Поиск
Озвучивание недоступно Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы к Главе 5

1. Nowell PC. The clonal evolution of tumor cell populations // Science. 1976. Vol. 194, N 4260. P. 23–28.

2. Merlo L.M., Pepper J.W., Reid B.J. et al. Cancer as an evolutionary and ecological process // Nat. Rev. Cancer. 2006. Vol. 6, N 12. P. 924–935.

3. Greaves M., Maley C.C. Clonal evolution in cancer // Nature. 2012. Vol. 481, N 7381. P. 306–313.

4. Landgren O., Albitar M., Ma W. et al. B-cell clones as early markers for chronic lymphocytic leukemia // N. Engl. J. Med. 2009. Vol. 360, N 7. P. 659–667.

5. Dohner H., Stilgenbauer S., Benner A. et al. Genomic aberrations and survival in chronic lymphocytic leukemia // N. Engl. J. Med. 2000. Vol. 343, N 26. P. 1910–1916.

6. Damle R.N., Wasil T., Fais F. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia // Blood. 1999. Vol. 94, N 6. P. 1840–1847.

7. Hamblin T.J., Davis Z., Gardiner A. et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia // Blood. 1999. Vol. 94, N 6. P. 1848–1854.

8. Puente X.S., Pinyol M., Quesada V. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia // Nature. 2011. Vol. 475, N 7354. P. 101–105.

9. Wang L., Lawrence M.S., Wan Y. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia // N. Engl. J. Med. 2011. Vol. 365, N 26. P. 2497–2506.

10. Quesada V., Conde L., Villamor N. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia // Nat. Genet. 2011. Vol. 44, N 1. P. 47–52.

11. Puente X.S., Beà S., Valdés-Mas R. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia // Nature. 2015. Vol. 526, N 7574. P. 519–524.

12. Kulis M., Heath S., Bibikova M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia // Nat. Genet. 2012. Vol. 44, N 11. P. 1236–1242.

13. Ferreira P.G., Jares P., Rico D. et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia // Genome Res. 2014. Vol. 24, N 2. P. 212–226.

14. Landau D.A., Tausch E., Taylor-Weiner A.N. et al. Mutations driving CLL and their evolution in progression and relapse // Nature. 2015. Vol. 526, N 7574. P. 525–530.

15. Juliusson G., Oscier D.G., Fitchett M. et al. Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities // N. Engl. J. Med. 1990. Vol. 323, N 11. P. 720–724.

16. Moia R., Patriarca A., Deambrogi C. et al. An update on: molecular genetics of high-risk chronic lymphocytic leukemia // Expert Rev. Hematol. 2020. Vol. 13, N 2. P. 109–116.

17. Haferlach C., Dicker F., Schnittger S. et al. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping // Leukemia. 2007. Vol. 21, N 12. P. 2442–2451.

18. Rigolin G.M., Cibien F., Martinelli S. et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with «normal» FISH: correlations with clinicobiologic parameters // Blood. 2012. Vol. 119, N 10. P. 2310–2313.

19. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function // Cell. 2004. Vol. 116, N 2. P. 281–297.

20. Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? // Nat. Rev. Genet. 2008. Vol. 9, N 2. P. 102–114.

21. Pekarsky Y., Croce C.M. Role of miR-15/16 in CLL // Cell Death Differ. 2015. Vol. 22, N 1. P. 6–11.

22. Quijano S., López A., Rasillo A. et al. Impact of trisomy 12, del(13q), del(17p), and del(11q) on the immunophenotype, DNA ploidy status, and proliferative rate of leukemic B-cells in chronic lymphocytic leukemia // Cytometry B Clin. Cytom. 2008. Vol. 74, N 3. P. 139–149.

23. Klein U., Lia M., Crespo M. et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia // Cancer Cell. 2010. Vol. 17, N 1. P. 28–40.

24. Gruber M., Wu C.J. Evolving understanding of the CLL genome // Semin. Hematol. 2014. Vol. 51, N 3. P. 177–187.

25. Fabbri G., Rasi S., Rossi D. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation // J. Exp. Med. 2011. Vol. 208, N 7. P. 1389–1401.

26. Ramsay A.J., Quesada V., Foronda M. et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia // Nat. Genet. 2013. Vol. 45, N 5. P. 526–530.

27. Fabbri G., Khiabanian H., Holmes A.B. et al. Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome // J. Exp. Med. 2013. Vol. 210, N 11. P. 2273–2288.

28. Landau D.A., Carter S.L., Stojanov P. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia // Cell. 2013. Vol. 152, N 4. P. 714–726.

29. Kanduri M., Cahill N., Göransson H. et al. Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia // Blood. 2010. Vol. 115, N 2. P. 296–305.

30. Pei L., Choi J.H., Liu J. et al. Genome-wide DNA methylation analysis reveals novel epigenetic changes in chronic lymphocytic leukemia // Epigenetics. 2012. Vol. 7, N 6. P. 567–578.

31. Cahill N., Bergh A.C., Kanduri M. et al. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments // Leukemia. 2013. Vol. 27, N 1. P. 150–158.

32. Oakes C.C., Claus R., Gu L. et al. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia // Cancer Discov. 2014. Vol. 4, N 3. P. 348–3461.

33. Landau D.A., Clement K., Ziller M.J. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia // Cancer Cell. 2014. Vol. 26, N 6. P. 813-825.

34. Lawrence M.S., Stojanov P., Mermel C.H. et al. Discovery and saturation analysis of cancer genes across 21 tumour types // Nature. 2014. Vol. 505, N 7484. P. 495–501.

35. Haferlach C., Dicker F., Weiss T. et al. Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters // Genes Chromosomes Cancer. 2010. Vol. 49, N 9. P. 851–859.

36. Rossi D., Rasi S., Fabbri G. et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia // Blood. 2012. Vol. 119, N 2. P. 521–529.

37. Cortese D., Sutton L.A., Cahill N. et al. On the way towards a «CLL prognostic index»: focus on TP53, BIRC3, SF3B1, NOTCH1 and MYD88 in a population-based cohort // Leukemia. 2014. Vol. 28, N 3. P. 710–713.

38. Rossi D., Khiabanian H., Spina V. et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia // Blood. 2014. Vol. 123, N 14. P. 2139–2147.

39. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data // Lancet Oncol. 2016. Vol. 17, N 6. P. 779–790.

40. Nadeu F., Delgado J., Royo C. et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia // Blood. 2016. Vol. 127, N 17. P. 2122–2130.

41. Rossi D., Rasi S., Spina V. et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia // Blood. 2013. Vol. 121, N 8. P. 1403–1412.

42. Jeromin S., Weissmann S., Haferlach C. et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients // Leukemia. 2014. Vol. 28, N 1. P. 108–117.

43. Baliakas P., Hadzidimitriou A., Sutton L.A. et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia // Leukemia. 2015. Vol. 29, N 2. P. 329–336.

44. Rossi D., Cerri M., Deambrogi C. et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness // Clin. Cancer Res. 2009. Vol. 15, N 3. P. 995–1004.

45. Hallek M., Cheson B.D., Catovsky D. et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL // Blood. 2018. Vol. 131, N 25. P. 2745–2760.

46. Roberts A.W., Davids M.S., Pagel J.M. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia // N. Engl. J. Med. 2016. Vol. 374, N 4. P. 311–322.

47. Byrd J.C., Furman R.R., Coutre S.E. et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib // Blood. 2015. Vol. 125, N 16. P. 2497–2506.

48. Amin N.A., Malek S.N. Gene mutations in chronic lymphocytic leukemia // Semin. Oncol. 2016. Vol. 43, N 2. P. 215–221.

49. Rossi D., Terzi-di-Bergamo L., De Paoli L. et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia // Blood. 2015. Vol. 126, N 16. P. 1921–1924.

50. Thompson P.A., Tam C.S., O’Brien S.M. et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia // Blood. 2016. Vol. 127, N 3. P. 303–309.

51. Fischer K., Bahlo J., Fink A.M. et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial // Blood. 2016. Vol. 127, N 2. P. 208–215.

52. Stilgenbauer S., Schnaiter A., Paschka P. et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial // Blood. 2014. Vol. 123, N 21. P. 3247–3254.

53. Austen B., Powell J.E., Alvi A. et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL // Blood. 2005. Vol. 106, N 9. P. 3175–3182.

54. Ouillette P., Li J., Shaknovich R. et al. Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia // Genes Chromosomes Cancer. 2012. Vol. 51, N 12. P. 1125–1132.

55. Austen B., Skowronska A., Baker C. et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion // J. Clin. Oncol. 2007. Vol. 25, N 34. P. 5448–5457.

56. Skowronska A., Parker A., Ahmed G. et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial // J. Clin. Oncol. 2012. Vol. 30, N 36. P. 4524–4532.

57. Del Giudice I., Rossi D., Chiaretti S. et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL // Haematologica. 2012. Vol. 97, N 3. P. 437–441.

58. López C., Delgado J., Costa D. et al. Different distribution of NOTCH1 mutations in chronic lymphocytic leukemia with isolated trisomy 12 or associated with other chromosomal alterations // Genes Chromosomes Cancer. 2012. Vol. 51, N 9. P. 881–889.

59. Bittolo T., Pozzo F., Bomben R. et al. Mutations in the 3' untranslated region of NOTCH1 are associated with low CD20 expression levels chronic lymphocytic leukemia // Haematologica. 2017. Vol. 102, N 8. P. e305–e309.

 

Предыдущая страница

Следующая страница

Список литературы к Главе 5
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу