.R., Feinberg A.P. Hypomethylation of DNA from benign and malignant human colon neoplasms // Science. 1985. Vol. 228. P. 187–190.

38. Baer C., Oakes C.C., Ruppert A.S., Claus R., Kim­Wanner S.Z., Mertens D. et al. Epigenetic silencing of miR­708 enhances NF­kappaB signaling in chronic lymphocytic leukemia // Int. J. Cancer. 2015. Vol. 137. P. 1352–1361.

39. Kopparapu P.K., Bhoi S., Mansouri L., Arabanian L.S., Plevova K., Pospisilova S. et al. Epigenetic silencing of miR­26A1 in chronic lymphocytic leukemia and mantle cell lymphoma: Impact on EZH2 expression // Epigenetics. 2016. Vol. 11. P. 335–343.

40. Figueroa M.E., Abdel­Wahab O., Lu C., Ward P.S., Patel J., Shih A. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation // Cancer Cell. 2010. Vol. 18. P. 553–567.

41. Feinberg A.P., Koldobskiy M.A., Gondor A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression // Nat. Rev. Genet. 2016. Vol. 17. P. 284–299.

42. Bender S., Tang Y., Lindroth A.M., Hovestadt V., Jones D.T., Kool M. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high­grade gliomas // Cancer Cell. 2013. Vol. 24. P. 660–72.

43. Ohm J.E., McGarvey K.M., Yu X., Cheng L., Schuebel K.E., Cope L. et al. A stem cell­like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing // Nat. Genet. 2007. Vol. 39. P. 237–242.

44. Easwaran H., Johnstone S.E., Van Neste L., Ohm J., Mosbruger T., Wang Q. et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer // Genome Res. 2012. Vol. 22. P. 837–849.

45. Arab K., Park Y.J., Lindroth A.M., Schafer A., Oakes C., Weichenhan D. et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A // Mol. Cell. 2014. Vol. 55. P. 604–614.

46. Khalil A.M., Guttman M., Huarte M., Garber M., Raj A., Rivea Morales D. et al. Many human large intergenic noncoding RNAs associate with chromatin­modifying complexes and affect gene expression // Proc. Natl Acad. Sci. USA. 2009. Vol. 106. P. 11 667–11 672.

47. Rinn J.L., Kertesz M., Wang J.K., Squazzo S.L., Xu X., Brugmann S.A. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs // Cell. 2007. Vol. 129. P. 1311–1323.

48. Kulis M., Merkel A., Heath S., Queiros A.C., Schuyler R.P., Castellano G. et al. Whole­genome fingerprint of the DNA methylome during human B cell differentiation // Nat. Genet. 2015. Vol. 47. P. 746–756.

49. Liu M.C., Oxnard G.R., Klein E.A., Swanton C., Seiden M.V. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell­free DNA // Ann. Oncol. 2020. Vol. 31, N 6. P. 745–759.

50. Bhoi S., Ljungstrom V., Baliakas P., Mattsson M., Smedby K.E., Juliusson G. et al. Prognostic impact of epigenetic classification in chronic lymphocytic leukemia: the case of subset #2 // Epigenetics. 2016. Vol. 11. P. 449–455.

51. Capper D., Jones D.T.W., Sill M., Hovestadt V., Schrimpf D., Sturm D. et al. DNA methylation­based classification of central nervous system tumours // Nature. 2018. Vol. 555. P. 469–474.

52. Gusyatiner O., Hegi M.E. Glioma epigenetics: from subclassification to novel treatment options // Semin. Cancer Biol. 2018. Vol. 51. P. 50–58.

53. Moran S., Martinez­Cardus A., Sayols S., Musulen E., Balana C., Estival­Gonzalez A. et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis // Lancet Oncol. 2016. Vol. 17. P. 1386–1395.

54. Queiros A.C., Villamor N., Clot G., Martinez­Trillos A., Kulis M., Navarro A. et al. A B­cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact // Leukemia. 2015. Vol. 29. P. 598–605.

55. Beltran­Garcia J., Osca­Verdegal R., Mena­Molla S., Garcia­Gimenez J.L. Epigenetic IVD tests for personalized precision medicine in cancer // Front. Genet. 2019. Vol. 10. Article ID 621.

56. Bewersdorf J.P., Zeidan A.M. Evolving therapies for lower­risk myelodysplastic syndromes // Ann. Hematol. 2020. Vol. 99. P. 677–692.

57. Contieri B., Duarte B.K.L., Lazarini M. Updates on DNA methylation modifiers in acute myeloid leukemia // Ann. Hematol. 2020. Vol. 99. P. 693–701.

58. Kelly A.D., Issa J.J. The promise of epigenetic therapy: reprogramming the cancer epigenome // Curr. Opin. Genet. Dev. 2017. Vol. 42. P. 68–77.

59. Morel D., Almouzni G., Soria J.C., Postel­Vinay S. Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism // Ann. Oncol. 2017. Vol. 28. P. 254–269.

60. Stathis A., Bertoni F. BET Proteins as targets for anticancer treatment // Cancer Discov. 2018. Vol. 8. P. 24–36.

61. Moskalev E.A., Schubert M., Hoheisel J.D. RNA­directed epigenomic reprogramming: an emerging principle of a more targeted cancer therapy? // Genes Chromosomes Cancer. 2012. Vol. 51. P. 105–110.

62. Fellenberg K., Hauser N.C., Brors B., Neutzner A., Hoheisel J.D., Vingron M. Correspondence analysis applied to microarray data // Proc. Natl Acad. Sci. USA. 2001. Vol. 98. P. 10 781–10 786.

63. Frommer M., McDonald L.E., Millar D.S., Collis C.M., Watt F., Grigg G.W. et al. A genomic sequencing protocol that yields a positive display of 5­methylcytosine residues in individual DNA strands // Proc. Natl Acad. Sci. USA. 1992. Vol. 89. P. 1827–1831.

 
 
 

Предыдущая страница

Следующая страница

Список литературы к Главе 6
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу