Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы

  1. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report-48. World Health Organization. www.who.int/docs/default-source/coronaviruse/situation- reports/20200308-sitrep-48-covid-19.pdf?sfvrsn=16f7ccef_4.
  2. Brugliera L., Spina A., Castellazzi P. et al. Rehabilitation of COVID-19 patients // J. Rehabil. Med. 2020. Vol. 52. N. 4. P. jrm00046. DOI: 10.2340/16501977-2678.
  3. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China // JAMA. 2020. Vol. 323. N. 11. P. 1061–1069. DOI: 10.1001/jama.2020.1585.
  4. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. Vol. 46. P. 846–848. DOI: 10.1007/s00134-020-05991-x.
  5. Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г. и др. Международный ре- гистр «Анализ динамики Коморбидных заболеваний у пациенТов, пере- несшИх инфицироВание SARS-CoV-2» (АКТИВ SARS-CoV-2): анализ пре- дикторов неблагоприятных исходов острой стадии новой коронавирусной инфекции // Российский кардиологический журнал. 2021. Т. 26. №4. С. 4470. DOI: 10.15829/1560-4071-2021-4470.
  6. Abate S.M., Checkol Y.A., Mantefardo B. Global prevalence and determinants of mortality among patients with COVID-19: A systematic review and meta-analysis // Ann. Med. Surg. (Lond). 2021. Vol. 64. P. 102204. DOI: 10.1016/j.amsu.2021.102204.
  7. Cho S.I., Yoon S., Lee H.J. Impact of comorbidity burden on mortality in patients with COVID-19 using the Korean health insurance database // Sci. Rep. 2021. Vol. 11. N. 1. P. 6375. DOI: 10.1038/s41598-021-85813-2.
  8. Глыбочко П.В., Фомин В.В., Авдеев С.Н. и др. Клиническая характеристи- ка 1007 больных тяжелой SARS-CoV-2 пневмонией, нуждавшихся в респи- раторной поддержке // Клин. Фармакол. Тер. 2020. Т. 29. № 2. С. 21–29. DOI: 10.32756/0869-5490-2020-2-21-29.
  9. National Institute for Health and Care Excellence, Royal College of General Practitioners, Healthcare Improvement Scotland SIGN. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence, 2020. www.nice.org.uk/ guidance/ng188.
  10. Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high proportion of patients with colds //Lancet. 1966. Vol. 1. N. 7428. P. 76–77. DOI: 10.1016/s0140-6736(66)92364-6.
  11. Zhu N., Zhang D., Wang W. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019 // N. Engl. J. Med. 2020. Vol. 382. N. 8. P. 727–733. DOI: 10.1056/ NEJMoa2001017.
  12. Li X., Geng M., Peng Y. et al. Molecular immune pathogenesis and diagnosis of COVID-19 // J. Pharmaceutical Analysis. 2020. DOI: 10.1016/j.jpha.2020.03.001.
  13. Zhou P., Yang X.L., Wang X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. Vol. 579. N. 7798. P. 270–273. DOI: 10.1038/s41586-020-2012-7.
  14. Tipnis S.R., Hooper N.M., Hyde R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captoprilin sensitive carboxypeptidase // J. Biol. Chem. 2000. Vol. 275. N. 43. P. 33238–33243. DOI: 10.1074/jbc.M002615200.425
  15. Zhang H., Penninger J.M., Li Y. et al. Angiotensin-converting enzyme 2 (ACE2) as a SARSCoV-2 receptor: molecular mechanisms and potential therapeutic target // Intensive Care Med. 2020. DOI: 10.1007/s00134-020-05985-9.
  16. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor // Cell. 2020. Vol. 181. P. 1–10. DOI: 10.1016/j.cell.2020.02.052.
  17. Lambert D.W., Yarski M., Warner F.J. et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) //  J. Biol. Chem. 2005. Vol. 280. N. 34. P. 30113–30119. DOI: 10.1074/jbc.M505111200.
  18. Santos R., Sampaio W.O., Alzamora A.C. et al. The ACE 2/Angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7) // Physiol. Rev. 2018. Vol. 98. N. 1. P. 505–553. DOI: 10.1152/physrev.00023.2016.
  19. Liu Y., Yang Y., Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury // Life Sci. 2020. Vol. 63. N. 3. P. 364–374. DOI: 10.1007/s11427-020-1643-8.
  20. Kuster G.M., Pfister O., Burkard T. et al. SARS-CoV2: should inhibitors of the renin- angiotensin system be withdrawn in patients with COVID-19?// Eur. Heart. J. 2020.P. ehaa235. DOI: 10.1093/eurheartj/ehaa235.
  21. Yang G., Tan Z., Zhou L. et al. Effects of ARBs And ACEIs on Virus Infection, Inflammatory Status And Clinical Outcomes In COVID-19 Patients With Hypertension: A Single Center Retrospective Study // Hypertension. 2020. Vol. 76. P. 51–58. DOI: 10.1161/HYPERTENSIONAHA.120.15143.
  22. Radenkovic D., Chawla S., Pirro M. et al. Cholesterol in relation to COVID-19: should we care about it? // J. Clin. Med. 2020. Vol. 9. P. 1909.
  23. Зборовская И.Б., Галецкий С.А., Комельков А.В. Белки мембранных микродо- менов и их участие в онкогенезе // Успехи молекулярной онкологии. 2016. T. 3. С. 16–29. DOI: 10.17650/2313-805X-2016-3-3-16–29.
  24. Lu Y., Liu D.X., Tam J.P. Lipid rafts are involved in SARS-CoV entry into vero E6 cells // Biochem. Biophys. Res. Commun. 2008. Vol. 369. P. 344–349.
  25. Bayati A., Kumar R., Francis V., McPherson P.S. SARS-CoV-2 infects cells after viral entry via clathrinmediated endocytosis // J. Biol. Chem. 2021. Vol. 296. P. 1–12.
  26. Wang S., Li W., Hui H. et al. Cholesterol 25-Hydroxylase inhibits SARSCoV-2 and other coronaviruses by depleting membrane cholesterol // EMBO J. 2020. Vol. 39. N. 21. P. e106057. DOI: 10.15252/embj.2020106057.
  27. Li C., Deng Y.Q., Wang S. et al. 25-hydroxycholesterol protects host against zika virus infection and its associated microcephaly in a mouse model // Immunity. 2017. Vol. 46. P. 446–456.
  28. Liu S.Y., Aliyari R., Chikere K. et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol // Immunity. 2013. Vol. 38. P. 92–105.
  29. Wei C., Wan L., Yan Q. et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry // Nature Metabolism. 2020. DOI: 10.1038/s42255-020-00324-0.
  30. Sorci-Thomas M.G., Thomas M.J. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function // Arterioscler. Thromb. Vasc. Biol. 2012. Vol. 32. P. 2561–2565.
  31. Meher G., Bhattacharjya S., Chakraborty H. Membrane cholesterol modulates oligomeric status and peptide-membrane interaction of severe acute respiratory syndrome coronavirus fusion peptide // J. Phys. Chem. 2019. Vol. 123. P. 10654–10662.
  32. Головкин А.С., Кудрявцев И.В., Дмитриев А.В., Калинина О.В. Фиброзные изменения сердечно-сосудистой и дыхательной систем после перенесенной COVID-19: вклад факторов иммунной системы и генетическая предрасполо- женность // Российский кардиологический журнал. 2020. Т. 25. № 10. С. 4087. DOI: 10.15829/1560-4071-2020-4087.
  33. Hadjadj J., Yatim N., Barnabei L. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients // Science. 2020. Vol. 369. N. 6504. P. 718–724. DOI: 10.1126/science.abc6027.
  34. Насонов Е.Л. Коронавирусная болезнь-2019 (COVID-19): значение ингибито- ров IL-6 // Пульмонология. 2020. Т. 30. № 5. С. 629–644. DOI: 10.18093/0869- 0189-2020-30-5-629-644.
  35. Wang J., Jiang M., Chen X., Montaner L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts // J. Leukoc. Biol. 2020. Vol. 108. N. 1. P. 17–41. DOI: 10.1002/JLB.3COVR0520-272R.
  36. Henderson L.A., Canna S.W., Schulert G.S. et al. On the alert for cytokine storm: Immunopathology in COVID-19 // Arthritis. Rheum. 2020. Vol. 72. N. 7. P. 1059– 1063. DOI: 10.1002/art.41285.
  37. Xu Z., Shi S., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // Lancet Respir. Med. 2020. Vol. 8. N. 4. P. 420–422. DOI: 10.1016/S2213-2600(20)30076-X.
  38. Calabrese L.H., Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease // Nat. Rev. Rheumatol. 2014. Vol. 10. N. 12. P. 720–727. DOI: 10.1038/nrrheum.2014.127.
  39. Coomes E.A., Haghbayan H. Interleukin-6 in COVID-19: A systemic review and meta- analysis // Rev. Med. Virol. 2020. P. e2141. DOI: 10.1002/rmv.2141.
  40. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China // Intensive Care Med. 2020. P. 1–3. DOI: 10.1007/s00134-020-05991-x.
  41. Самсонова М.В., Черняев А.Л., Омарова Ж.Р. и др. Особенности патологиче- ской анатомии легких при COVID-19 // Пульмонология. 2020. T. 30. №5. С. 519– 532. DOI: 10.18093/0869-0189-2020-30-5-519-532.
  42. Зайратьянц О.В., Cамсонова М.В., Михалева Л.М. и др. Патологическая анато- мия легких при COVID-19: атлас / Под ред. О.В. Зайратьянца. М.; Рязань: Изд- во ГУП РО «Рязанская областная типография», 2020. 52 с.
  43. Забозлаев Ф.Г., Кравченко Э.В., Галлямова А.Р., Летуновский Н.Н. Патологи- ческая анатомия легких при новой коронавирусной инфекции (COVID-19). Предварительный анализ аутопсийных исследований // Клиническая практи- ка. 2020. Т. 11. № 2. С. 21–37. DOI: 10.17816/clinpract34849.
  44. Bangalore S., Sharma A., Slotwiner A. et al. ST-segment elevation in patients with COVID-19 — a case series // N. Eng. J. Med. 2020. Vol. 382. P. 2478–2480.
  45. Smeda M., Chlopicki S. Endothelial barrier integrity in COVID-19-dependent hyperinflammation: does the protective facet of platelet function matter?// Cardiovascular. Research. 2020. Vol. 116. P. e118–e121. DOI: 10.1093/cvr/cvaa190.
  46. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации. Версия 11 (07.05.2021) Министерства здравоохранения Российской Федерации. www:static-0. minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/Временные_ МР_COVID-9_(v.11)-07.05.2021.
  47. Тюрин И.Е., Струтынская А.Д. Визуализация изменений в легких при корона- вирусной инфекции (обзор литературы и собственные данные) // Пульмоно- логия. 2020. Т. 30. № 5. С. 658–670. DOI: 10.18093/0869-0189-2020-30-5-658-670.
  48. Salehi S., Abedi A., Balakrishnan S., Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients // Am. J. Roentgenol. 2020. Vol. 215. N. 1. P. 87–93. DOI: 10.2214/AJR.20.23034.
  49. Jin Y.H., Cai L., Cheng Z.C. et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version) // Mil. Med. Res.2020. Vol. 7. N. 1. P. 41. DOI: 10.1186/s40779-020-00270-8.
  50. Pan F., Ye T., Sun P. et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19) // Radiology. 2020. Vol. 295. N. 3. P. 715–721. DOI: 10.1148/radiol.2020200370.
  51. Bernheim A. et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection // Radiology. 2020. Vol. 295. N. 3. P. 200463. DOI: 10.1148/radiol.2020200463.
  52. Демидова Т.Ю., Лобанова К.Г., Переходов С.Н. и др. Клинико-лабораторная характеристика пациентов с COVID-19 и сопутствующим сахарным диабетом 2 типа // Кардиоваскулярная терапия и профилактика. 2021. Т. 20. №1. С. 2750. DOI: 10.15829/1728-8800-2021-2750.
  53. Liang T., Cai H., Chen Yu. et al. Handbook of COVID-19 Prevention and Treatment. The First Affiliated Hospital, Zhejiang University School of Medicine. 2020. P. 1–60. https://esge.org/documents/Handbook_ of_COVID- 19_Prevention_and_Treatment. pdf.
  54. Vitacca M., Carone M., Clini E.M. et al. Joint statement on the role of respiratory rehabilitation in the COVID-19 crisis: the Italian position paper // Respiration. 2020.P. 1–7. www.arirassociazione.org/wp-content/uploads/2020/03/Joint-statement-role- RR_COVID_19_E_Clini. pdf.
  55. Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus Disease 2019 pneumonia in Wuhan, China // JAMA Intern. Med. 2020. Vol. 180. P. 934–943. DOI: 10.1001/ jamaimternmed.2020.1429.
  56. Lippi G., Henry B.M. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19) // Respir. Med. 2020. Vol. 167. P. 105941. DOI: 10.1016/j.rmed.2020.105941.
  57. Pericá J.M., Hernandez-Meneses M., Sheahan T.P. et al. COVID-19: fromepidemiology to treatment // Eur. Heart. J. 2020. Vol. 41. P. 2092–2108. DOI: 10.1093/eurheartj/ ehaa462.
  58. Goncalves J.M.F., Golpe R., Garcia-Talavera I. Chronic obstructive pulmonary disease and SARS-CoV-2 infection. What do we know so far? // Arch. Bronconeumol. 2020. DOI: 10.1016/j.arbres.2020.04.016.
  59. Parohan M., Yaghoubi S., Seraji A. et al. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta- analysis of observational studies // Aging. Male. 2020. Vol. 23. N. 5. P. 1416–1424. DOI: 10.1080/13685538.2020.1774748.
  60. Shi S., Qin M., Cai Y. et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019 // Eur. Heart J. 2020. Vol. 41. P. 2070–2079. DOI: 10.1093/eurheartj/ehaa408.
  61. Iqubal A., Iqubal M.K., Hoda F. et al. COVID-19 and cardiovascular complications: an update from the underlying mechanism to consequences and possible clinical intervention // Expert Review of Antiinfective Therapy. 2021. DOI: 10.1080/14787210.2021.1893692.
  62. Keihanian F., Bigdelu L. Cardiovascular Considerations in COVID19: A Comprehensive Review // Therapeutics and Clinical Risk Management 2020. N. 16. P. 1089–1097. DOI: 10.2147/TCRM.S264377.
  63. Grasselli G., Zangrillo A., Zanella A. et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy // JAMA. 2020. Vol. 323. N. 16. P. 1574–1581. DOI: 10.1001/jama.2020.5394.
  64. Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area [published correction appears in DOI: 10.1001/jama.2020.7681] // JAMA. 2020. Vol. 323. N. 20. P. 2052–2059. DOI: 10.1001/jama.2020.6775.
  65. Shi S., Qin M., Shen B. et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China // JAMA Cardiol. 2020. Vol. 5. N. 7. P. 802–810. DOI: 10.1001/jamacardio.2020.0950.
  66. Naeini M.B., Sahebi M., Nikbakht F. et al. A meta-meta-analysis: Evaluation of metaanalyses published in the effectiveness of cardiovascular comorbidities on the severity of COVID-19 // Obes. Med. 2021. Vol. 22. P. 100323. DOI: 10.1016/j. obmed.2021.100323.
  67. Centers for Disease Control and Prevention. COVID-NET: COVID-19- associated hospitalization surveillance network, 2020 Jun 15.
  68. Bhatraju P.K., Ghassemieh B.J., Nichols M. et al. Covid-19 in critically ill patients in the Seattle region — case series // N. Engl. J. Med. 2020. Vol. 382. N. 21. P. 2012–2022.
  69. ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. 2020. www.escardio.org/Education/COVID-19-and-Cardiology/ESC- COVID-19-Guidance.
  70. Inciardi R.M., Adamo M., Lupi L. et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy // Eur. Heart J. 2020. Vol. 41. N. 19. P. 1821–1829. DOI: 10.1093/eurheartj/ehaa388.
  71. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. Vol. 395. P. 1054–1062. DOI: 10.1016/S0140-6736. N. 20)30566-3.
  72. Noor F.M., Islam M.M. Prevalence and Associated Risk Factors of Mortality Among COVID-19 Patients: A Meta-Analysis // J. Community Health. 2020. Vol. 45. P. 1270– 1282. DOI: 10.1007/s10900-020-00920-x.
  73. Chen R., Liang W., Jiang M. et al. Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China // CHEST. 2020. Vol. 158. N. 1. P. 97–105. DOI: 10.1016/j.chest.2020.04.010.
  74. Hendren N.S., Drazner M.H., Bozkurt B., Cooper L.T. Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome // Circulation. 2020. Vol. 141. P. 1903–1914. DOI: 10.1161/CIRCULATIONAHA.120.047349.
  75. Бубнова М.Г., Аронов Д.М. COVID-19 и сердечно-сосудистые заболевания: от эпидемиологии до реабилитации // Пульмонология. 2020. T. 30. №5. С. 688–699. DOI: 10.18093/0869-0189-2020-30-5-688-699.
  76. Bansal M. Cardiovascular disease and COVID-19 // Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020. DOI: 10.1016/j.dsx.2020.03.013.
  77. Aikawa T., Takagi H., Ishikawa K., Kuno T. Myocardial injury characterized by elevated cardiac troponin and in-hospital mortality of COVID-19: an insight from a meta-analysis // J. Med. Virol. 2021. Vol. 93. P. 51–55.
  78. Guzik T., Mohiddin S.A., Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options // Cardiovasc. Res. 2020. Vol. 116. N. 10. P. 1666–1687. DOI: 10.1093/cvr/cvaa106.
  79. Arentz M., Yim E., Klaff L. et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State // JAMA. 2020. Vol. 323. N. 16. P. 1612– 1614. DOI: 10.1001/jama.2020.4326.
  80. Li B., Yang J., Zhao F. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China // Clin. Res. Cardiol. 2020. Vol. 109. P. 531–538. DOI: 10.1007/ s00392-020-01626-9.
  81. Guo T., Fan Y., Chen M. et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) // JAMA Cardiol. 2020. Vol. 5. P. 811–818. DOI: 10.1001/jamacardio.2020.1017.
  82. Qin J.J., Cheng X., Zhou F. et al. Redefining cardiac biomarkers in predicting mortality of inpatients with COVID-19 // Hypertension. 2020. Vol. 76. P. 1104–1112. DOI: 10.1161/HYPERTENSIONAHA.120.15528.
  83. Jaffe A.S., Cleland J.G.F., Katus H.A. Myocardial injury in severe COVID-19 infection // Eur. Heart J. 2020. Vol. 41. P. 2080–2082. DOI: 10.1093/eurheartj/ehaa447.
  84. Chen C., Zhou Y., Wang D.W. SARS-CoV-2: a potential novel etiology of fulminant myocarditis // Herz. 2020. Vol. 45. N. 3. P. 230–232. DOI: 10.1007/s00059-020-04909-z.
  85. Kawakami R., Sakamoto A., Kawai K. et al. Pathological Evidence for SARS-CoV-2 as a Cause of Myocarditis: JACC Review Topic of the Week // J. Am. Coll. Cardiol. 2021. Vol. 77. N. 3. P. 314–325. DOI: 10.1016/j.jacc.2020.11.031.
  86. Halushka M.K., Vander Heide R.S. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations // Cardiovascular Pathology. 2021. Vol. 50. P. 107300. DOI: 10.1016/j.carpath.2020.107300.
  87. Puntmann V.O., Carerj M.L., Wieters I. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19) // JAMA Cardiol. 2020. N. 5. P. 1265–1273. DOI: 10.1001/ jamacardio.2020.3557.
  88. Bilaloglu S., Aphinyanaphongs Y., Jones S. et al. Thrombosis in hospitalized patients with COVID-19 in a New York City health system // JAMA 2020. Vol. 324. P. 799–801.
  89. Li Y., Li M., Wang M. et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study // Stroke Vasc. Neurol. 2020. Vol. 5. P. 279–284.
  90. Modin D., Claggett B., Sindet-Pedersen C. et al. Acute COVID-19 and the incidence of ischemic stroke and acute myocardial infarction // Circulation. 2020. Vol. 142. P. 2080– 2082.
  91. Duan J., Wu Y., Liu C. et al.Deleterious effects of viral pneumonia on cardiovascular system // Eur. Heart J. 2020. Vol. 0. P. 1–8. DOI: 10.1093/eurheartj/ehaa325.
  92. Katsoularis I., Fonseca-Rodríguez O., Farrington P. et al. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study // Lancet. 2021. Vol. 398. N. 10300. P. 599–607. DOI: 10.1016/ S0140-6736(21)00896-5.
  93. Barnes M., Heywood A.E., Mahimbo A. et al. Acute myocardial infarction and influenza: a meta-analysis of case-control studies // Heart. 2015. Vol. 101. P. 1738–1747.
  94. Clayton T.C., Thompson M., Meade T.W. Recent respiratory infection and risk of cardiovascular disease: case-control study through a general practice database // Eur. Heart J. 2008. Vol. 29. P. 96–103.
  95. Connolly-Andersen A.M., Hammargren E., Whitaker H. et al. Increased risk of acute myocardial infarction and stroke during hemorrhagic fever with renal syndrome: a self- controlled case series study // Circulation. 2014. Vol. 129. P. 1295–1302.
  96. Musher D.M., Abers M.S., Corrales-Medina V.F. Acute infection and myocardial infarction // N. Engl. J. Med. 2019. Vol. 380. P. 171–176.
  97. Smilowitz N.R., Kunichoff D., Garshick M. et al. C-reactive protein and clinical outcomes in patients with COVID-19 // Eur. Heart. J. 2021. Vol. 42. N. 23. P. 2270– 2279. DOI: 10.1093/eurheartj/ehaa1103.
  98. Basso C., Leone O., Rizzo S. et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study // Eur. Heart J. 2020. Vol. 41. P. 3827–3835.
  99. Rapkiewicz A.V., Mai X., Carsons S.E. et al. Megakaryocytes and platelet–fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series // E. Clinical. Medicine. 2020. Vol. 24. P. 100434.
  100. Fovino L.N., Cademartiri F., Tarantini G. Subclinical coronary artery disease in COVID-19 patients // Eur. Heart J. — Cardiovas. Imaging. 2020. Vol. 21. N. 9. P. 949– 958. DOI: 10.1093/ehjci/jeaa202.
  101. Tomasoni D., Inciardi R.M., Lombardi C.M. et al. Impact of heart failure on the clinical course and outcomes of patients hospitalized for COVID-19. Results of the Cardio- COVID-Italy multicentre study // Eur. J. Heart Fail. 2020. Vol. 22. N. 12. P. 2238–2247. DOI: 10.1002/ejhf.2052.
  102. Rey J.R., Caro-Codon J., Rosillo S.O. et al. Heart failure in COVID-19 patients: prevalence, incidence and prognostic implications // Eur. J. Heart. Fail. 2020. Vol. 22. N. 12. P. 2205–2215. DOI: 10.1002/ejhf.1990.
  103. Шляхто Е.В., Конради А.О., Арутюнов Г.П. и др. Руководство по диагно- стике и лечению болезней системы кровообращения в контексте пандемии COVID-19 // Российский кардиологический журнал. 2020. Т. 25. №3. С. 3801. DOI: 10.15829/1560-4071-2020-3-3801.
  104. Szekely Y., Lichter Y., Taieb P. et al. The spectrum of cardiac manifestations in coronavirus disease 2019 (COVID-19) a systematic echocardiographic study // Circulation 2020. Vol. 142. P. 342–353.
  105. Argulian E., Sud K., Vogel B. et al. Right ventricular dilation in hospitalized patients with COVID-19 infection // JACC: Cardiovasc Imaging 2020. Vol. 13. N. 11. P. 2459– 2461. DOI: 10.1016/j.jcmg.2020.05.010.
  106. Shahrbaf M.A., Tabary M., Khaheshi I. The right ventricle in COVID-19 patients. A forgotten essential chamber that may be involved in the cardiac complications of COVID-19 // Cardiopulse. 2021. Vol. 42. N. 6. P. 559–560. DOI: 10.1093/eurheartj/ ehaa832.
  107. Fried J.A., Ramasubbu K., Bhatt R. et al. The variety of cardiovascular presentations of COVID-19 // Circulation 2020. Vol. 141. N. 23. P. 1930–1936. DOI: 10.1161/ CIRCULATIONAHA.120.047164.
  108. Onder G., Rezza G., Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy // JAMA. 2020. Vol. 323. N. 18. P. 1775–1776. DOI: 10.1001/jama.2020.4683/.
  109. Lanza G.A., De Vita A., Ravenna S.E. et al. Electrocardiographic findings at presentation and clinical outcome in patients with SARS-CoV-2 infection // Europace. 2020. Vol. 23. N. 100. P. 1–7. DOI: 10.1093/europace/euaa245.
  110. Evans C.E. Hypoxia and HIF activation as a possible link between sepsis and thrombosis // Thrombosis Journal. 2019. Vol. 17. N. 1. P. 16. DOI: 10.1186/s12959-019-0205-9.
  111. Parra-Medina R., Herrera S., Mejia J. Systematic review of microthrombi in COVID-19 autopsies // Acta. Haematol. 2021. DOI: 10.1159/000515104.
  112. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19 // N. Engl. J. Med. 2020. Vol. 383. P. 120–128.
  113. Chan N., Eikelboom J. Hypercoagulability and thrombosis in COVID-19: a modifiable cause formortality? // Eur. Heart J. 2021. Vol. 42. P. 3143–3145. DOI: 10.1093/eurheartj/ ehab417.
  114. Галстян Г.М. Коагулопатия при COVID-19 // Пульмонология. 2020. Т. 30. №5. С. 645–657. DOI: 10.18093/0869-0189-2020-30- 5-645-657.
  115. Jain V., Gupta K., Bhatia K. et al. Management of STEMI during the COVID-19 pandemic: Lessons learned in 2020 to prepare for 2021 // Trends in Cardiovascular Medicine. 2020. Vol. 3. N. 42. DOI: 10.1016/j.tcm.2020.12.003.
  116. Thachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19 // J. Thrombosis and Haemostasis. 2020. Vol. 18. N. 5. P. 1023–1026. DOI: 10.1111/jth.14810.
  117. Llitjos J., Leclerc M., Chochois C. et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients // J. Thromb. Haemost. 2020. DOI: 10.1111/jth.14869.
  118. Helms J., Tacquard C., Severac F. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study // Intensive Care Med. 2020. Vol. 46. N. 6. P. 1089–1098 DOI: 10.1007/s00134-020-06062-x.
  119. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 // Thromb Res. 2020. Vol. 191. P. 148–150. DOI: 10.1016/j.thromres.2020.04.013.
  120. Poissy J., Goutay J., Caplan M. etal. Lille ICUHaemostasis COVID-19 group. Pulmonary Embolism in COVID-19 Patients: awareness of an increased prevalence // Circulation. 2020. Vol. 142. P. 184–186. DOI: 10.1161/CIRCULATIONAHA.120.047430.
  121. Pellicori P., Doolub G., Wong C.M. et al. COVID-19 and its cardiovascular effects: a systematic review of prevalence studies // Cochrane Database Syst. Rev. 2021. Vol. 3. N. 3. P. CD013879.
  122. Di Minno A., Ambrosino P., Calcaterra I., Di Minno M.N.D. COVID-19 and venous thromboembolism: A meta-analysis of literature studies // Semin. Thromb. Hemost. 2020. Vol. 46. N. 7. P. 763–771. DOI: 10.1055/s-0040-1715456.
  123. Tavazzi G., Civardi L., Caneva L. et al. Thrombotic events in SARS-CoV-2 patients: an urgent call for ultrasound screening // Intensive Care Med. 2020. Vol. 46. N. 6. P. 1121– 1123. DOI: 10.1007/s00134-020-06040-3.
  124. Zhang L., Feng X., Zhang D. et al. Deep Vein Thrombosis in Hospitalized Patients With COVID-19 in Wuhan, China: Prevalence, Risk Factors, and Outcome // Circulation. 2020. Vol. 142. P. 114–128.
  125. Middeldorp S., Coppens M., van Haaps T.F. et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19 // J. Thromb. Haemost. 2020. Vol. 18. N. 8. P. 1995–2002. DOI: 10.1111/jth.14888.
  126. Kollias A., Kyriakoulis K.G., Lagou S. et al. Venous thromboembolism in COVID-19: a systematicreviewandmeta-analysis//Vasc.Med.2021.DOI:10.1177/1358863X21995566.
  127. Mestre-Gomez B., Lorente-Ramos R.M., Rogado J. et al. Incidence of pulmonary embolism in non-critically ill COVID-19 patients. Predicting factors for a challenging diagnosis // J. Thromb. Thrombolysis. 2021. Vol. 51. P. 40–46. DOI: 10.1007/s11239- 020-02190-9.
  128. Leonard-Lorant I., Delabranche X., Severac F. et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-Dimer levels // Radiology. 2020. Vol. 296. N. 3. P. e189–191. DOI: 10.1148/radiol.2020201561.
  129. Miró O., Jimenez S., Mebazaa A. et al. Spanish Investigators on Emergency Situations TeAm (SIESTA) network. Pulmonary embolism in patients with COVID-19: incidence, risk factors, clinical characteristics, and outcome // Eur. Heart J. 2021. Vol. 42. P. 3127– 3142. DOI: 10.1093/eurheartj/ehab314.
  130. Sørensen H.T., Horvath-Puho E., Lash T.L. et al. Heart disease may be a risk factor for pulmonary embolism without peripheral deep venous thrombosis // Circulation. 2011. Vol. 124. P. 1435–1441.
  131. Fauvel C., Weizman O., Trimaille A. et al. Pulmonary embolismin COVID-19 patients: a Frenchmulticentre cohort study // Eur. Heart J. 2020. Vol. 0. P. 1–11. DOI: 10.1093/ eurheartj/ehaa500.
  132. Hendren N.S., Grodin J.L., Drazner M.H. Unique Patterns of Cardiovascular Involvement in COVID-19 // J. Card. Fail. 2020. P. S1071–9164(20)30476-0. DOI: 10.1016/j.cardfail.2020.05.006.
  133. Lüscher T.F. The saga continues: is COVID-19 a cardiopulmonary disease? // Eur. Heart J. 2020. Vol. 41. P. 2041–2044. DOI: 10.1093/eurheartj/ehaa502.
  134. Sardu C., Gambardella J., Morelli M.B. et al. Hypertension, Thrombosis, Kidney Failure, and Diabetes: Is COVID-19 an Endothelial Disease? A Comprehensive Evaluation of Clinical and Basic Evidence // J. Clin. Med. 2020. Vol. 9. P. 1417. DOI: 10.3390/jcm9051417.
  135. Sala S., Peretto G., Gramegna M. et al. Acute Myocarditis Presenting as a Reverse Tako-Tsubo Syndrome in a Patient With SARS-CoV-2 Respiratory Infection // Eur. Heart J. 2020. Vol. 14. Vol. 41. N. 19. P. 1861–1862. DOI: 10.1093/eurheartj/ehaa286.
  136. Version T. Diagnosis and Treatment Plan for COVID-19 (Trial Version 6) // Chin. Med. J. (Engl). 2020. Vol. 133. N. 9. P. 1087–1095. DOI: 101097/CM9.0000000000000819.
  137. Kim I-C., Han S. Epicardial adipose tissue: fuel for COVID-19-induced cardiac injury?// Eur. Heart J. 2020. Vol. 41. P. 2334–2335. DOI: 10.1093/eurheartj/ehaa474.
  138. Zhao L. Obesity accompanying COVID-19: the role of epicardial fat // Obesity. (Silver Spring) 2020. DOI: 10.1002/oby.22867.
  139. Mehanna O., Askary A.El., Ali E. et al. Impact of Obesity and Its Associated Comorbid Conditions on COVID-19 Presentation // Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2021. Vol. 14. P. 409–415. DOI: 10.2147/DMSO.S287779.
  140. Simonnet A., Chetboun M., Poissy J. et al. Lille Intensive Care COVID-19 and Obesity study group, High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation // Obesity (Silver Spring) 2020. DOI: 10.1002/oby.22831.
  141. Xiong T-Y., Redwood S., Prendergast B., Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications // Eur. Heart J. 2020. Vol. 41. N. 19. P. 1798– 1800. DOI: 10.1093/eurheartj/ehaa231.
  142. PulmCrit — Thrombosis update in COVID-19: Data from the Mount Sinai system in NYC. 2020. https://emcrit.org/pulmcrit/sinai.
  143. Libby P., Lüscher T. COVID-19 is, in the end, an endothelial disease // Eur. Heart J. 2020. Vol. 41. P. 3038–3044. DOI: 10.1093/eurheartj/ehaa623.
  144. Nägele M.P., Haubner B., Tanner F.C. et al. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications // Atherosclerosis. 2020. Vol. 314. P. 58– 62. DOI: 10.1016/j.atherosclerosis.2020.10.014.
  145. Gambardella J., Santulli G. What is linking COVID-19 and endothelial dysfunction? Updates on nanomedicine and bioengineering from the 2020 AHA Scientific Sessions // Eur. Heart J. Cardiovascular Pharmacotherapy. 2021. Vol. 7. P. е2–е3. DOI: 10.1093/ ehjcvp/pvaa145.
  146. Cooper L.T. Myocarditis // N. Engl. J. Med. 2009. Vol. 360. P. 1526–1538. DOI: 10.1056/ NEJMra 0800028.
  147. Kakodkar P., Kaka N., Baig M.N. A comprehensive literature review on the clinical presentation, and anagement of the pandemic coronavirus disease 2019 (COVID-19) // Cureus. 2020. Vol. 12. N. 4. P. e7560. DOI: 10.7759/cureus.7560.
  148. Jin M., Tong Q. Rhabdomyolysis as Potential Late Complication Associated with COVID-19 // Emerg. Infect. Dis. 2020. Vol. 26. N. 7. P. 200445. DOI: 10.3201/ eid2607.200445.
  149. Loffredo L., Pacella F., Pacella E. et al. Conjunctivitis and COVID-19: a meta- analysis // J. Med. Virol. 2020. Vol. 10. P. 25938. DOI: 10.1002/jmv.25938.
  150. Galougahi M., Ghorbani J., Bakhshayeshkaram M. et al. Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: the first report // Academic. Radiology. 2020. DOI: 10.1016/j.acra.2020.04.002.
  151. Lopez M., Bell K., Annaswamy T. et al.COVID-19 Guide for the Rehabilitation Clinician: A Review of Non-Pulmonary Manifestations and Complications // Am. J. Phys. Med. Rehab. 2020. DOI: 10.1097/PHM.0000000000001479.
  152. Pérez C.A. Looking ahead: The risk of neurologic complications due to COVID-19 // Neurology: Clinical Practice. 2020. Vol. 10. N. 4. P. 371–374. DOI: 10.1212/ CPJ.0000000000000836.
  153. Poyiadji N., Shahin G., Noujaim D. et al. COVID 19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features // Radiology. 2020. Vol. 296. N. 2. P. e119–e120. DOI: 10.1148/radiol.2020201187.
  154. Toscano G., Palmerini F., Ravaglia S. et al. Guillain–Barré syndrome associated with SARSCoV-2 // N. Engl. J. Med. 2020. Vol. 382. N. 26. P. 2574–2576. DOI: 10.1056/ NEJMc2009191.
  155. Gutierrez C., Mendez A., Rodrigo-Rey S. et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19 // Neurology. 2020. DOI: 10.1212/WNL.0000000000009619.
  156. Wu Y., Xu X., Chen Z. et al. Nervous system involvement after infection with COVID-19 and other coronaviruses // Brain. Behav. Immun. 2020. DOI: 10.1016/j.bbi.2020.03.031.
  157. Barker-Davies R.M., O’Sullivan O., Senaratne K.P.P. et al. The Stanford Hall consensus statement for post- COVID-19 rehabilitation // Br. J. Sports. Med. 2020. Vol. 54. N. 16. P. 949–959. DOI: 10.1136/bjsports-2020-102596.
  158. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China // JAMA Neurol. 2020. Vol. 77. N. 6. P. 683–690. DOI: 10.1001/jamaneurol.2020.1127.
  159. Oxley T., Mocco J., Majidi S. et al. Large-vessel stroke as a presenting feature of Covid-19 in the young // N. Engl. J. Med. 2020. DOI: 10.1056/NEJMc2009787.
  160. Varatharaj A., Thomas N., Ellul M.A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study // Lancet Psychiat. 2020. Vol. 7. P. 875–882.
  161. Talan J. COVID-19: Neurologists in Italy to colleagues in US: Look for poorly-defined neurologic conditions in patients with the coronavirus // Neurology Today. American Academy of Neurology. 2020. https://journals.lww.com/ neurotodayonline/blog/ breakingnews/pages/post.aspx?PostID=920&fbclid=Iw.
  162. British Geriatrics Society. COVID-19: Dementia and cognitive impairment. www.bgs. org.uk/resources/covid-19-dementiaand-cognitive-impairment.
  163. Méndez R., Balanzá-Martínez V., Luperdi S.C. et al. Short-term Neuropsychiatric Outcomes and Quality of Life in COVID-19 Survivors // J. Intern. Med. 2021. DOI: 10.1111/JOIM.13262.
  164. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical Characteristics of Coronavirus Disease 2019 in China // N. Engl. J. Med. 2020. Vol. 382. N. 18. P. 1708–1720. DOI: 10.1056/ NEJMoa2002032.
  165. Xiang Y.T., Zhao Y.J., Liu Z.H. et al. The COVID-19 outbreak and psychiatric hospitals in China: managing challenges through mental health service reform // Int. J. Bio. Sci. 2020. Vol. 16. N. 10. P. 1741–1744. DOI: 10.7150/ijbs.45072.
  166. Zhu S., Gao Q., Yang L. et al. Prevalence and risk factors of disability and anxiety in a retrospective cohort of 432 survivors of Coronavirus Disease-2019 (Covid-19) from China // PLoS One. 2020. Vol. 15. N. 12. P. e0243883. DOI: 10.1371/journal. pone.0243883.
  167. Li Y., Scherer N., Felix L., Kuper H. Prevalence of depression, anxiety and post- traumatic stress disorder in health care workers during the COVID-19 pandemic: A systematic review and meta-analysis // PLoS One. 2021. Vol. 16. N. 3. P. e0246454. DOI: 10.1371/journal. pone.0246454.
  168. Bornstein S.R., Rubino F., Khunti K. et al. Practical recommendations for the management of diabetes in patients with COVID-19 // Lancet Diabetes Endocrinol. 2020. DOI: 10.1016/S2213-8587(20)30152-2.
  169. Casas-Rojo J.M., Anton-Santos J.M,. Millan-Nunez-Cortes J. et al. Clinical characteristics of patients hospitalized with COVID-19 in Spain: results from the SEMI-COVID-19 Registry [Caracteristicas clinicas de los pacientes hospitalizados con COVID-19 en Espana: resultados del Registro SEMI-COVID-19] // Rev. Clin. Esp. (Barc). 2020. Vol. 22. N. 8. P. 480–494. DOI: 10.1016/j.rceng.2020.07.003.
  170. Docherty A.B., Harrison E.M., Green C.A. et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study // BMJ. 2020. Vol. 369. P. m1985. DOI: 10.1136/ bmj.m1985.
  171. Cariou B., Hadjadj S., Wargny M. et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study // Diabetologia. 2020. Vol. 63. N. 8. P. 1500–1515. DOI: 10.1007/s00125-020-05180-x.
  172. Liu W., Li H. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism // Chem. Rxiv. Preprint. 2020. DOI: 10.26434/chemrxiv.11938173.v7.
  173. Raj V.S., Mou H., Smits S.L. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC // Nature. 2013. Vol. 495. P. 251–54.
  174. Wang A., Zhao W., Xu Z., Gu J. Timely blood glucose management for the outbreak of 2019 novel coronavirus disease (COVID-19) is urgently needed // Diabetes Res. Clin. Pract. 2020. Vol. 162. P. 108118. DOI: 10.1016/j.diabres.2020.10811891.
  175. Verma A.K., Beg M.M.A., Bhatt D. et al. Assessment and Management of Diabetic Patients During the COVID-19 Pandemic // Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021. N. 14. P. 3131–3146.
  176. Peleg A.Y., Weerarathna T., McCarthy J.S., Davis T.M.E. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control // Diabetes Metab. Res. Rev. 2007. Vol. 23. N. 1. P. 3–13. DOI: 10.1002/dmrr.68221.
  177. Katulanda P., Dissanayake H.A., Ranathunga I. et al. Prevention and management of COVID-19 among patients with diabetes: an appraisal of the literature // Diabetologia. 2020. Vol. 63. N. 8. P. 1440–1452. DOI: 10.1007/ s00125-020-05164-x6.
  178. Knapp S. Diabetes and infection: is there a link? — A mini-review // GER. 2013. Vol. 59. N. 2. P. 99–104. DOI: 10.1159/000345107.
  179. Hussain A., Bhowmik B., do Vale Moreira N.C. COVID-19 and diabetes: Knowledge in progress // Diabetes Res. Clin. Pract. 2020. Vol. 162. P. 108142. DOI: 10.1016/j. diabres.2020.108142.
  180. Gu J., Han B., Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission // Gastroenterology. 2020. Vol. 158. N. 6. P. 1518–1519. DOI: 10.1053/j.gastro.2020.02.054.
  181. Mao R., Qiu Y., He J-S. et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis // Lancet Gastroenterol. Hepatol. 2020. 5. N. 7. P. 667–678. DOI: 10.1016/S2468- 1253(20)30126-6.
  182. Гриневич В.Б., Губонина И.В., Дощицин В.Л. и др. Особенности ведения ко- морбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Национальный Консенсус 2020 // Кардиоваскулярная терапия и профилактика. 2020. Т. 19. №4. С. 2630. DOI: 10.15829/1728-8800-2020-2630.
  183. Chai X., Hu L., Zhang Y. et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. 2020. DOI: 10.1101/2020.02.03.931766.
  184. Walls A.C., Park Y-J, Tortorici M.A. at al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein // Cell. 2020. Vol. 181. N. 2. P. 281–292.
  185. Paizis G., Tikellis C., Cooper M.E. et al. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2 // Gut. 2005. Vol. 54. N. 12. P. 1790–1796. DOI: 10.1136/gut.2004.062398.
  186. Yao X., Li T., He Z. et al. A pathological report of three COVID-19 cases by minimally invasive autopsies // Zhonghua Bing Li Xue Za Zhi. 2020. Vol. 49. P. E009. DOI: 10.3760/cma.j.cn112151-20200312-0019321.
  187. Chuan W.J., Vi Z.Y., Hu Y. et al. Clinical Characteristics of Coronavirus Disease 2019 in China // N. Engl. J. Med. 2020. Vol. 382. N. 18. P. 1708–1720. DOI: 10.1056/ NEJMoa2002032.
  188. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. Vol. 395. P. 497–506.
  189. Zhang C., Shi L., Wang F-S. Liver injury in COVID-19: management and challenges. 2020. DOI: 10.1016/S2468-1253(20)30057-1.
  190. Заболотских И.Б., Киров М.Ю., Лебединский К.М. и др. Анестезиолого-реа- нимационное обеспечение пациентов с новой коронавирусной инфекцией COVID-19. Методические рекомендации Общероссийской общественной орга- низации «Федерация анестезиологов и реаниматологов» // Вестник интенсив- ной терапии им. А.И. Салтанова. 2020. Т. S1. С. 9–120. DOI: 10.21320/1818-474X- 2020-S1-9-120.
  191. Yang X., Yu Y., Xu J. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study // Lancet Respir. Med. 2020. Vol. 8. N. 5. P. 475−481. DOI: 10.1016/ S2213-2600(20)30079-5.
  192. McNeary L., Maltser S., Verduzco-Gutierrez M. Navigating coronavirus disease 2019 (Covid-19) in physiatry: A CAN report for inpatient rehabilitation facilities // Phys. Med. Rehabil. 2020. Vol. 12. N. 5. P. 512–515. PMID:32196983 DOI: 10.1002/pmrj.12369.
  193. Thomas P., Baldwin C., Bissett B. et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations // J. Physiother. 2020. Vol. 66. N. 2. P. 73–82. DOI: 10.1016/j.jphys.2020.03.011.
  194. Ohtake P.J., Lee A.C., Scott J.C. et al. Physical impairments associated with post– intensive care syndrome: systematic review based on the World Health Organization’s International Classification of Functioning, Disability and Health Framework // Phys. Ther. 2018. Vol. 98. N. 8. P. 631–645. DOI: 10.1093/ptj/pzy059.
  195. Белкин А.А., Авдюнина И.А., Варако Н.А. др. Реабилитация в интенсивной те- рапии. Клинические рекомендации // Вестник восстановительной медицины. 2017. T. 2. №78. С. 139–143.
  196. Herridge M.S., Moss M., Hough C.L. et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers // Intensive Care Med. 2016. Vol. 42. N. 5. P. 725–738. DOI: 10.1007/s00134-016-4321-8.
  197. Burgess L.C., Venugopalan L., Badger J. et al. Effect of neuromuscular electrical stimulation on the recovery of people with COVID-19 admitted to the intensive care unit: A Narrative review // J. Rehabil. Med. 2021. Vol. 53. P. jrm00164. DOI: 10.2340/16501977-2805.
  198. Fan E. Critical illness neuromyopathy and the role of physical therapy and rehabilitation in critically ill patients // Respir. Care. 2012. Vol. 57. N. 6. P. 933–944. DOI: 10.4187/ respcare.01634.
  199. Shepherd S., Batra A., Lerner D.P. Review of critical illness myopathy and neuropathy // Neurohospitalist. 2017. Vol. 7. N. 1. P. 41–48. DOI: 10.1177/1941874416663279.
  200. Venkataraman T., Frieman M.B. The role of epidermal growth factor receptor (EFGR) signaling in SARS coronavirus-induced pulmonary fibrosis // Antiviral. Res. 2017. Vol. 143. P. 142–150. DOI: 10.1016/j.antiviral.2017.03.022.
  201. Hui D.S., Joynt G.M., Wong K.T. et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors // Thorax. 2005. Vol. 60. N. 5. P. 401–409. DOI: 10.1136/thx.204.030205.
  202. Carda S., Invernizzi M., Bavikatte G. et al. The role of physical and rehabilitation medicine in the COVID-19 pandemic: the clinician’s view. Ann Phys Rehabil Med. 2020. Vol. 63. N. 6. P. 554–556. DOI: 10.1016/j.rehab.2020.04.001.
  203. National Institute for Health and Care Excellence, Royal College of General Practitioners, Healthcare Improvement Scotland SIGN. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence, 2020. www.nice.org.uk/ guidance/ng188.
  204. Carfi A., Bernabei R., Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020. Vol. 324. N. 6. P. 603–605. https://jamanetwork.com/ on 01/03/2021.
  205. Perrin R., Riste L., Hann M. et al.  Into  the  looking glass: Post-viral  syndrome  post COVID-19. Medical Hypotheses 2020. Vol. 144. P. 110055. DOI: 10.1016/j. mehy.2020.110055.
  206. Office for National Statistics. The prevalence of long COVID symptoms and COVID-19 complications. 2020. https://www.ons.gov.uk/ news/statementsandletters/theprevalenc eoflongcovidsymptoms andcovid19complications.
  207. Davis H.E., Assaf G.S. McCorkell L. et al. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. 2020. DOI: 10.1101/2020.12.24.20248802.
  208. Huang C., Huang L., Wang Y. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study // Lancet 2021. Vol. 397. P. 220–232. doi.10.1016/ S0140-6736(20)32656-8.
  209. Tomar B.S., Singh M., Nathiya D. et al. Prevalence of Symptoms in Patients Discharged from COVID Care Facility of NIMS Hospital: Is RT PCR Negativity Truly Reflecting Recovery? A Single-Centre Observational Study // International Journal of General Medicine 2021. N. 14. P. 1069–1078. https://www.dovepress.com/ by 77.108.108.229.
  210. Carvalho-Schneider C., Laurent E., Lemaignen A. et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset // Clinical Microbiology and Infection. 2021. N. 27. P. 258–263. DOI: 10.1016/j.cmi.2020.09.052.
  211. Huang L., Yao Q., Gu X. et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study // Lancet 2021. Vol. 398. P. 747–758.
  212. Lopez-Leon S., Wegman-Ostrosky T., Perelman C. et al. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis // Res. Sq. 2021. N. rs.3. P. rs-266574. DOI: 10.21203/rs.3.rs-266574/v1.
  213. Ayoubkhani D., Khunti K., Nafilyan V. et al. Epidemiology of post-COVID syndrome following hospitalisation with coronavirus: a retrospective cohort study. 2021. DOI: 10.1101/2021.01.15.21249885.
  214. Disser N.P., De Micheli A.J., Schonk M.M. et al. Musculoskeletal consequences of COVID-19 // J. Bone Joint Surg. Am. 2020. Vol. 102. P. 1197–1204. DOI: 10.2106/ JBJS.20.00847.
  215. Halpin S., McIvor C., Whyatt G. et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation // J. Med. Virol. 2021. Vol. 93. N. 2. P. 1013–1022. DOI: 10.1002/jmv.26368.
  216. Himmels J.P.W., Qureshi S.A., Brurberg K.G., Gravningen K.M. COVID-19: Long- term effects of COVID-19. 2021. www.fhi.no/en/publ/2021/Long-Term-Effects-of- COVID-19.
  217. The RECOVERY Collaborative Group, Horby P., Lim W.S., Emberson J.R. et al. Dexamethasone in Hospitalized patients with COVID-19 — preliminary report // N. Engl. J. Med. 2020. Vol. 10. P. 1056/NEJMoa2021436.
  218. Yousefzai R., Bhimaraj A. Misdiagnosis in the COVID-19 era: when zebras are everywhere, don’t forget the horses // JACC CaseRep. 2020. Vol. 2. N. 10. P. 1614–1619. DOI: 10.1016/j.jaccas.2020.04.018.
  219. Poggiali E., Vercelli A., Demichele E. et al. Diaphragmatic rupture and gastric perforation in a patient with COVID-19 pneumonia // Eur. J. Case Rep. Intern. Med. 2020. Vol. 7. N. 6. P. 001738. DOI: 10.12890/2020_001738.
  220. Hsueh S.J., Lee M.J., Chen H.S., Chang K.C. Myopathy associated with COVID-19 // J. Formos. Med. Assoc. 2021. Vol. 120. N. 3. P. 1022–1024.28.
  221. Jin M., Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19 article metrics metric details related articles early introduction of SARS- CoV-2 into Europe Case-Fatality Risk Estimates for COVID-19 Calculated by Using a Lag Time for Fatality Co-infection with SARS-CoV-2 and Influenza A Virus in Patient with // Emerg. Infect. Dis. J. 2020. Vol. 26. N. 7. P. 1618–1629.
  222. Paliwal V.K., Garg R.K., Gupta A., Tejan N. Neuromuscular presentations in patients with COVID-19 // Neurol. Sci. 2020. Vol. 41. N. 11. P. 3039–3056.
  223. Белопасов В.В., Журавлева Е.Н., Нугманова Н.П., Абдрашитова А.Т. Постко- видные неврологические синдромы // Клиническая практика. 2021. Т. 12. №2. С. 69–82. DOI: 10.17816/clinpract71137.
  224. Ramani S.L., Samet J., Franz C.K. et al. Musculoskeletal involvement of COVID-19: review of imaging // Skeletal. Radiology. 2021. Vol. 50. P. 1763–1773. DOI: 10.1007/ s00256-021-03734-7.
  225. Mohr A., Dannerbeck L., Lange T.J. et al. Cardiopulmonary exercise pattern in patients with persistent dyspnoea after recovery from COVID-19 // Multidisciplinary Respiratory Medicine 2021. Vol. 16. P. 732.
  226. Patelli Gi., Paganoni S., Besana F. et al. Preliminary detection of lung hypoperfusion in discharged Covid-19 patients during recovery // European Journal of Radiology. 2020. Vol. 129. P. 109121. DOI: 10.1016/j.ejrad.2020.109121.
  227. Guler S.A., Ebner L., Beigelman C. et al. Pulmonary function and radiological features four months after COVID-19: first results from the national prospective observational Swiss COVID-19 lung study // Eur. Respir. J. 2021. Vol. 57. P. 2003690. DOI: 10.1183/13993003.03690-2020.
  228. Mo X., Jian W., Su Z. et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge // Eur. Respir. J. 2020. 55. N. 6. P. 2001217. DOI: 10.1183/13993003.01217-2020.
  229. Huang Y., Tan C., Wu J. et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase // Respir. Res. 2020. Vol. 21. N. 1. P. 163. DOI: 10.1186/s12931-020-01429-6.
  230. Kotecha T., Knight D.S., Razvi Y. et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance // Eur. Heart J. 2021. Vol. 42. P. 1866–1878. DOI: 10.1093/eurheartj/ehab075.
  231. Friedrich M.G., Cooper L.T. What we (don’t) know about myocardial injury after COVID-19 // Eur. Heart J. 2021. Vol. 42. P. 1879–1882. DOI: 10.1093/eurheartj/ehab145.
  232. Lassen M.C.H., Skaarup K.G., Lind J.N. et al. Recovery of Cardiac Function Following COVID-19 - ECHOVID-19: A Prospective Longitudinal Cohort Study. 2021. DOI: 10.1002/ejhf.2347.
  233. Driggin E., Madhavan M.V., Bikdeli B. et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 Pandemic // J. Am. Coll. Cardiol. 2020. Vol. 75. N. 18. P. 2352–2371. DOI: 10.1016/j.jacc.2020.03.03.
  234. Zheng Y.Y., Ma Y.T., Zhang J.Y., Xie X. COVID-19 and the cardiovascular system // Nat. Rev. Cardiol. 2020. Vol. 17. N. 5. P. 259–260. DOI: 10.1038/s41569-020-0360-5.
  235. Holman N., Knighton P., Kar P. et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study // Lancet Diabetes Endocrinol. 2020. Vol. 8. N. 10. P. 823–833. DOI: 10.1016/S2213- 8587(20)30271-0.
  236. Vaes A.W., Machado F.V.C., Meys R. et al. Care Dependency in Non-Hospitalized Patients with COVID-19 // J. Clin. Med. 2020. Vol. 9. P. 2946. DOI: 10.3390/ jcm9092946.
  237. Inui S., Fujikawa A., Jitsu M. et al. Chest CT findings in cases from the cruise ship “Diamond Princess” with coronavirus disease 2019 (COVID-19) // Radiol. Cardiothorac. Imaging. 2020. Vol. 2. N. 2. P. e200110. DOI: 10.1148/ryct.2020200110.
  238. Young B.E., Ong S.W.X., Kalimuddin S. et al. Epidemiologic Features and Clinical Course of Patients Infected with SARS-CoV-2 in Singapore // JAMA. 2020. Vol. 323. N. 15. P. 1488–1494. DOI: 10.1001/jama.2020.3204.
  239. Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19 // Nature. 2021. Vol. 594. P. 259–264. DOI: 10.1038/s41586-021-03553-9.
  240. Raveendran A.V., Jayadevan R., Sashidharan S. Long COVID: An overview // Diabetes. Metab. Syndr. 2021. Vol. 15. P. 869–875. DOI: 10.1016/j.dsx.2021.04.007.
  241. Arthur J.M., Forrest J.C., Boehme K.W. et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection // PLoS One. 2021. Vol. 16. N. 9. P. e0257016. DOI: 10.1371/journal.pone.0257016.
  242. Komaroff A.L., Bateman L. Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome? // Front. Med. (Lausanne). 2021. Vol. 7. P. 606824. DOI: 10.1016/j. molmed.2021.06.002.
  243. Belli S., Balbi B., Prince I. et al. Low physical functioning and impaired performance of activities of daily life in COVID-19 patients who survived the hospitalization // Eur. Respir. J. 2020. Vol. 56. N. 4. P. 2002096. DOI: 10.1183/13993003.02096-2020.
  244. Paula B.D., Lemled M.D., Komaroffe A.L. et al. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome // PNAS. 2021. Vol. 118. N. 34. P. e2024358118. DOI: 10.1073/pnas.2024358118.
  245. Abouhashem A.S., Singh K., Azzazy H.M.E., Sen C.K. Is low alveolar type II cell SOD3 in the lungs of elderly linked to the observed severity of COVID-19? // Antioxid. Redox. Signal. 2020. Vol. 33. P. 59–65.
  246. Yang G. H2S as a potential defense against COVID-19? // Am. J. Physiol. Cell Physiol.202. Vol. 319. P. C244–C249. DOI: 10.1152/ajpcell.00187.2020.
  247. Renieris G., Katrini K., Damoulari C. et al. Serum hydrogen sulfide and outcome association in pneumonia by the SARS-CoV-2 coronavirus // Shock. 2020. N. 54. P. 633–637. DOI: 10.1097/SHK.0000000000001562.
  248. Ganji R., Reddy P.H. Impact of COVID-19 on Mitochondrial-Based Immunity in Aging and Age-Related Diseases // Front. Aging Neurosci. 2021. Vol. 12. P. 614650. DOI: 10.3389/fnagi.2020.614650.
  249. Singh K.K., Chaubey G., Chen J.Y., Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis // Am. J. Physiol. Cell Physiol. 2020. Vol. 319. P. C258–C267.
  250. Schultze J.L., Aschenbrenner A.C. COVID-19 and the human innate immune system // Cell. 2021. Vol. 184. P. 1671–1692.
  251. Breda C.N.S., Davanzo G.G., Basso P.J. et al. Mitochondria as central hub of the immune system // Redox. Biol. 2019. Vol. 26. P. 101255.
  252. Sweetman E. et al. A SWATH-MS analysis of myalgic encephalomyelitis/chronic fatigue syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction // J. Transl. Med. 2020. Vol. 18. P. 365.
  253. Schreiner P. et al. Human herpesvirus-6 reactivation, mitochondrial fragmentation, and the coordination of antiviral and metabolic phenotypes in myalgic encephalomyelitis/ chronic fatigue syndrome // Immunohorizons. 2020. Vol. 4. P. 201–215.
  254. Lien K. et al. Abnormal blood lactate accumulation during repeated exercise testing in myalgic encephalomyelitis/chronic fatigue syndrome // Physiol. Rep. 2019. Vol. 7. P. e14138.
  255. Mueller C., Lin J.C., Sheriff S. et al. Evidence of widespread metabolite abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome: Assessment with whole-brain magnetic resonance spectroscopy // Brain Imaging Behav. 2020. Vol. 14. P. 562–572.
  256. Shungu D.C. et al. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology // NMR Biomed. 2012. Vol. 25. P. 1073–1087.
  257. Mohanty A., Tiwari-Pandey R., Pandey N.R. Mitochondria: the indispensable players in innate immunity and guardians of the infl amatory response // J. Cell Commun. Signal. 2019. Vol. 13. N. 3. P. 303–318. DOI: 10.1007/s12079-019-00507-9.
  258. Кувачева Н.В., Моргун А.В., Хилажева Е.Д. и др. Формирование инфламмасом: новые механизмы регуляции межклеточных взаимодействий и секреторной активности клеток // Сибирское медицинское обозрение. 2013. T. 5. P. 3–10.
  259. Melchinger H., Jain K., Tyagi T., Hwa J. Role of Platelet Mitochondria: Life in a Nucleus-Free Zone // Front. Cardiovasc. Med. 2019. Vol. 6. P. 1–11.
  260. Бубнова М.Г., Шляхто Е.В., Аронов Д.М. и др. Новая коронавирусная инфек- ционная болезнь COVID-19: особенности комплексной кардиологической и респираторной реабилитации. Консенсус экспертов Российских сообществ // Российский кардиологический журнал. 2021. Т. 26. №5:4487 С. 183–222. DOI: 10.15829/1560-4071-2021-4487.
  261. Simpson R., Robinson L. Rehabilitation following critical illness in people with COVID-19 infection // Am. J. Phys. Med. Rehabil. 2020. Vol. 99. N. 6. P. 470–474. DOI: 10.1097/PHM.0000000000001443.
  262. Ling Y., Xu S., Lin Y. et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients // Chin. Med. J. (Engl). 2020. Vol. 133. N. 9. P. 1039–1043 DOI: 10.1097/CM9.0000000000000774.
  263. Иванова Г.Е., Шмонин А.А., Мальцева М.Н. и др. Реабилитационная помощь в период эпидемии новой коронавирусной инфекции COVID-19 на первом, вто- ром и третьем этапах медицинской реабилитации // Физическая и реабилита- ционная медицина, медицинская реабилитация. 2020. T. 2. №2. DOI: 10.36425/ rehab34148.
  264. Spruit M., Holland A., Singh S. et al. COVID-19: interim guidance on rehabilitation in the hospital and post-hospital phase from a European Respiratory Society and American Thoracic Society-coordinated international task force // Eur.Respir. J. 2020. Vol. 56. P. 2002197. DOI: 10.1183/13993003.02889-2020.
  265. Zhao H-M., Xie Y-X., Wang C. Recommendations for respiratory rehabilitation in adults with COVID-19. Chinese Association of Rehabilitation Medicine, Respiratory Rehabilitation Committee of Chinese Association of Rehabilitation Medicine, Cardiopulmonary Rehabilitation Group of Chinese Society of Physical Medicine Rehabilitation // Chin. Med. J. (Engl). 2020. Vol. 133. N. 13. P. 1595–1602. DOI: 10.1097/CM9.0000000000000848.
  266. Sessler C.N., Gosnell M.S., Grap M.J. et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients // Am. J. Respir. Crit. Care Med. 2002. Vol. 166. N. 10. P. 1338–1344.
  267. Centers for Disease Control and Prevention. Discontinuation of Isolation for persons with COVID-19 not in healthcare settings (Interim Guidance). 2020. www.cdc.gov/ coronavirus/2019-ncov/hcp/disposition-in-home-patients.html.
  268. Cheng Y-Y., Chen C-M., Huang W-C. et al. Rehabilitation programs for patients with COronaVIrus Disease 2019: consensus statements of Taiwan Academy of Cardiovascular and Pulmonary Rehabilitation // J. Formosan. Medical. Association. 2020. DOI: 10.1016/j.jfma.2020.08.015.
  269. Bartlo P., Bauer N. Pulmonary Rehabilitation Post-Acute Care for Covid-19 (PACER). 2020. www://youtu.be/XjY_7O3Qpd8.
  270. Yang L-L., Yang T. Pulmonary rehabilitation for patients with coronavirus disease 2019 (COVID-19) // Chronic. Diseases and Translational Medicine. 2020. Vol. 6. P. 79–86. DOI: 10.1016/j.cdtm.2020.05.002.
  271. Авдеев С.Н., Царева Н.А., Мержоева З.М. др. Практические рекомендации по кислородотерапии и респираторной поддержке пациентов с COVID-19 на до- реанимационном этапе // Пульмонология. 2020. T. 30. №2. С. 151–163. DOI: 10.18093/0869-0189-2020-30-2-151-163.
  272. Vogiatzis I., Zakynthinos S. Factors limiting exercise tolerance in chronic lung diseases // Compr. Physiol. 2012. Vol. 2. N. 3. P. 1779–1817. DOI: 10.1002/cphy.c110015.
  273. Dowman L., Hill C.J., Holland A.E. Pulmonary rehabilitation for interstitial lung disease // Cochrane Database Syst. Rev. 2014. Vol. 10. P. CD006322. DOI: 10.1002/14651858.CD006322.pub3.
  274. Agostini F., Mangone M., Ruiu P. et al. Rehabilitation settings during and after covid-19: an overview of recommendations // J. Rehabil. Med. 2021. Vol. 53. P. jrm00141. DOI: 10.2340/16501977-2776.
  275. Малявин А.Г., Епифанов В.А., Глазкова И.И. Реабилитация при заболеваниях органов дыхания. М.: ГЭОТАР-Медиа, 2010. 352 с. www.rosmedlib.ru/book/ISBN9.
  276. Епифанов В.А. Лечебная физическая культура. Учебное пособие. М.: ГЭОТАР- Медиа, 2006. 568 с. www.Epifanov_V.A._Lechebnaya_fizicheskaya_kultura(BookSee. ord.).divu.
  277. Мирзаев Д.А. Научно-периодический журнал «Здоровье человека, теория и ме- тодика физической культуры и спорта». 2017. №4. P. 85–91.
  278. Макарова И.Н. Массаж и лечебная физкультура. М.: Эксмо, 2009. 61 с. www. litres.ru/pages/biblio_book/?art=288102.
  279. Lazzeri M., Lanza A., Bellini R. et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR) // Monaldi Arch. Chest. Dis. 2020. Vol. 90. N. 1. P. 163–168. DOI: 10.4081/monaldi.2020.1285.
  280. Alhazzani W., Møller M.H., Arabi Y.M. et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19) // Critical. Care Medicine. 2020. DOI: 10.1097/CCM.0000000000004363.
  281. COVID-19-EMCrit-Project. Internet Book of Critical Care (IBCC). https://emcrit. org/ibcc/covid19/.
  282. Sun Q., Qiu H., Huang M., Yang Y. Lower mortality of COVID-19 by early recognition and intervention: experience from Jiangsu Province // Ann. Intensive Care. 2020. Vol. 10. N. 1. P. 33. DOI: 10.1186/s13613-020-00650-2.
  283. Sartini C., Tresoldi M., Scarpellini P. et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit // JAMA. 2020. DOI: 10.1001/jama.2020.7861.
  284. Elharrar X., Trigui Y., Dols A. et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure // JAMA. 2020. DOI: 10.1001/ jama.2020.8255.
  285. Kallet R.H. A comprehensive review of prone position in ARDS // Respir. Care. 2015. Vol. 60. N. 11. P. 1660–1687. DOI: 10. 4187/respcare.04271.
  286. Демченко Е.А., Красникова В.В., Янишевский С.Н. Практические рекоменда- ции по физической реабилитации больных с тяжелым течением COVID-19 в отделениях реанимации и интенсивной терапии // Артериальная гипертензия. 2020. Т. 26. № 3. С. 327–342. DOI: 10.18705/1607-419X-2020-26-3-327-342.
  287. Клинические рекомендации Союза реабилитологов России «Реаблитация в интенсивной терапии». www://rehabrus.ru/index.php?id=55.
  288. Biase SDe., Cook L., Skelton D.A. et al. The COVID-19 rehabilitation pandemic // Age and Ageing. 2020. P. 1–5 DOI: 10.1093/ageing/afaa118.
  289. Алашеев А.М., Анисимова Л.Н., Белкин А.А. др. Вертикализация пациентов в процессе реабилитации // Клинические рекомендации. 2014. http://rehabrus.ru/ index.php?id=55.
  290. Felten-Barentsz K.M., van Oorsouw R., Klooster E. et al. Recommendations for hospital-based physical therapists managing patients with COVID-19 // Phys. Ther. 2020. Vol. 100. P. 1444–1457. http://creativecommons.org/licenses/bync/4.0/.
  291. Bohannon R.W., Larkin P.A., Cook A.C. et al. Decrease in timed balance test scores with aging // Phys. Ther. 1984. Vol. 64. P. 1067–1070.
  292. Newton R.A. Balance screening of an inner city older adult population // Arch. Phys. Med. Rehabil. 1997. Vol. 78. P. 587–591.
  293. Guralnik J.M., Simonsick E.M., Ferrucci L. et al. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission // Journal of Gerontology. 1994. Vol. 49. P. M85–M94.
  294. Бокерия Л.А., Аронов Д.М., Бубнова М.Г. и др. Российские клинические реко- мендации. Коронарное шунтирование больных ИБС: реабилитация и вторич- ная профилактика // Кардиосоматика. 2016. T. 7. № 3–4. С. 5–71.
  295. Abdullahi A. Safety and Efficacy of Chest Physiotherapy in Patients With COVID-19: A Critical Review // Front. Med. (Lausanne). 2020. Vol. 7. P. 454. DOI: 10.3389/ fmed.2020.00454.
  296. Harper C.J., Shahgholi L., Cieslak K. et al. Variability in diaphragm motion during normal breathing, assessed with B-mode ultrasound // J. Orthop. Sports Phys. Ther. 2013. Vol. 43. N. 12. P. 927–931.
  297. Bordoni B., Marelli F., Bordoni G. A review of analgesic and emotive breathing: a multidisciplinary approach // Journal of Multidisciplinary Healthcare. 2016. N. 9. P. 97–102. DOI: 10.2147/JMDH.S101208.
  298. Bordoni B., Zanier E. Anatomic connections of the diaphragm: influence of respiration on the body system // J. Multidiscip. Healthc. 2013. Vol. 6. P. 281–291.
  299. Мартынов А.И., Адашева Т.В., Бабак С.Л. и др. Физиотерапия и кислородоте- рапия пациентов с дыхательными расстройствами и нарушением мукоцилиар- ного клиренса. Национальные клинические рекомендации: пульмонология // Терапия. 2019. № 5. С. 101–152.
  300. Стариков С.М., Юдин В.Е., Калашников С.В. и др.  Физическая реабилита- ция больных пневмонией, ассоциированной с коронавирусной инфекцией (COVID-19): учебное пособие. М.: Издательство «Перо», 2020. 75 с.
  301. Епифанцев В.А. Восстановительная медицина: учебник. М.: ГЭОТАР-Медиа, 2012. 304 с.
  302. Nicolini A., Cardini F., Landucci N. et al. Effectiveness of treatment with high- frequency chest wall ascillation in patients with bronchiectasis // BMC Pulmonary Medicine. 2013. Vol. 13. N. 21. P. 1471–2466. DOI: 10.1186/1471-2466-13-21.
  303. Gloeck R., Heinzeimann I., Baeuerle S. et al. Effects of whole body vibration in patients with chronic obstructive pulmonary disease- A randomized controlled trial// Respiratory MEDICINE. 2012. Vol. 106. N. 1. P. 75–83. DOI: 10.1016/j.rmed.2011.10.021.
  304. Мещерякова Н.Н., Белевский А.С., Кулешов А.В. Легочная реабилитация паци- ентов, перенесших коронавирусную инфекцию COVID-19 (клинические при- меры) // Пульмонология. 2020. Vol. 30. N. 5. P. 715–722. DOI: 10.18093/0869-0189- 2020-30-5-715-722.
  305. Малявин А.Г., Адашева Т.В., Бабак С.Л. и др. Медицинская реабилитация боль- ных, перенесших COVID-19 инфекцию: методические рекомендации. 2020. Т. 5 (приложение). С. 1–48. DOI: 10.18565/therapy.2020.
  306. Малявин А.Г., Бабак С.Л., Горбунова М.В. Респираторная реабилитация пост- COVID-19 пациентов // Архивъ внутренней медицины. 2021. Т. 11. №1. P. 22–33. DOI: 10.20514/2226-6704-2021-11-1-22-33.
  307. Jang M.H., Shin M-J., Shin Y.B. Pulmonary and Physical Rehabilitation in Critically Ill Patients // Acute and Critical. Care. 2019. Vol. 34. N. 1. P. 1–13. DOI: 10.4266/ acc.2019.00444.
  308. Fink J.B. Forced expiratory technique, directed cough, and autogenic drainage // Respir. Care. 2007. Vol. 52. N. 9. P. 1210–1221.
  309. Grammatopoulou E., Belimpasaki V., Valalas A. et al. Active cycle of breathing  techniques contributes to pain reduction in patients with rib fractures // Hell Cheirourgike 2010. Vol. 82. P. 52–58.
  310. Donadio M.V.F., Campos N.E., Vendrusculo F.M. et al. Respiratory physical therapy techniques recommended for patients with cystic fibrosis treated in specialized centers // Braz. J. Phys. Ther. 2019. P. S1413–3555(19)30062-0. DOI: 10.1016/j.bjpt.2019.11.003.
  311. Eltorai A.E.M., Baird G.L., Eltorai A.S. et al. Perspectives on Incentive Spirometry Utility and Patient Protocols // Respir. Care. 2018. Vol. 63. N. 5. P. 519–531. DOI: 10.4187/respcare.05872.
  312. Kotta P.A., Ali J.M. Incentive Spirometry for Prevention of Postoperative Pulmonary Complications After Thoracic Surgery // Respir. Care. 2020. P. 07972. DOI: 10.4187/ respcare.07972.
  313. McIlwaine M., Button B., Nevitt S.J. Positive expiratory pressure physiotherapy for airway clearance in people with cystic fibrosis // Cochrane Database Syst. Rev. 2019. Vol. 2019. N. 11. P. CD003147. DOI: 10.1002/14651858.CD003147.pub5.
  314. Riffard G., Toussaint M. Ventilation a percussions intrapulmonaires: fonctionnement et modalites de reglage [Intrapulmonary percussion ventilation: operation and settings] // Rev. Mal. Respir. 2012. Vol. 29. N. 2. P. 347–354. French. DOI: 10.1016/j. rmr.2011.12.003.
  315. Paneroni M., Clini E., Simonelli C. et al. Safety and efficacy of short-term intrapulmonary percussive ventilation in patients with bronchiectasis // Respir. Care. 2011. Vol. 56. P. 984–988.
  316. Wang T.J., Chau B., Lui M. et al. Physical Medicine and Rehabilitation and Pulmonary Rehabilitation for COVID-19 // Am. J. of Phys. Med. and Rehab. 2020. Vol. 99. N. 9. P. 769–774. DOI: 10.1097/PHM.0000000000001505.
  317. Dale C.M., McKim D., Amin R. et al. Education Experiences of Adult Subjects and Caregivers for Mechanical Insufflation-Exsufflation at Home // Respir. Care. 2020. Vol. 65. N. 12. P. 1889–1896. DOI: 10.4187/respcare.07534.
  318. Gonçalves M.R., Honrado T., Winck J.C., Paiva J.A. Effects of mechanical insufflation- exsufflation in preventing respiratory failure after extubation: a randomized controlled trial // Crit. Care. 2012. Vol. 16. P. R48.
  319. Homnick D.N. Mechanical insufflation-exsufflation for airway mucus clearance // Respir. Care. 2007. Vol. 52. P. 1296–1305.
  320. Сумин А.Н. Физические тренировки с использованием электростимуляции скелетных мышц в кардиологии // Кардиология. 2010. T. 3. C. 83–90.
  321. Gerovasili V., Stefanidis K., Vitzilaios K. et al. Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study // Critical. Care. 2009. Vol. 13. N. 5. P. R161.
  322. Maffiuletti N.A., Roig M., Karatzanos E., Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review // BMC Med. 2013. Vol. 11. P. 137
  323. Gruther W., Kainberger F., Fialka-Moser V. et al. Effects of neuromuscular electrical stimulation on muscle layer thickness of knee extensor muscles in intensive care unit patients: a pilot study // J. Rehabil. Med. 2010. Vol. 42. N. 6. P. 593–597.
  324. Stein R.B., Chong S.L., Janies К.В. et al. Electrical stimulation for therapy and mobility after spinal cord injury // Prog. Brain. Res. 2002. Vol. 137. P. 27–34.
  325. Karavidas A., Raisakis G., Parissis J. et al. Functional electrical stimulation improves endothelial function and reduces peripheral immune responses in patients with chronic heart failure // Eur. J. Cardiovasc. Prev. Rehabil. 2006. Vol. 13. P. 592–597.
  326. Vivodtzev I., Pépin J-L., Vottero G. et  al.  Improvement  in Quadriceps  Strength and Dyspnea in Daily Tasks After 1 Month of Electrical Stimulation in Severely Deconditioned and Malnourished COPD // Chest. 2006. Vol. 129. Vol. 1540–1548.
  327. On Health Technol Assesses Ser. Pulmonary rehabilitation for patients chronic pulmonary disease (COPD) // An Evidence-Basis Analasis. 2012. Vol. 12. N. 6. P. 1–75.
  328. Сумин А.Н. Использование электростимуляции скелетных мышц в реабили- тации больных инфарктом миокарда. В монографии «Кардиореабилитация и вторичная профилактика» / Под редакцией профессора Д.М. Аронова. М.: ГЭ- ОТАР-Медиа, 2021. 464 с.
  329. Zanotti E., Felicetti G., Maini M. et al. Peripheral Muscle Strength Training in Bed- Bound Patients With COPD Receiving Mechanical Ventilation: Effect of Electrical Stimulation // Chest. 2003. Vol. 124. P. 292–296.
  330. Spruit M.A., Singh S.J., Garvey C. et al. on behalf of the ATS/ERS Task Force on Pulmonary Rehabilitation. An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation // Am. J. Respir. Crit. Care Med. 2013. Vol. 188. N. 8. P. e13–e64. DOI: 10.1164/rccm.201309-1634ST.
  331. Crevenna R., Mayr W., Keilani M. et al. Safety of a combined strength and endurance training using neuromuscular electrical stimulation of thigh muscles in patients with heart failure and bipolar sensing cardiac pacemakers // Wien Klin. Wochenschr. 2003. Vol. 115. N. 19–20. P. 710–714.
  332. Сумин A.H., Безденежных A.B., Байдина O.M. и др. Пассивные тренировки при инфаркте миокарда у пожилых (исследование ПАТРИАРХ) // Кардиоло- гия и сердечно-сосудистая хирургия. 2011. Т. 1. С. 22–30.
  333. Scarlata S., Costanzo L., Giua R., Pedone C., Incalzi R.A. Diagnosis and prognostic value of restrictive ventilatory disorders in the elderly: a systematic review of the literature // Exp. Gerontol. 2012. Vol. 47. N. 4. P. 281–289.
  334. Frankenstein L., Nelles M., Meyer F.J. et al. Validity, prognostic value and optimal cutoff of respiratory muscle strength in patients with chronic heart failure changes with beta-blocker treatment // Eur. J. Cardiovasc. Prev. Rehabil. 2009. Vol. 16. N. 4. P. 424– 429. DOI: 10.1097/HJR.0b013e3283030a7e.
  335. Romer L.M., Lovering A.T., Haverkamp H.C. et al. Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans // J. Physiol. (Lond). 2006. Vol. 571(Pt. 2). P. 425–439. DOI: 10.1113/jphysiol.2005.099697.
  336. Dempsey J.A., McKenzie D.C., Haverkamp H.C., Eldridge M.W. Update in the understanding of respiratory limitations to exercise performance in fit, active adults // Chest. 2008. Vol. 134. N. 3. P. 613–622. DOI: 10.1378/chest.07-2730.
  337. Бубнова М.Г., Шляхто Е.В., Аронов Д.М. и др. Новая коронавирусная инфек- ционная болезнь COVID-19: особенности комплексной кардиологической и респираторной реабилитации. Консенсус экспертов Российского общества кардиосоматической реабилитации и вторичной профилактики (РосОКР), Российского кардиологического общества (РКО), Российского респира- торного общества (РРО), Союза реабилитологов России (СРР), Российско- го союза нутрициологов, диетологов и специалистов пищевой индустрии (РОСНДП) // СardioСоматика, 2021. Т. 12. №2. С. 64–101. DOI: 10.26442/22217 185.2021.2.200840.
  338. Cabral L.F., D’Elia T.C., Marins D.S., Zin W.A. et al. Pursed lip breathing improves exercise tolerance in COPD: a randomized crossover study // Eur. J. Phys. Rehabil. Med. 2015. Vol. 51. N. 1. P. 79–88.
  339. Borg G.A. Psychophysical bases of perceived exertion // Med. Sci. Sports. Exerc. 1982. Vol. 14. P. 377–381.
  340. Murray A., Gerada C., Morris J. We need a Nightingale model for rehab after СOVID-19. 2020. www. hsj. co. uk/ commissioning/ we- need- a- nightingalemodel-for- rehab- after- covid- 19-/ 7027335.
  341. Edwards A.M., Wells C., Butterly R. Concurreny inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5000 m running performance compared with cardiovascular training alone // Br. J. Sports Med. 2004. Vol. 42. N. 10. P. 523–527. DOI: 10.1136/bjsm.2007. 045377.
  342. Enright S.J., Unnithan V.B., Heward C. et al. Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy // Phys. Ther. 2006. Vol. 86. N. 3. P. 345–354. DOI: 10.1093/ptj/86.3.345.
  343. Geddes E.L., O,Brien K., Reid W.D. et al. Inspiratory muscle training in adults with chronic obstructive pulmonary disease: an update of a systematic review // Respir. Med. 2008. Vol. 102. P. 1715–1729. DOI: 10.1016/j.rmed.2008.07.005.
  344. Gosselink R., De Vos J., van den Heuvel S.P. et al. Impact of inspiratory muscle training in patients with COPD: what is the evidence? // Eur. Respir. J. 2011. Vol. 37. P. 416–425.
  345. Арутюнов Г.П., Колесникова Е.А., Ильина К.В. и др. Тренировка дыхатель- ной мускулатуры при хронической сердечной недостаточности. В монографии «Кардиореабилитация и вторичная профилактика» / Под ред. профессора Д.М. Аронова. М.: ГЭОТАР-Медиа, 2021. 464 с.
  346. Severin R., Arena R., Lavie C.J. et al. Respiratory Muscle Performance Screening for Infectious Disease Management Following COVID-19: A Highly Pressurized Situation // Am. J. Med. 2020. Vol. 133. N. 9. P. 1025–1032. DOI: 10.1016/j. amjmed.2020.04.003.
  347. Bissett B., Gosselink R., van Haren F.M.P. Respiratory muscle rehabilitation in patients with prolonged mechanical ventilation: a targeted approach // Crit. Care. 2020. Vol. 24. N. 1. P. 103. DOI: 10.1186/s13054-020-2783-0.
  348. Royal Dutch Society for Physiotherapy 2020. KNGF position statement: Physiotherapy recommendations in patients with COVID-19. Amersfoort, Netherlands: KNGF. www. kngf.nl/kennisplatform/ guidelines.
  349. Zhou L., Liu H.G. Early detection and disease assessment of patients with novel coronavirus pneumonia // Chinese J. Tuberculosis and Respiratory Disease. 2020. Vol. 43. P. E003. DOI: 10.3760/cma.j.issn.1001-0939.2020.0003.
  350. Wanke T., Formanek D., Lahrmann H. et al. Effects of combined inspiratory muscle and cycle ergometer training on exercise performance in patients with COPD // Eur. Respir. J. 1994. Vol. 7. P. 2205–2211.
  351. Бубнова М.Г., Персиянова-Дуброва А.Л., Лямина Н.П., Аронов Д.М. Реабили- тация после новой коронавирусной инфекции (COVID-19): принципы и под- ходы // CardioСоматика. 2020. T. 11. №4. C. 6–14. DOI: 10.26442/22217185.2020. 4.200570.
  352. Liu K., Zhang W., Yang Y. et al. Respiratory rehabilitation in elderly patients with COVID-19: a randomized controlled study // Complement Ther Clin Pract. 2020. Vol. 39. P. 101166. DOI: 10.1016/j.ctcp.2020.101166.
  353. Крюков Е.В., Савушкина О.И., Малашенко М.М. и др. Влияние комплексной медицинской реабилитации на функциональные показатели системы дыхания и качество жизни у больных, перенесших COVID-19 // Бюллетень физиологии и патологии дыхания. 2020. Вып. 78. С. 84–91. DOI: 10.36604/1998- 5029-2020- 78-84-91.
  354. Синицын В.Е., Тюрин И.Е., Митьков В.В. Временные согласительные мето- дические рекомендации Российского общества рентгенологов и радиологов (РОРР) и Российской ассоциации специалистов ультразвуковой диагностики в медицине (РАСУДМ). Методы лучевой диагностики пневмонии при новой ко- ронавирусной инфекции COVID-19 (версия 2) // Вестник рентгенологии и ра- диологии. 2020. Т. 101. №2. С. 72–89. DOI: 10.20862/0042-4676-2020-101-2-72-89.
  355. Zhang B., Zhang J., Chen H. et al. Unmatched clinical presentation and chest CT manifestation in a patient with severe coronavirus disease 2019 (COVID-19) // Quant. Imaging. Med. Surg. 2020. Vol. 10. N. 4. P. 871–873. DOI: 10.21037/qims.2020.03.12.
  356. Inui S., Fujikawa A., Jitsu M. et al. Chest CT findings in cases from the cruise ship «Diamond Princess» with coronavirus disease 2019 (COVID-19) // Radiol. Cardiothorac.Imaging. 2020. Vol. 2. N. 2. P. e200110. DOI: 10.1148/ryct.2020200110.
  357. Lyu P., Liu X., Zhang R. et al. The performance of chest CT in evaluating the clinical severity of COVID-19 pneumonia: Identifying critical cases based on CT characteristics. Invest. Radiol. 2020. Vol. 55. N. 7. P. 412–421. DOI: 10.1097/RLI.00000 00000000689.
  358. Liu M., Zhang H., Yu N. et al. Association of CT findings with clinical severity in patients with COVID-19, a multicenter cohort observational study // Res. Sq. 2020. DOI: 10.21203/rs.3.rs-22920/v1.
  359. Макарова М.Р., Лямина Н.П., Сомов Д.А. и др. Физическая реабилитация при пневмонии, ассоциированной с COVID-19.Учебно-методическое пособие. Мо- сква, 2020 С. 84 https://www.elebrary.ru/item.asp?id=43055197.
  360. Kisner C., Colby L.A. Therapeutic exercise: foundations and techniques. Philadelphia: F.A. Davis Company, 2002. 813 р.
  361. Sood A. Altered resting and exercise respiratory physiology in obesity // Clin. Chest. Med. 2009. Vol. 30. N. 3. P. 445–454. DOI: 10.1016/j.ccm.2009. 05.003 [vii.].
  362. Kallet R.H., Hemphill J.C., Dicker R.A. et al. The spontaneous breathing pattern and work of breathing of patients with acute respiratory distress syndrome and acute lung injury // Respir. Care. 2007. Vol. 52. N. 8. P. 989–995.
  363. Levine S., Nguyen T.E., Taylor N. et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans // N. Engl. J. Med. 2008. Vol. 35. P. 1327–1335.
  364. Tingbo L., Hongliu C., Yu C. et al. Handbook of COVID-19 prevention and treatment. 2020. 60 p. http://education.almazovcentre.ru/wp-content/uploads/2020/03/ Spravochnik_po_profi laktike_i_lecheniju_COVID_19.pdf.
  365. Attaway A., Hatipoğlu U. Management of patients with COPD during the COVID-19 pandemic // Cleve. Clin. J. Med. 2020. DOI: 10.3949/ccjm.87a.ccc007.
  366. Wytrychowski K., Hans-Wytrychowska A., Piesiak P. et al. Pulmonary rehabilitation in interstitial lung diseases: A review of the literature // Adv. Clin. Exp. Med. 2020. Vol. 29. N. 2. P. 257–264. DOI: 10.17219/acem/115238.
  367. Zhang H., Zhou P., Wei Y. et al. Histothologicchanges and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19 // Ann. Intern. Med. DOI: 10.7326/M20-0533.
  368. Laveneziana P., Palange P., ERS Research Seminar Faculty. Physical activity, nutritional status and systemic inflammation in COPD // Eur. Respir. J. 2012. Vol. 40. N. 3. P. 522–529.
  369. Авдеев С.Н. Легочная гиперинфляция у больных ХОБЛ. Атмосфера // Пульмо- нология и аллергология. 2006. T. 2. C. 11–16.
  370. O’Donnell D.E., Revill S.M., Webb K.A. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. 2001. Vol. 164. P. 770–777.
  371. Laveneziana P., Albuquerque A., Aliverti A. et al. ERS statement on respiratory muscle testing at rest and during exercise // Eur. Respir. J. 2019. Vol. 53. N. 6. P. 1801214. DOI: 10.1183/13993003.01214-2018.
  372. Polkey M.I., Kyroussis D., Hamnegard C.H. et al. Diaphragm strength in chronic obstructive pulmonary disease // Am. J.  Respir.  Crit.  Care  Med.  1996.  Vol.  154. P. 1310–1317.
  373. Mota S., Guell R., Barreiro E. et al. Clinical outcomes of expiratory muscle trai ning in severe COPD patients // Respir. Med. 2007. Vol. 101. N. 3. P. 516–524. DOI: 10.1016/j. rmed.2006.06.024.
  374. Padula C.A., Yeaw E. Inspiratory muscle training: integrative review // Res. Theory Nurs. Pract. 2006. Vol. 20. N. 4. P. 291–304.
  375. Shoemaker M.J., Donker S., LaPoe A. Inspiratory Muscle Training in Patients with Chronic Obstructive Pulmonary Disease: The State of the Evidence. Systematic Review // Cardiopulmonary Physical Therapy J. 2009. Vol. 20. N. 3. P. 5–15.
  376. Ramirez-Sarmiento A., Orozco-Levi M., Guell R. et al. Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes // Am. J. Respir. Crit. Care Med. 2002. Vol. 166. N. 11. P. 1491– 1497. DOI: 10.1164/rccm.200202-075OC.
  377. Арутюнов Г.П., Колесникова Е.А, Ильина К.В. и др. Выбор оптимального ре- жима тренировок дыхательных мышц у пациентов с хронической сердечной недостаточностью II-III функциональных классов // Кардиология. 2021. T. 61. №2. С. 69–75. DOI: 10.18087/cardio.2021.2.n1356.
  378. Чучалин А.Г. Пульмонология [Электронный ресурс]: Национальное руковод- ство. Краткое издание / Под ред. А.Г. Чучалина. М.: ГЭОТАР-Медиа, 2018. 800 с.
  379. Macchia A., Moncalvo R.J.J., Kleinert M. et al. Unrecognised ventricular dysfunction in COPD // Eur. Respir. J. 2012. Vol. 39. N. 1. P. 51–58. DOI: 10.1183/ 09031936.00044411.
  380. Plesner L.L., Dalsgaard M., Schou M. et al. The prognostic significance of lung function in stable heart failure outpatients // Clinical Cardiology. 2017. Vol. 40. N. 11. P. 1145– 1151. DOI: 10.1002 / clc. 22802.
  381. Plachi F., Balzan F.M., Gass R. et al. Low exertional inspiratory capacity is not related to dynamic inspiratory muscle weakness in heart failure // Respir. Physiol. Neurobiol. 2018. Vol. 254. P. 32–35.
  382. Plentz R.D., Sbruzzi G., Ribeiro R.A. et al. Inspiratory muscle training in patients with heart failure: meta-analysis of randomized trials // Arq. Bras. Cardiol. 2012 Aug. Vol. 99. N. 2. P. 762–771.
  383. Kasahara Y., Izawa K.P., Watanabe S. et al. The Relation of Respiratory Muscle Strength to Disease Severity and Abnormal Ventilation During Exercise in Chronic Heart Failure Patients // Res. Cardiovasc. Med. 2015. Vol. 15. N. 4. P. e28944. DOI: 10.5812/cardiovascmed.28944. eCollection 2015 Nov.
  384. Severin R., Phillips S.A. Respiratory Muscles and Chemoreflex Sensitivity in Heart Failure: A Breath of Fresh Air // Canadian Journal of Cardiology. 2017. Vol. 33. P. 433– 436. DOI: 10.1016/j.cjca.2017.02.003. 
  385. Callegaro C.C., Martinez D., Ribeiro P.A. et al. Augmented peripheral chemoreflex in patients with heart failure and inspiratory muscle weakness // Respir. Physiol. Neurobiol. 2010. Vol. 171. P. 31–35. DOI: 10.1016/j.resp.2010.01.009.
  386. Kara T., Narkiewicz K., Somers V.K. Chemoreflexes — physiology and clinical implications // Acta Physiol. Scand. 2003. Vol. 177. P. 377–384.
  387. Dempsey J.A., Romer L., Rodman J. et al. Consequences of exercise-induced respiratory muscle work // Respir. Physiol. Neurobiol. 2006. Vol. 151. N. 2–3. P. 242–250.
  388. Арутюнов А.Г., Ильина К.В., Арутюнов Г.П. и др. Морфофункциональные осо- бенности диафрагмы у больных с хронической сердечной недостаточностью // Кардиология. 2019. T. 59. №1. С. 12–21. DOI: 10.18087/cardio.2019.1.2625.
  389. Woods P.R., Olson T.P., Frantz R.P., Johnson B.D. Causes of breathing inefficiency during exercise in heart failure // J. Card. Fail. 2010. Vol. 16. N. 10. P. 835–842.
  390. Ponikowski P., Francis D.P., Piepoli M.F. et al. Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis // Circulation. 2001. Vol. 103. N. 7. P. 967–972.
  391. Kinugawa S., Takada S., Matsushima S. et al. Skeletal muscle abnormalities in heart failure // Int. Heart. J. 2015. Vol. 56. P. 475–484.
  392. Sieck G.C., Ferreira L.F., Reid M., Mantilla C.B. Mechanical properties of respiratory muscles // Compr. Physiol. 2013. Vol. 3. N. 4. P. 1553–1567.
  393. Meyer F.J., Borst M.M., Zugck C. et al. Respiratory muscle dys- function in congestive heart failure: clinical correlation and prognostic significance // Circulation. 2001. Vol. 103. N. 17. P. 2153–2158.
  394. Jaenisch R.B., Bertagnolli M., Borghi-Silva A. et al. Respiratory muscle training improves diaphragm citrate synthase activity and hemodynamic function in rats with heart failure // Braz. J. Cardiovasc. Surg. 2017. Vol. 32. P. 104–110. DOI: 10.21470/1678- 9741-2017-0002.
  395. Rosca M.G., Okere I.A., Sharma N. et al. Altered expression of the adenine nucleotide translocase isoforms and decreased ATP synthase activity in skeletal muscle mitochondria in heart failure // J. Mol. Cell Cardiol. 2009. Vol. 46. N. 6. P. 927–935.
  396. Ribeiro J.P., Chiappa G.R., Neder J.A., Frankenstein L. Respiratory muscle function and exercise intolerance in heart failure // Curr. Heart Fail. Rep. 2009. Vol. 6. P. 95–110.
  397. Smart N.А., Giallauri F., Dieberg G. Efficacy of inspiratory muscle training in chronic heart failure patients: A systematic review and meta-analysis // Int. J. Cardiol.2013. Vol. 167. P. 1502–1507.
  398. Gitt A.K., Wasserman K., Kilkowski C. et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death // Circulation. 2002. Vol. 106. N. 24. P. 3079–3084.
  399. Goso Y., Asanoi H., Ishise H. et al. Respiratory modulation of muscle sympathetic nerve activity in patients with chronic heart failure // Circulation. 2001. Vol. 104. P. 418–423.
  400. Jaenisch R.B., Quagliotto E., Chechi C. et al. Respiratory muscle training improves chemoreflex response, heart rate variability, and respiratory mechanics in rats with heart failure // Can. J. Cardiol. 2017. Vol. 33. P. 508–514. DOI: 10.1016/j.cjca.2016.11.004.
  401. Smart N., Haluska B., Jeffriess L., Marwick T.H. Exercise training in systolic and diastolic dysfunction: effects on cardiac function, functional capacity, and quality of life // Am. Heart J. 2007. Vol. 153. N. 4. P. 530–536.
  402. Lin S-J., McElfresh J., Hall B. et al. Inspiratory muscle training in patients with heart failure: a systematic review // Cardiopulm. Phys. Ther. J. 2012. Vol. 23. N. 3. P. 29–36. 
  403. Chiappa G.R., Roseguini B.T., Vieira P.J. et al. Inspiratory muscle training improves blood flow to resting and exercising limbs in patients with chronic heart failure // J. Am. Coll. Cardiol. 2008. Vol. 51. P. 1663–1671
  404. Chiba Y., Maehara K., Yaoita H. et al. Vasoconstrictive response in the vascular beds of the non-exercising forearm during leg exercise in patients with mild chronic heart failure // Circ. J. 2007. Vol. 71. P. 922–928.
  405. Wang Z., Wang Z., Sun R. et al. Timely rehabilitation for critical patients with COVID-19: another issue should not be ignored.Version 2 // Crit. Care. 2020. Vol. 24. N. 1. P. 273. DOI: 10.1186/s13054-020-02967-7.
  406. Ali N.A., O’Brien J.M. Acquired weakness, handgrip strength, and mortality in critically ill patients // Am. J. Respir. Crit. Care Med. 2008. Vol. 178. N. 3. P. 261–268. DOI: 10.1164/rccm.200712-1829OC.
  407. Greutmann M., Le T.L., Tobler D. et al. Generalised muscle weakness in young adults with congenital heart disease // Heart. 2011. Vol. 97. N. 14. P. 1164–1168. DOI: 10.1136/ hrt.2010.213579.
  408. Williams M.A., Haskell W.L., Ades P.А. et al. Resistance Exercise in Individuals With and Without Cardiovascular Disease: 2007 Update: A Scientific Statement From the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism // Circulation. 2007. Vol. 116. P. 572–584. DOI: 10.1161/CIRCULATIONAHA.107.185214.
  409. Turan Z., Topaloglu M., Taskiran O.O. Medical Research Council-sumscore: a tool for evaluating muscle weakness in patients with post-intensive care syndrome // Crit. Care. 2020. Vol. 24. P. 562. DOI: 10.1186/s13054-020-03282-x.
  410. Hermans G., Clerckx B., Vanhullebusch T. et al. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the intensive care unit. Muscle Nerve. 2012. Vol. 45. N. 1. P. 18–25.
  411. Bjarnason-Wehrensa B., Mayer-Bergerb W., Meisterc E.R. et al. Recommendations for resistance exercise in cardiac rehabilitation. Recommendations of the German Federation for Cardiovascular Prevention and Rehabilitation // Eur. J. Cardiovasc. Prev. Rehab. 2004. N. 11. P. 352–361. DOI: 10.1097/01.hjr.0000137692.36013.27.
  412. Иванова Г.Е., Баландина И.Н., Батышева Т.Т. и др. Медицинская реабили- тация при новой коронавирусной инфекции (COVID-19) МЗ РФ. Версия 2 от 31.07.2020. 150 с. https://minzdrav.gov.ru/ru, https://xn-80aesfpebagmfblc0a.xn-- p1ai/ai/doc/461/attach/28052020_Preg_COVID-19_v1.pd.
  413. Kaelin M.E., Swank A.M., Adams K.J. et al. Cardiopulmonary responses, muscle soreness, and injury during the one repetition maximum assessment in pulmonary rehabilitation patients // J. Cardiopulm. Rehabil. 1999. Vol. 19. P. 366–372.
  414. Garber C.E., Blissmer B., Deschenes M.R. et al. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise // Am. Coll. Sports Med. 2011. Vol. 43. N. 7. P. 1334–1359. DOI: 10.1249/MSS.0b013e318213fefb.
  415. Pelliccia A., Sharma S., Gati S. et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease // Eur. Heart J. 2021. Vol. 42. P. 17–96. DOI: 10.1093/eurheartj/ehaa605.
  416. Ambrosetti M., Abreu A., Corrà U. et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Prev Cardiology // Eur. J. Prev. Cardiol. 2020. Vol. 0(0. P. 1–42. DOI: 10.1177/2047487320913379.
  417. Аронов Д.М. Кардиореабилитация и вторичная профилактика (Монография). М.:ГЭОТАР-Медиа, 2021 г. 464 с. DOI: 10.33029/9704-6218-8-CAR-2021-1-464.
  418. Haslam D.R., McCartney S.N., McKelvie R.S. et al. Direct measurements of arterial blood pressure during formal weightlifting in cardiac patients // J. Cardiopulm. Rehabil. 1988. Vol. 8. P. 213–225.
  419. Houchen-Wolloff L., Sandland C., Menon M. et al. Ventilatory requirements of quadriceps resistance training in people with COPD and healthy controls // Int.l J. Chronic. Obstructive Pulmonary Disease. 2014. Vol. 9. N. 1. P. 589–595.
  420. McKeough Z.J., Bye P.T., Alison J.A. Arm exercise training in chronic obstructive pulmonary disease: a randomised controlled trial // Chron. Respir. Dis. 2012. Vol. 9. N. 3. P. 153–162.
  421. Janaudis-Ferreira T., Hill K., Goldstein R.S. et al. Resistance arm training in patients with COPD: a randomized controlled trial // Chest. 2011. Vol. 139. P. 151–158.
  422. Probst V.S., Troosters T., Pitta F. et al. Cardiopulmonary stress during exercise training in patients with COPD // Eur. Respir. J. 2006. Vol. 27. P. 1110–1118.
  423. Sietsema K. Cardiovascular limitations in chronic pulmonary disease // Med. Sci. Sports. Exerc. 2001. Vol. 33. Suppl. 7. P. S656–S661.
  424. Minai O.A., Chaouat A., Adnot S. Pulmonary hypertension in COPD: epidemiology, significance, and management: pulmonary vascular disease: the global perspective // Chest. 2010. Vol. 137. P. 39S–51S.
  425. Bhattacharyya P., Acharjee D., Ray S. et al. Left ventricular diastolic dysfunction in COPD may manifest myocardial ischemia // COPD. 2012. Vol. 9. N. 3. P. 305–309. DOI: 10.3109/15412555.2012.661805
  426. Maclay J.D., MacNee W. Cardiovascular disease in COPD: mechanisms // Chest. 2013. Vol. 143. P. 798–807. DOI: 10.1378/chest.12-0938.
  427. Ли В.В., Тимофеева Н.Ю., Задионченко В.С. и др. Современные аспекты ремо- делирования сердца у больных хронической обструктивной болезнью легких // Рациональная Фармакотерапия в Кардиологии. 2018. Vol. 14. N. 3. P. 379–386. DOI: 10.20996/1819-6446-2018-14-3-379-386.
  428. Sabit R., Bolton C.E., Fraser A.G. et al. Sub-clinical left and right ventricular dysfunction in patients with COPD // Respir. Med. 2010. Vol. 104. P. 1171–1178. DOI: 10.1016/j.rmed.2010.01.020.
  429. Watz H., Waschki B., Meyer T. et al. Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation // Chest. 2010. Vol. 138. N. 1. P. 32– 38. DOI: 10.1378/chest.09-2810.
  430. Jörgensen K., Müller M.F., Nel J. et al. Reduced intrathoracic blood volume and lef and right ventricular dimensions in patients with severe emphysema: an MRI study // Chest. 2007. Vol. 131. N. 4. P. 1050–1057.
  431. Pelà G., Calzi M.L., Pinelli S. et al. Left ventricular structure and remodeling in patients with COPD // Int. J. COPD. 2016. Vol. 11. P. 1015–1022. DOI: 10.2147/COPD.S102831.
  432. Barr R.G., Bluemke D.A., Ahmed F.S. et al. Percent emphysema, airflow obstruction, and impaired left ventricular filling // N. Engl. J. Med. 2010. Vol. 362. N. 3. P. 217–227. DOI: 10.1056/NEJMoa0808836.
  433. Schoos M.M., Dalsgaard M., Kjargaard J. et al. Echocardiographic predictors of exercise capacity and mortality in chronic obstructive pulmonary disease // BMC Cardiovasc. Disord. 2013. Vol. 13. P. 84. DOI: 10.1186/1471-2261-13-84.
  434. Smith B.M., Kawut S.M., Bluemke D.A. et al. Pulmonary hyperinflation and left ventricular mass: The Multi-Ethnic Study of atherosclerosis COPD Study // Circulation. 2013. Vol. 127. P. 1503–1511. DOI: 10.1161/CIRCULATIONAHA.113.001653/-/DC1.
  435. Smith B.M., Prince M.R., Hoffman E.A. et al. Impaired left ventricular filling in COPD and emphysema: is it the heart or the lungs?: the multi-ethnic study of atherosclerosis COPD study // Chest. 2013. Vol. 144. N. 4. P. 1143–1151. DOI: 10.1378/chest.13-0183.
  436. Tzani P., Aiello M., Elia D. et al. Dynamic hyperinflation is associated with a poor cardiovascular response to exercise in COPD patients // Respir. Res. 2011. Vol. 12. P. 150. DOI: 10/1186/1465-9921-12-150.
  437. Vassaux C., Torre-Bouscoulet L., Zeineldine S. et al. Effects of hyperinflation on the oxygen pulse as a marker of cardiac performance in COPD // Eur. Respir. J. 2008. Vol. 32. P. 1275–1282. DOI: 10.1193/09031936.00151707.
  438. Teopompi E., Panagioya T., Aiello M. et al. Fat free mass depletion is associated to poor exercise capacity irrespective of dynamic hyperinflation in COPD patients // Respir. Care. 2014. Vol. 59. P. 718–725. DOI: 10.4187/respcare.02709.
  439. Huppmann P., Szczepanski B., Boensch M. et al. Effects of inpatient pulmonary rehabilitation in patients with interstitial lung disease // Eur. Respir. J. 2013. Vol. 42. N. 2. P. 444–453.
  440. Corhay J-L., Dang D.N., Cauwenberge H.V., Louis R. Pulmonary rehabilitation and COPD: providing patients a good environment for optimizing therapy. International // J. COPD. 2014. N. 9. P. 27–39. DOI: 10.2147/COPD.S52012.
  441. Lazaar A.L., Greenhaff P.L. Impaired muscle mitochondrial density and/or function: a COPD-specific mitochondropathy or simply deconditioning? // Eur. Respir. J. 2012. Vol. 40. P. 1070–1071.
  442. Whittom F., Jobin J., Simard P.M. et al. Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease // Med. Sci. Sports Exerc. 1998. Vol. 30. N. 10. P. 1467–1474.
  443. Maltais F., Decramer M., Casaburi R. et al. An official American Thoracic Society/ European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. 2014. Vol. 189. N. 9. P. e15–e62.
  444. Gagnon P., Bussières J.S., Ribeiro F. et al. Influences of spinal anesthesia on exercise tolerance in patients with chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. 2012. Vol. 186. N. 7. P. 606–615.
  445. Somfay A., Pórszász J., Lee S.M., Casaburi R. Effect of hyperoxia on gas exchange and lactate kinetics following exercise onset in nonhypoxemic COPD patients // Chest. 2002. Vol. 121. P. 393–400.
  446. Flaherty K.R., Andrei A.C., Murray S. et al. Idiopathic pulmonary fibrosis: Prognostic value of changes in physiology and six-minute-walk test // Am. J. Respir. Crit. Care Med. 2006. Vol. 174. N. 7. P. 803–809.
  447. Marzolini S., Oh P.I., Brooks D. Effect of combined aerobic and resistance training versus aerobic training alone in individuals with coronary artery disease: A meta- analysis // Eur. J. Prev. Cardiol. 2012. Vol. 19. P. 81–94.
  448. Xanthos P.D., Gordon B.A., Kingsley M.I. Implementing resistance training in the rehabilitation of coronary heart disease: A systematic review and metaanalysis // Int. J. Cardiol. 2017. Vol. 230. P. 493–508.
  449. Cornelissen V.A., Fagard R.H., Coeckelberghs E., Vanhees L. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials // Hypertension. 2011. Vol. 58. P. 950–958.
  450. Hanssen H., Boardman H., Deiseroth A. et al. Personalized exercise prescription in the prevention and treatment of arterial hypertension: a Consensus Document from the European Association of Preventive Cardiology (EAPC) and the ESC Council on Hypertension // Eur. J. Prev. Cardiol. 2020. DOI: 10.1093/eurjpc/zwaa141.
  451. Ferrara R., Mastrorilli F., Pasanisi G. et al. Neurohormonal modulation in chronic heart failure // Eur. Heart. J. 2002. Vol. 4. Suppl. 1. P. D3–11. DOI: 10.1016/S1520- 765X(02)90154-9.
  452. Piepoli M.F., Crisafulli A. Pathophysiology of human heart failure:importance of skeletal muscle myopathy and reflexes // Experimental Physiology. 2014. Vol. 99. N. 4. P. 609–615. DOI: 10.1113/expphysiol.2013.074310.
  453. Poole D.C., Hirai D.M., Copp S.W., Musch T.I. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance // AJP: Heart and Circulatory Physiology. 2012. Vol. 302. N. 5. P. H1050– H1063. DOI: 10.1152/ajpheart.00943.2011.
  454. Crimi E., Ignarro L.J., Cacciatore F., Napoli C. Mechanisms by which exercise training benefits patients with heart failure // Nat. Rev. Cardiol. 2009. Vol. 6. N. 4. P. 292–300. DOI: 10.1038/nrcardio.2009.8.
  455. Аронов Д.М., Новикова Н.К., Анзимирова Н.В. и др. Физические тренировки больных с ишемической болезнью сердца и хронической сердечной недоста- точностью II–III ФК. Методическое пособие. М., 1998.
  456. Bőrjesson M., Assanelli D., Carré F. et al. ESC Study Group of Sports Cardiology: ecommendations for participation in leisure-time physical activity and competitive sports for patients with ischaemic heart disease // Eur. J. Cardiovasc. Prev. Rehab. 2006. Vol. 13. P. 137–149.
  457. American College of Sports Medicine. ACSM’s guidelines for exercise testing and training. Philadelphia: Wolters Kluwer Williams & Wilkins, 2014.
  458. Pollock M.L., Gaesser G.A., Butcher J.D. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults // Med. Sci. Sports Exerc. 1998. Vol. 30. P. 975–991.
  459. Lau H.M., Ng G.Y., Jones A.Y. et al. A randomised controlled trial of the effectiveness of an exercise training program in patients recovering from severe acute respiratory syndrome // Aust. J. Physiother. 2005. Vol. 51. N. 4. P. 213–219. DOI: 10.1016/s0004- 9514(05)70002-7.
  460. Драпкина О.М., Новикова Н.К., Джиоева О.Н. Современные возможности и перспективы комплексной физической активности больных с сердечно-сосу- дистой патологией. Методические рекомендации // Профилактическая меди- цина. 2020. Т. 23. № 3. С. 61–119.
  461. Бубнова М.Г., Аронов Д.М. Обеспечение физической активности граждан, име- ющих ограничения в состоянии здоровья. Методические рекомендации / под редакцией Бойцова С.А. // CardioСоматика. 2016. Vol. 1. P. 5–50.
  462. Piercy K.L., Troiano R.P., Ballard R.M. et al. Physical Activity Guidelines for Americans // JAMA. 2018. Vol. 12. DOI: 10.1001/jama.2018.14854.
  463. Pothirat C., Chaiwong W., Phetsuk N. et al. Long-term efficacy of intensive cycle ergometer exercise training program for advanced COPD patients // Int. J. COPD. 2015. Vol. 10. P. 133–144. DOI: 10.2147/COPD.S73398.
  464. Gloeckl R., Leitl D., Jarosch I. et al. Benefits of pulmonary rehabilitation in COVID-19: a prospective observational cohort study // ERJ Open Res. 2021. Vol. 7. P. 00108–2021 DOI: 10.1183/23120541.00108-2021.
  465. Emtner M., Porszasz J., Burns M. et al. Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients // Am. J. Respir. Crit. Care Med. 2003. Vol. 168. P. 1034–1042.
  466. Somfay A., Porszasz J., Lee S.M., Casaburi R. Dose–response effect of oxygen on hyperinflation and exercise endurance in nonhypoxaemic COPD patients // Eur. Respir. J. 2001. Vol. 18. P. 77–84.
  467. Чазова И.Е., Невзорова В.А., Амбатьелло Л.Г. и др. Клинические рекомендации по диагностике и лечению пациентов с артериальной гипертонией и хрониче- ской обструктивной болезнью легких // Системные гипертензии. 2020. T. 17. №3. С. 7–34. DOI: 10.26442/2075082X.2020.3.200294.
  468. Yang I.A., Fong K.M., Sim E.H. et al. Inhaled corticosteroids for stable chronic obstructive  pulmonary  disease  // Cochrane  Database  Syst.  Rev.  2007.  Vol.  2.   P. CD002991.
  469. Аронов Д.М., Бубнова М.Г., Барбараш О.Л. и др. Национальные российские рекомендации по острому инфаркту миокарда с подъемом сегмента ST ЭКГ: реабилитация и вторичная профилактика // Российский кардиологический журнал. 2015. T. 20. №1. С. 6–52. DOI: 10.15829/1560-4071-2015-1-6-52.
  470. Аронов Д.М., Новикова Н.К., Красницкий В.Б., и др. Физическая реабилита- ция больных пожилого возраста, страдающих сердечной недостаточностью II– IV функционального пояса. Пособие для врачей. М. 2005.
  471. Aimo A., Saccaro L.F., Borrelli C. et al. The ergoreflex: how the skeletal muscle modulates ventilation and cardiovascular function in health and disease // Eur. J. Heart Failure. 2021. Vol. 23. P. 1458–1467. DOI: 10.1002/ejhf.2298.
  472. Malliani A., Montano N. Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions // Hypertension. 2002. Vol. 39. N. 1. P. 63–68.
  473. Belli J.F.C., Bacal F., Bocchi E.A., Guimaraes G.V. Ergoreflex Activity in  Heart Failure // Arq. Bras. Cardiol. 2011. Vol. 97. N. 2. P. 171–178.
  474. Kaur J., Krishnan A.C., Senador D. et al. Altered arterial baroreflex-muscle metaboreflex interaction in heart failure // Am. J. Physiol. Heart Circ. Physiol. 2018. Vol. 315. P. H1383–H1392.
  475. Raven P.B., Fadel P.J., Smith S.A. The influence of central command on baroreflex resetting during exercise // Exerc. Sport Sci. Rev. 2002. Vol. 30. P. 39–44. DOI: 10.1097/00003677-200201000-00008.
  476. O’Donnell D.E., Revill S.M., Webb K.A. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. 2001. Vol. 164. P. 770–777.
  477. Piepoli M.F., Kaczmarek A., Francis D.P. et al. Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure // Circulation. 2006. Vol. 114. N. 2. P. 126–134.
  478. Lewis G.D., Shah R.V., Pappagianopolas P.P. et al. Determinants of ventilatory efficiency in heart failure: the role of right ventricular performance and pulmonary vascular tone // Circ. Heart Fail. 2008. Vol. 1. P. 227–233.
  479. Longhurst J., Capone R.J., Zelis R. Evaluation of skeletal muscle capillary basement membrane thickness in congestive heart failure // Chest. 1975. Vol. 67. P. 195–198.
  480. Sullivan M.J., Cobb F.R. Central hemodynamic response to exercise in patients with chronic heart failure // Chest. 1992. Vol. 101. Suppl. 5. P. 340S–346S.
  481. Piña I.L., Apstein C.S., Balady G.J. et al. Exercise and Heart Failure: A Statement From the American Heart Association Committee on Exercise, Rehabilitation, and Prevention // Circ. 2003. Vol. 107. P. 1210–1225.
  482. Wada O., Asanoi H., Miyagi K. Quantitative evaluation of blood flow distribution to exercising and resting skeletal muscles in patients with cardiac dysfunction using whole- body thallium-201 scintigraphy // Clin. Cardiol. 1997. Vol. 20. P. 785–790.
  483. Antunes-Correa L.M., Nobre T.S., Groehs R.V.  et al. Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure // Am. J. Physiol. Heart Circ. Physiol. 2014. Vol. 307. P. 1655–1666.
  484. Morales A., Gao W., Lu J. et al. Muscle cyclo-oxygenase-2 pathway contributes to the exaggerated muscle mechanoreflex in rats with congestive heart failure // Exp. Physiol. 2012. Vol. 97. P. 943–954.
  485. Piepoli M., Ponikowski P., Clark A.L. et al. A neural link to explain the «muscle hypothesis» of exercise intolerance in chronic heart failure // Am. Heart  J.  1999. Vol. 137. P. 1050–1056.
  486. Yamauchi F., Adachi H., Tomono J. et al. Effect of a cardiac rehabilitation program on exercise oscillatory ventilation in Japanese patients with heart failure // Heart Vessels. 2016. Vol. 31. N. 10. P. 1659–1668. DOI: 10.1007/s00380-015-0782-x.
  487. Güell M.R., Cejudo P., Rodrı´guez-Trigo G. et al. Standards for quality care in respiratory rehabilitation in patients with chronic pulmonary disease // Arch. Bronconeumol. 2012. Vol. 48. P. 396–404.
  488. Kon S.S., Clark A.L., Dilaver D. et al. Response of the COPD assessment test to pulmonary rehabilitation in unselected chronic respiratory disease //Respirology. 2013. Vol. 18. P. 974–977.
  489. Spruit M.A. Pulmonary rehabilitation // Eur. Respir. Rev. 2014. Vol. 23. P. 55–63. DOI: 10.1183/09059180.00008013.
  490. Lee A.L., Holland A.E. Time to adapt exercise training regimens in pulmonary rehabilitation – a review of the literature // Int. J. COPD. 2014. Vol. 9. P. 1275–1288. doi.10.2147/COPD.S54925.
  491. Olfert I.M. Exercise and the lungs: nature or nurture? // J. Physiol. 2016. Vol. 594. N. 18. P. 5037–5038. DOI: 10.1113/JP272370.
  492. Phillips D.B., Stickland M.K. Respiratory limitations to exercise in health: a brief review // Current Opinion in Physiology. 2019. Vol. 10. P. 173–179. DOI: 10.1016/j. cophys.2019.05.012.
  493. Taylor B.J., How S.C., Romer L.M. Expiratory muscle fatigue does not regulate operating lung volumes during high-intensity exercise in healthy humans // J. Appl. Physiol. 2013. Vol. 114. P. 1569–1576.
  494. Dominelli P.B., Guenette J.A., Wilkie S.S. et al. Determinants of expiratory flow limitation in healthy women during exercise // Med. Sci. Sports Exerc. 2011. Vol. 43. P. 1666–1674.
  495. Heber S., Volf I. Effects of Physical (In)activity on Platelet Function // Bio.Med. Research. Int. 2015. Article ID 165078. 11 p. DOI: 10.1155/2015/165078.
  496. Ikarugi H., Shibata M., Shibata S. et al. High intensity exercise enhances platelet reactivity to shear stress and coagulation during and after exercise // Pathophysiology of Haemostasis and Thrombosis. 2003. Vol. 33. N. 3. P. 127–133.
  497. Chicharro J.L., Sänchez O., Bandrés F. et al. Platelet aggregability in relation to the «anaerobic threshold» // Thrombosis Res. 1994. Vol. 75. N. 3. P. 251–257.
  498. De Meirelles L.R., Mendes-Ribeiro A.C., Mendes M.A.P. et al. Chronic exercise reduces platelet activation in hypertension:upregulation of the L-arginine-nitric oxide pathway // Scan. J. Med. and Science in Sports. 2009. Vol. 19. N. 1. P. 67–74.
  499. De Man F.S., Handoko M.L., Groepenhoff H. et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension // Eur. Respir. J. 2009. Vol. 34. N. 3. P. 669–675.
  500. Mador M.J., Krawza M., Alhajhusian A. et al. Interval training versus continuous training in patients with chronic obstructive pulmonary disease // J. Cardiopulm. Rehabil. Prev. 2009. Vol. 29. P. 126–132.
  501. Mereles D., Ehlken N., Kreuscher S. et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension // Circ. 2006. Vol. 114. N. 14. P. 1482–1489.
  502. Holland A., Hill C. Physical training for interstitial lung disease // Cochrane Database Syst. Rev. 2008. Vol. 4. P. CD006322.
  503. duBois R.M., Weycker D., Albera C. et al. Six-minute-walk test in idiopathic pulmonary fibrosis: Test validation and minimal clinically important difference // Am. J. Respir. Crit. Care Med. 2011. Vol. 183. N. 9. P. 1231–1237.
  504. Holland A.E., Hill C.J., Conron M. et al. Short term improvement in exercise capacity and symptoms following exercise training in interstitial lung disease // Thorax 2008. Vol. 63. P. 549–554.
  505. Nishiyama O., Kondoh Y., Kimura T. et al. Effects of pulmonary rehabilitation in patients with idiopathic pulmonary fibrosis // Resp. 2008. Vol. 13. P. 394–399.
  506. Kozu R., Senjyu H., Jenkins S.C. et al. Differences in response to pulmonary rehabilitation in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease // Resp. 2011. Vol. 81. P. 196–205.
  507. Selvadurai H.C., Blimkie C.J., Meyers N. et al. Randomized controlled study of in- hospital exercise training programs in children with cystic fibrosis // Pediatr. Pulmonol. 2002. Vol. 33. P. 194–200.
  508. Bradley J., Moran F. Physical training for cystic fibrosis // Cochrane Database Syst. Rev. 2008. Vol. 1. P. CD002768.
  509. Dwyer T.J., Alison J.A., McKeough Z.J. et al. Effects of exercise on respiratory flow and sputum properties in patients with cystic fibrosis // Chest. 2011. Vol. 139. P. 870–877.
  510. Grünig E., Eichstaedt C., Barberà J-A. et al. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension // Eur. Respir. J. 2019. Vol. 53. P. 1800332 DOI: 10.1183/13993003.00332-2018.
  511. Jose A., dal Corso S. Inpatient rehabilitation improves functional capacity, peripheral muscle strength and quality of life in patients with community-acquired pneumonia: a randomised trial // J. Physiother. 2016. Vol. 62. N. 2. P. 96-102. DOI: 10.1016/j. jphys.2016.02.014.
  512. Vainshelboim B., Myers J., Oliveira J. et al. Physiological responses and prognostic value of common exercise testing modalities in idiopathic pulmonary fibrosis // J. Cardiopulm Rehab. Prev. 2018. DOI: 10.1097/ HCR.0000000000000362.
  513. Gomes-Neto M., Silva C.M., Ezequiel D. et al. Impact of pulmonary rehabilitation on exercise tolerance and quality of life in patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis // J. Cardiopulm. Rehab. Prev. 2018. Vol. 38. N. 5. P. 273–278.
  514. Keyser R.E., Christensen E.J., Chin L.M., Woolstenhulme J.G. Changes in fatigability following intense aerobic exercise training in patients with interstitial lung disease // Respir. Med. 2015. Vol. 109. N. 4. P. 517–525.
  515. Fox B.D., Kassirer M., Weiss I. et al. Ambulatory rehabilitation improves exercise capacity in patients with pulmonary hypertension // J. Card. Fail. 2011. Vol. 17. N. 3. P. 196–200.
  516. Holland A.E., Hill C.J., Glaspole I. et al. Predictors of benefit following pulmonary rehabilitation for interstitial lung disease // Respir. Med. 2012. Vol. 106. N. 3. P. 429– 435.
  517. Deniz S., Şahin H., Yalnız E. Does the severity of interstitial lung disease affect the gains from pulmonary rehabilitation? // Clin. Respir. J. 2018. Vol. 12. N. 6. P. 2141–2150.
  518. Osterling K., MacFadyen K., Gilbert R., Dechman G. The effects of high intensity exercise during pulmonary rehabilitation on ventilatory parameters in people with moderate to severe stable COPD: a systematic review // Int. J. COPD. 2014. Vol. 9. P. 1069–1079. DOI: 10.2147/COPD.S68011.
  519. Tedjasaputra V., Bouwsema M.M., Stickland M.K. Effect of aerobic fitness on capillary blood volume and diffusing membrane capacity responses to exercise // J. Physiol. 2016. Vol. 594. N. 15. P. 4359–4370. DOI: 10.1113/JP272037.
  520. Marrades R.M., Diaz O., Roca J. et al. Adjustment of DLCO for hemoglobin concentration // Am. J. Respir. Crit. Care Med. 2011. Vol. 155. P. 236–241.
  521. Coventry P.A. Does pulmonary rehabilitation reduce anxiety and depression in chronic obstructive pulmonary disease? // Curr. Opin. Pulm. Med. 2009. Vol. 15. P. 143–149.
  522. Giardino N.D.,  Curtis J.L., Andrei A.C. et al. NETT Research Group. Anxiety  is associated with diminished exercise performance and quality of life in severe emphysema: a cross-sectional study // Respir. Res. 2010. Vol. 11. N. 29. P. 562.
  523. Chang S.S., Chen S., McAvay G.J., Tinetti M.E. Effect of coexisting chronic obstructive pulmonary disease and cognitive impairment on health outcomes in older adults // J. Am. Geriatr. Soc. 2012. Vol. 60. N. 10. P. 1839–1846. DOI: 10.1111/j.1532- 5415.2012.04171.x.
  524. Emery C.F., Honn V.J., Frid D.J. et al. Acute effects of exercise on cognition in patients with chronic obstructive pulmonary disease // Am. J. Respir. Crit. Care Med. 2001. Vol. 164. N. 9. P. 1624–1627. oi:10.1164/ajrccm.164.9.2104137.
  525. Kozora E., Tran Z.V., Make B. Neurobehavioral improvement after brief rehabilitation in patients with chronic obstructive pulmonary disease // J. Cardiopulm. Rehabil. 2002. Vol. 22. N. 6. P. 426–430. DOI: 10.1097/00008483-200211000-00008.
  526. Bonnevie T., Medrinal C., Combret Y. Mid-Term Effects of Pulmonary Rehabilitation on Cognitive Function in People with Severe Chronic Obstructive Pulmonary Disease // Int. J. CОPD. 2020. Vol. 15. P. 1111–1121. DOI: 10.2147/COPD.S249409.
  527. Prunera-Pardell M.J., Padín-Lopez S., Rio A.D.D. et al., Effectiveness of a respiratory rehabilitation programme in patients with chronic obstructive pulmonary disease // Enferm. Clin. 2018. Vol. 28. P. 5–12. DOI: 10.1016/j.enfcli.2017.11.001.
  528. Schneeberger T., Jarosch I., Moll J. et al. Increased asthma control after a 3-week inpatient pulmonary rehabilitation program // Respir. Med. 2020. Vol. 165. P. 105930. DOI: 10.1016/j.rmed.2020.105930.
  529. Sciurba F., Criner G.J., Lee S.M. et al. Six-minute walk distance in chronic obstructive pulmonary disease: Reproducibility and effect of walking course layout and length // Am. J. Respir. Crit. Care Med. 2003. Vol. 167. P. 1522–1527.
  530. Третьяков А.Ю., Захарченко С.П., Ромасенко Л.В., и др. COVID-19 у лиц, адап- тированных к аэробной нагрузке // Пульмонология. 2020. T. 30. №5. С. 553–560. DOI: 10.18093/0869-0189-2020-30-5-553-560.
  531. Меерсон Ф.З., Пшенникова М.Г. Адаптация к стрессорным ситуациям и физи- ческим нагрузкам. М.: Медицина, 1988.
  532. Gleeson M., Pyne D.B., Austin J.P. et al. Epstein-Barr virus reactivation and upper- respiratory illness in elite swimmers // Med. Sci. Sports Exerc. 2002. Vol. 34. N. 3. P. 411–417. DOI: 10.1097/00005768-200203000-00005.
  533. Magalhaes D.M., Nunes-Silva A., Rocha G.C. et al. Two protocols of aerobic exercise modulate the counterregulatory axis of the renin-angiotensin system // Heliyon. 2020. Vol. 6. N. 1. P. e03208. DOI: 10.1016/j.heliyon.2020.e03208.
  534. Аронов Д.М., Абдуллаев Н.А. Физические тренировки больных ишемической болезнью сердца IV функционального класса // Кардиология. 1985. Т. 7. С. 94–98.
  535. Aronov D., Bubnova M., Iosseliani D., Orekhov A. Clinical Efficacy of a Medical Centre- and Home-based Cardiac Rehabilitation Program for Patients with Coronary Heart Disease After Coronary Bypass Graft Surgery // Arch. Med. Res. 2019. Vol. 50. P. 122–132. DOI: 10.1016/j.arcmed.2019.07.007.
  536. Бубнова М.Г., Аронов Д.М., Красницкий В.Б. и др. Программа домашних фи- зических тренировок после острого коронарного синдрома и/или эндоваску- лярного вмешательства на коронарных артериях: эффективность и проблема мотивации больных // Терапевтический архив. 2014. Т. 86, № 1. С. 23–32.
  537. Аронов Д.М., Красницкий В.Б., Бубнова М.Г., и др. Влияние физических тре- нировок на физическую работоспособность, гемодинамику, липиды крови, клиническое течение и прогноз у больных ишемической болезнью сердца по- сле острых коронарных событий при комплексной реабилитации и вторичной профилактике на амбулаторно-поликлиническом этапе (Российское коопера- тивное исследование) // Kaрдиология. 2009. Т. 3. С. 49–56.
  538. Hambrecht R., Walther C., Möbius-Winkler S. et al. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial // Circ. 2004. Vol. 109. N. 11. P. 1371–1378. DOI: 10.1161/01. CIR.0000121360.31954.1F.
  539. Бубнова М.Г., Аронов Д.М. Клинические эффекты годичной программы кар- диореабилитации с применением физических тренировок после острого ин- фаркта миокарда у больных трудоспособного возраста с разным реабилита- ционным потенциалом // Кардиоваскулярная терапия и профилактика. 2019. T. 18, № 5. C. 27–37. DOI: 10.15829/1728-8800-2019-5-27-37.
  540. De Schutter A., Kachur S., Lavie C.J. et al. Cardiac rehabilitation fitness changes and subsequent survival // Eur. Heart J. — Quality of Care and Clinical Outcomes. 2018. Vol. 4. P. 173–179. DOI: 10.1093/ehjqcco/qcy018.
  541. Williams P.T. Physical fitness and activity as separate heart disease risk factors: a meta- analysis // Med. Sci. Sports Exerc. 2001. Vol. 33. P. 754−761.
  542. Myers J., Prakash M., Froelicher V. et al. Exercise capacity and mortality among men referred for exercise testing // N. Engl. J. Med. 2002. Vol. 346. P. 793–801.
  543. Belardinelli R., Georgiou D., Ginzton L. et al. Effects of moderate exercise training on thallium uptake and contractile response to low-dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy // Circ. 1998. Vol. 97. P. 553–561.
  544. Belardinelli R., Georgiou D., Cianci G. et al. Randomized, controlled trial of long- term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome // Circ. 1999. Vol. 99. P. 1173–1182.
  545. Melo R.C., Santos M.D., Silva E. et al. Effects of age and physical activity on the autonomic control of heart rate in healthy men // Braz. J. Med. Biol. Res. 2005. Vol. 38. N. 9. P. 1331–1338. DOI: 10.1590/s0100-879x2005000900007.
  546. Lavie C.J., Arena R., Swift D.L. et al. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes // Circ. Res. 2015. Vol. 117. P. 207–219.
  547. Whelton S.P., Chin A., Xin X., He J. Effects of aerobic exercise on blood pressure: A meta- analysis of randomised, controlled trials // Ann. Int. Med. 2002. Vol. 136. P. 493–503.
  548. Аронов Д.М., Бубнова М.Г., Красницкий В.Б., и др. Клинические эффекты годичной программы физических тренировок у больных АГ трудоспособного возраста, перенесших ОИМ. Российское рандомизированное контролируемое клиническое исследование // Системные гипертензии. 2015. T. 12. №4. P. 61–68.
  549. Nelson L., Jennings G.L., Esler M.D., Korner P.I. Effect of changing levels of physical activity on blood-pressure and haemodynamics in essential hypertension // Lancet. 1986. Vol. 2. P. 473–476.
  550. Madden K.M., Lockhart C., Cuff D. et al. Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia // Diabetes Care. 2009. Vol. 32. N. 8. P. 1531–1535. DOI: 10.2337/dc09-0149.
  551. Di Raimondo D., Miceli G., Musiari G. et al. New insights about the putative role of myokines in the context of cardiac rehabilitation and secondary cardiovascular prevention // Ann. Transl. Med. 2017. Vol. 5. N. 15. P. 300. DOI: 10.21037/atm.2017.07.30.
  552. Pack Q., Rodriguez-Escudero J.P., Thomas R.J. et al. Diagnostic Performance of Weight Loss to Predict Body Fatness Improvement in Cardiac Rehabilitation Patients // J. Card. Rehab. Prev. 2013. Vol. 33. P. 68–76. DOI: 10.1097/HCR.0b013e31827fe7e3.
  553. Negrao C.E., Middlekauff H.R. Adaptations in autonomic function during exercise training in heart failure // Heart Fail. Rev. 2008. Vol. 13. P. 51–60.
  554. Brown M.D., Dengel D.R., Hogikyan R.V., Supiano M.A. Sympathetic activity and the heterogenous blood pressure response to exercise training in hypertensives // J. Appl. Physiol. 2002. Vol. 92. P. 1434–1442.
  555. Piepoli M., Clark A.L., Volterrani M. et al. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilator responses to exercise in patients with chronic heart failure: effects of physical training // Circ. 1996. Vol. 93. P. 940–952.
  556. Larsen A.I., Lindal S., Aukrust P. et al. Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity // Int. J. Cardiol. 2002. Vol. 83. P. 25–32.
  557. Duscha B.D., Schulze P.C., Robbins J.L. et al. Implications of chronic heart failure on peripheral vasculature and skeletal muscle before and after exercise training //Heart Fail. Rev. 2008. Vol. 13. P. 21–37.
  558. Hambrecht R., Fiehn E., Yu J. et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure // JACC. 1997. Vol. 29. P. 1067–1073.
  559. Gielen S., Adams V., Linke A. et al. Exercise training in chronic heart failure: correlation between reduced local inflammation and improved oxidative capacity in the skeletal muscle // Eur. J. Cardiovasc. Prev. Rehabil. 2005. Vol. 12. N. 4. P. 393–400.
  560. MacInnis M.J., Gibala M.J. Physiological adaptations to interval training and the role of exercise intensity // J. Physiol. (Lond). 2017. Vol. 595. N. 9. P. 2915–2930. DOI: 10.1113/JP273196.
  561. McKelvie R.S., Teo K.K., Roberts R. et al. Effects of exercise training in patients with heart failure: the Exercise Rehabilitation Trial (EXERT) // Am. Heart J. 2002. Vol. 144. P. 23–30.
  562. Adams V., Reich B., Uhlemann M., Niebauer J. Molecular eff ects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium // Am. J. Physiol. Heart Circ. Physiol. 2017. Vol. 313. N. 1. P. H72–H88. DOI: 10.1152/ajpheart.00470.2016.
  563. Иванова О.А., Игнатьева Е.В., Лелявина Т.А. и др. Анализ транскриптома ске- летной мускулатуры выявил влияние физических тренировок на молекуляр- ные механизмы регуляции роста и метаболизма мышечной ткани у пациентов с хронической сердечной недостаточностью // Российский кардиологический журнал. 2020. T. 25. №10. С. 4132.
  564. Hambrecht R., Schulze P.C., Gielen S. et al. Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure // Eur. J. Cardiovasc. Prev. Rehabil. 2005. Vol. 12. P. 401–406.
  565. Hojman P., Gehl J., Christensen J.F., Pedersen B.K. Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment // Cell Metabolism. 2018. Vol. 27. N. 1. P. 10–21. DOI: 10.1016/j.cmet.2017.09.015.
  566. Pedersen B.K., Akerstrom T.C.A., Nielsen A.R. Fischer C.P. Role of myokines in  exercise and metabolism // J. Appl. Physiol. 2007. Vol. 103. P. 1093–1098.
  567. Severinsen M.C.K., Pedersen B.K. Muscle–Organ Crosstalk: The Emerging Roles of Myokines // Endocrine Reviews. 2020. Vol. 41. N. 4. P. 594–609. DOI: 10.1210/endrev/ bnaa016.
  568. Lenk K., Erbs S., Hollriegel R. et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure // Eur. J. Prev. Cardiol. 2012. Vol. 19. N. 3. P. 404–411. DOI: 10.1177/1741826711402735.
  569. Бубнова М.Г., Аронов Д.М., Новикова Н.К. Влияние табакокурения на клини- ческую эффективность годичной реабилитационной программы после остро- го инфаркта миокарда у больных ишемической болезнью сердца трудоспособ- ного возраста // Кардиоваскулярная терапия и профилактика. 2018. T. 17, № 4. С. 26–33. DOI: 10.15829/1728-8800-2018-4-26-33.
  570. Satomi-Kobayashi S., Ishida T. Modulation of high-density lipoprotein function via cardiac rehabilitation // J. Atheroscler. Thromb. 2018. Vol. 25. P. 128–130. DOI: 10.5551/jat.ED089.
  571. Christou G.A. The role of high density lipoprotein in the determination of the vascular effects of chronic exercise training in hypertensive patients // Eur. J. Prev. Cardiol. 2019. Vol. 26. N. 12. P. 1298–1300. DOI: 10.1177/2047487319853334.
  572. Yuhanna I.S., Zhu Y., Cox B.E. et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase // Nat. Med. 2001. Vol. 7. P. 853– 857.
  573. Maeda S., Miyauchi T., Kakiyama T. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 a, endothelin-1 and nitric oxide, in healthy young humans // Life Sci. 2001. Vol. 69. P. 1005–1016.
  574. Pagan L.U., Gomes M.J., Okoshi M.P. Endothelial function and physical exercise // Arq. Bras. Cardiol. 2018. Vol. 111. P. 540–541.
  575. Linke A. Antioxidative Effects of Exercise Training in Patients With Chronic Heart Failure: Increase in Radical Scavenger Enzyme Activity in Skeletal Muscle // Circ. 2005. Vol. 111. N. 14. P. 1763–1770. DOI: 10.1161/01.CIR.0000165503.08661.E5.
  576. Schuler G., Adams V., Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives // Eur. Heart J. 2013. Vol. 34. P. 1790–1799. DOI: 10.1093/eurheartj/eht111.
  577. Wang J-S., Li Y-S., Chen J-C., Chen Y-W. Effects of exercise training and deconditioning on platelet aggregation induced by alternating shear stress in men // Art. Thromb. Vasc. Biol. 2005. Vol. 25. N. 2. P. 454–460.
  578. Бубнова М.Г., Аронов Д.М., Красницкий В.Б. и др. Комплексная программа ме- дицинской реабилитации после чрескожного коронарного вмешательства при остром инфаркте миокарда у больных ишемической болезнью сердца и артери- альной гипертонией: эффективность, безопасность и результаты отдаленного наблюдения // CardioСоматика. 2015. T. 1. C. 6–11.
  579. Бубнова М.Г., Аронов Д.М., Махинова М.М. Радиочастотная катетерная абля- ция и антиаритмическая терапия в лечение больных с пароксизмальной и персистирующей формой фибрилляции предсердий: клинические эффекты // CardioСоматика. 2015. T. 3. C. 38–47.
  580. Heaps C.L., Parker J.L. Effects of exercise training on coronary collateralization and control of collateral resistance // J. Appl. Physiol. 2011. Vol. 111. P. 587–598.
  581. Möbius-Winkler S., Uhlemann M., Adams V. et al. Coronary Collateral Growth Induced by Physical Exercise Results of the Impact of Intensive Exercise Training on Coronary Collateral Circulation in Patients With Stable Coronary Artery Disease (EXCITE) // Trial. Circ. 2016. Vol. 133. P. 1438–1448. DOI: 10.1161/ CIRCULATIONAHA.115.016442.
  582. Zbinden R., Zbinden S., Meier P. et al. Coronary collateral flow in response to endurance exercise training // Eur. J. Cardiovasc. Prev. Rehabil. 2007. Vol. 14. P. 250–257.
  583. Adamopoulos S., Davos C.H. Determining exercise training responders through inflammatory status in heart failure // Eur. J. Prev. Cardiol. 2017. Vol. 24. N. 10. P. 1015–1016. DOI: 10.1177/2047487317703823.
  584. Vella C.A., Allison M.A., Cushman M. et al. Physical activity and adiposity-related inflammation: The MESA // Med. Sci. Sports Exerc. 2017. Vol. 49. N. 5. P. 915–921. DOI: 10.1249/MSS.0000000000001179.
  585. Belardinelli R., Georgiou D., Scocco V. et al. Low intensity exercise training in patients with chronic heart failure // JACC. 1995. Vol. 26. P. 975–982.
  586. Adamopoulos S., Parissis J.T., Kremastinos D.T. New aspects for the role of physical training in the management of patients with chronic heart failure // Int. J. Cardiol. 2003. Vol. 90. P. 1–14.
  587. Аронов Д.М. Возможная связь реабилитационных аэробных тренировок и уве- личения длины теломер хромосом // Российский кардиологический журнал. 2019. T. 24. №3. С. 82–89. DOI: 10.15829/1560-4071-2019-3-82-89.
  588. Osthus I.B., Sgura A., Berardinelli F. et al. Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study // PLoS One. 2012. Vol. 7. N. 12. P. e52769. DOI: 10.1371/journal.pone.0052769.
  589. Ludlow A.T., Zimmerman JoB., Witkowski S. et al. Relationship between physical activity level, telomere length, and telomerase activity // Med. Sci. Sports Exerc. 2008. Vol. 40. N. 10. P. 1764–1771. DOI: 10.1249/MSS.0b013e31817c92aa.
  590. Anderson L., Taylor R.S. Cardiac rehabilitation for people with heart disease: an overview of Cochrane systematic reviews //  Cochrane Database Syst. Rev.  2014.      P. CD011273.
  591. Clark A.M., Hartling L., Vandermeer B. et al. Meta-analysis: secondary prevention programs for patients with coronary artery disease // Ann. Int. Med. 2005. Vol. 143. P. 659–672.
  592. Högström G., Nordström A., Nordström P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: a nationwide cohort study in men // Eur. Heart J. 2014. Vol. 35. P. 3133–3140. DOI: 10.1093/eurheartj/eht527.
  593. Anderson L., Oldridge N., Thompson D.R. et al. Exercise based cardiac rehabilitation for coronary heart disease // Cochrane Database of Syst. Rev. 2016. Issue 1. Art. N. CD001800. DOI: 10.1002/14651858.CD001800.pub3.
  594. Martin B.J., Hauer T., Arena R. et al. Cardiac rehabilitation attendance and outcomes in coronary artery disease patients/clinical perspective // Circ. 2012. Vol. 126. P. 677–687.
  595. Zwisler A.D.O., Soja A.M.B., Rasmussen S. et al. Hospital-based comprehensive cardiac rehabilitation versus usual care among patients with congestive heart failure, ischemic heart disease, or high risk of ischemic heart disease: 12-month results of a randomized clinical trial // Am. Heart J. 2008. Vol. 155. P. 1106–1113.
  596. Hammill B.G., Curtis L.H., Schulman K.A. et al. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries // Circ. 2010. Vol. 121. P. 63-70.
  597. Doimo S., Fabris E., Piepoli M. et al. Impact of ambulatory cardiac rehabilitation on cardiovascular outcomes: a long-term follow-up study // Eur. Heart J. 2019. Vol. 40. P. 678–685. DOI: 10.1093/eurheartj/ehy417.
  598. Hambrecht R., Niebauer J., Marburger C.H. et al. Various intensities of leisure time physical activity in patients with coronary artery disease: effects on cardiorespiratory fitness and progression of coronary atherosclerotic lesions // J. Am. Coll. Cardiol. 1993. Vol. 22. P. 468–477.
  599. Niebauer J., Hambrecht R., Velich T. et al. Attenuated progression of coronary artery disease after 6 years of multifactorial risk intervention: role of physical exercise // Circ. 1997. Vol. 96. P. 2534–2541.
  600. Walther C., Möbius-Winkler S., Linke A. et al. Regular exercise training compared with percutaneous intervention leads to a reduction of inflammatory markers and cardiovascular events in patients with coronary artery disease // Eur. J. Cardiovasc. Prev. Rehabil. 2008. Vol. 15. N. 1. P. 107–112. DOI: 10.1097/HJR.0b013e3282f29aa6.
  601. Buckley B.J.R., Harrison S.L., Fazio-Eynullayeva E. et al. Cardiac rehabilitation and all-causemortality in patients with heart failure: a retrospective cohort study // Eur. J. Prev. Cardiol. 2021. DOI: 10.1093/eurjpc/zwab035.
  602. Sabbag A., Mazin I., Rott D. et al. The prognostic significance of improvement in exercise capacity in heart failure patients who participate in cardiac rehabilitation programme // Eur. J. Prev. Cardiol. 2018. Vol. 25. P. 354–361.
  603. Gentil P., de Lira C.A.B., Souza D. et al. Resistance Training Safety during and after the SARS-Cov-2 Outbreak: Practical Recommendations // Bio.Med. Res. Int. 2020. DOI: 10.1155/2020/3292916..
  604. Pedersen B.K., Rohde T., Ostrowski K. Recovery of the immune system after exercise // Acta Physiologica Scandinavica. 1998. Vol. 162. N. 3. P. 325–332.
  605. Peake J.M., Neubauer O., Walsh N.P., Simpson R.J. Recovery of the immune system after exercise // J. Appl. Physiol. 2017. Vol. 122. N. 5. P. 1077–1087. DOI: 10.1152/ japplphysiol.00622.2016.
  606. Nieman D.C. Exercise, upper respiratory tract infection, and the immune system // Med. Sci. Sports Exerc. 1994. Vol. 26. N. 2. P. 128–139. DOI: 10.1249/00005768-199402000-00002.
  607. Estruel-Amades S., Camps-Bossacoma M., Massot-Cladera M. et al. Alterations in the innate immune system due to exhausting exercise in intensively trained rats // Sci. Rep. 2020. Vol. 10. N. 1. P. 967. DOI: 10.1038/s41598-020-57783-4.
  608. Campbell J.P., Turner J.E. There is limited existing evidence to support the common assumption that strenuous endurance exercise bouts impair immune competency // Exp. Rev. Clin. Immunol. 2019. Vol. 15. N. 2. P. 105–109. DOI: 10.1080/1744666 X.2019.1548933.
  609. Козлов В.А., Кудаева О.Т. Иммунная система и физические нагрузки // Меди- цинская Иммунология. 2002. T. 4. №3. C. 427–438.
  610. Pedersen B.K., Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation // Physiol. Rev. 2000. Vol. 80. P. 1055–1081. DOI: 10.1152/ physrev.2000.80.3.1055.
  611. Walsh N.P., Gleeson M., Pyne D.B. et al. Position statement. Part two: maintaining immune health // Exerc. Imm. Rev. 2011. Vol. 17. P. 64–103. PMID: 21446353.
  612. Krüger K., Agnischock S., Lechtermann A., etal. Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways // J. Appl. Physiol. 2011. Vol. 110. N. 5. P. 1226–1232.
  613. Smilios I., Pilianidis T., Karamouzis M., Tokmakidis S.P. Hormonal responses after various resistance exercise protocols // Med. Sci. Sports Exercise. 2003. Vol. 35. N. 4. P. 644–654.
  614. Sellami M., Gasmi M., Denham J. et al. Effects of acute and chronic exercise on immunological parameters in the elderly aged: Can physical activity counteract the effects of aging? // Front Immunol. 2018. Vol. 9. P. 2187. DOI: 10.3389/fimmu.2018.02187.
  615. Robson P.J., Blannin A.K., Walsh N.P. et al. Effects of exercise intensity, duration and recovery on in vitro neutrophil function in male athletes // Int. J. Sports Med. 1999. Vol. 20. P. 128–135.
  616. Stephard R.J., Shek P.N. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis // Sports Med. 1999. Vol. 28. P. 177–195.
  617. Bousquet J., Chanez P., Prefaut C. Monocytes, exercise, and the inflammatory response // Exerc. Immunol. Rev. 1996. Vol. 2. P. 35–44.
  618. Мусин З.Х., Латухов С.В. Иммунная система человека и физическая нагрузка // Медицинская Иммунология. 2007. T. 9. №1. С. 35–38.
  619. Woods J.A. Exercise and neuroendocrine modulation of macrophage function // Int. J. Sports Med. 2000. Vol. 21. Suppl. 1. P. S24–S30.
  620. Smith J.A. Exercise immunology and neutrophils // Int. J. Sports Med. 1997. Vol. 18. Suppl. 1. P. S46–S55.
  621. Nieman D.C. Prolonged aerobic exercise, immune response, and risk of infection. Exercise and Immune Function / Ed. Hoffman-Goetz L. Boca Raton: CRC Press, 1996. P. 143–161.
  622. Baum M., TeBarek E., Liesen H. In the interpretation of exercise-induced changes of the Thl/Th2 ratio the influence of NK-cells should be considered // Deutsche Zeitschrift fur Sportsmedizin. 1995. Vol. 46. P. 478–481.
  623. Gleeson M. Mucosal immune responses and respiratory illness in elite athletes. Int.J. Sports Med. 2000. Vol. 21. Suppl. l. P. S33–S43.
  624. Lansford K.A., Shill D.D., Dicks A.B. et al. Effect of acute exercise on circulating angiogenic cell and microparticle populations // Exp. Physiol. 2016. Vol. 101. P. 155– 167.
  625. Ostapiuk-Karolczuk J. Cytokines and cellular inflammatory sequence in nonathletes after prolonged exercise // J. Sports Med. Phys. Fitness. 2012. Vol. 52. P. 563–568.
  626. Combes A., Dekerle J., Dumont X. et al. Continuous exercise induces airway epithelium damage while a matched-intensity and volume intermittent exercise does not // Respir. Res. 2019. Vol. 20. N. 1. P. 12. DOI: 10.1186/s12931-019-0978-1.
  627. Anane L.H., Edwards K.M., Burns V.E. et al. Mobilization of gammadelta T lymphocytes in response to psychological stress. Vol. exercise. Vol. and beta-agonist infusion // Brain. Behav. Immun. 2009. Vol. 23. P. 823–829. DOI: 10.1016/j.bbi.2 009.03.003.
  628. Campbell J.P. Infekt nach Marathon? Mythos widerlegt! // Dtsch. Med. Wochensch. 2018. Vol. 143. N. 12. P. 853–853. DOI: 10.1055/a-0598-1219.
  629. Sellami M., Bragazzi N.L., Aboghaba B., Elrayess MA. The Impact of Acute and Chronic Exercise on Immunoglobulins and Cytokines in Elderly: Insights From a Critical Review of the Literature // Front. Imm. 2021. Vol. 12. P. 631873. DOI: 10.3389/ fimmu.2021.631873
  630. Timmons B.W., Cieslak T. Human natural killer cell subsets and acute exercise: a brief review // Exerc. Immunol. Rev. 2008. Vol. 14. P. 8–23.
  631. Sakamoto Y., Ueki S., Kasai T. et al. Effect of exercise, aging and functional capacity on acute secretory immunoglobulin A response in elderly people over 75 years of age, Geriatr // Gerontol. Int. 2009. Vol. 9. N. 1. P. 81–88. DOI: 10.1111/j.1447-0594. 2008.00502.x
  632. Teixeira A.M., Martins R., Martins M., Cunha M.D.R. Changes in Functional Fitness, Mood States and Salivary IgA Levels after Exercise Training for 19 Weeks in Elderly Subjects // Int. J. Appl. Sports Sci. 2008. Vol. 20. N. 2. P. 16–26.
  633. Zheng Q., Cui G., Chen J. et al. Regular exercise enhances the immune response against microbial antigens through up-regulation of Toll-like receptor signaling pathways // Cell Physiol. Biochem. 2015. Vol. 37. P. 735–746.
  634. Woods J.A., Keylock K.T., Lowder T,. et al. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial // J. Am. Geriatr. Soc. 2009. Vol. 57. P. 2183–2191.
  635. Gleeson M., Bishop N., Oliveira M., Tauler P. Influence of training load on upper respiratory tract infection incidence and antigen-stimulated cytokine production // Scand. J. Med. Sci. Sports. 2013. Vol. 23. N. 4. P. 451–457.
  636. Barreiro E., Gea J. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease // Chron. Respir. Dis. 2016. Vol. 13. N. 3. P. 297–311.
  637. Kwon H.R., Han K.A., Ku Y.H., Ahn H.J. et al. The effects of resistance training on muscle and body fat mass and muscle strength in type 2 diabetic women // Korean Diabetes J. 2010. Vol. 34. N. 2. P. 101–110.
  638. Iepsen U.W., Munch G.D.W., Rugbjerg M. et al. Effect of endurance versus resistance training on quadriceps muscle dysfunction in COPD: a pilot study // Int. J. COPD. 2016. Vol. 11. P. 2659–2669. DOI: 10.2147/COPD.S114351.
  639. Galpin A.J., Raue U., Jemiolo B., Trappe T.A. et al. Human skeletal muscle fiber type specific protein content // Anal. Biochem. 2012. Vol. 425. N. 2. P. 175–182.
  640. Menon M.K., Houchen L., Singh S.J. et al. Inflammatory and satellite cells in the quadriceps of patients with COPD and response to resistance training // Chest. 2012. Vol. 142. N. 5. P. 1134–1142.
  641. Constantin D., Menon M.K., Houchen-Wolloff L. et al. Skeletal muscle molecular responses to resistance training and dietary supplementation in COPD // Thorax. 2013. Vol. 68. N. 7. P. 625–633.
  642. Vogiatzis I., Simoes D.C., Stratakos G. et al. Effect of pulmonary rehabilitation on muscle remodelling in cachectic patients with COPD // Eur. Respir. J. 2010. Vol. 36. N. 2. P. 301–310.
  643. Puente-Maestu L., Tena T., Trascasa C. et al. Training improves muscle oxidative capacity and oxygenation recovery kinetics in patients with chronic obstructive pulmonary disease // Eur. J. Appl. Physiol. 2003. Vol. 88. N. 6. P. 580–587.
  644. Lewis M.I., Fournier M., Storer T.W. et al. Skeletal muscle adaptations to testosterone and resistance training in men with COPD // J. Appl. Physiol. 2007. Vol. 103.  N. 4.  P. 1299–1310.
  645. Werner C.M., Hecksteden A., Morsch A. et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study // Eur. Heart J. 2018. DOI: 10.1093/eurheartj/ehy 585.
  646. Buford T.W., Cooke M.B., Willoughby D.S. Resistance exercise induced changes of inflammatory gene expression within human skeletal muscle // Eur. J. Appl. Physiol. 2009. Vol. 107. N. 4. P. 463–471. DOI: 10.1007/s00421-009-1145-z.
  647. Signorelli S.S., Mazzarino M.C., Di Pino L. et al. High circulating levels of cytokines (IL-6 and TNFalpha), adhesion molecules in patients with (VCAM-1 and ICAM-1) и sеlеctins peripheral arterial disease at rest and after a treadmill test // Vasc. Med. 2003. Vol. 8. N. 1. P. 15–19. DOI: 10.1191/1358863x03vm466oa.
  648. Della Gatta P.A., Garnham A.P., Peake J.M., Cameron–Smith D. Effect of exercise training on skeletal muscle cytokine expression in the elderly // Brain. Behav. Immun. 2014. Vol. 39. P. 80–86. DOI: 10.1016/j.bbi.2014.01.006.
  649. de Salles B.F., Simão R., Fleck S.J., Dias I., Kraemer-Aguiar L.G., Bouskela E. Effects of resistance training on cytokines // Int. J. Sports Med. 2010. Vol. 31. N. 7. P. 441–450. DOI: 10.1055/s-0030-1251994.
  650. Drela N., Kozdron E., Szczypiorski P. Moderate exercise may attenuate some aspects of immunosenescence // BMC Geriatr. 2004. Vol. 4. P. 8. DOI: 10.1186/1471-2318-4-8.
  651. Santos R.V., Viana V.A., Boscolo R.A. et al. Moderate exercise training modulates cytokine profile and sleep in elderly people // Cytokine. 2012. Vol. 60. N. 3. P. 731–735. DOI: 10.1016/j.cyto.2012.07.028.
  652. Goldhammer E., Tanchilevitch A., Maor I. et al. Exercise training modulates cytokines activity in coronary heart disease patients // Int. J. Cardiol. 2005. Vol. 100. N. 1. P. 93– 99. DOI: 10.1016/j.ijcard.2004.08.073.
  653. LeMaitre J.P., Harris S., Fox K.A., Denvir M. Change in circulating cytokines after 2 forms of exercise training in chronic stable heart failure // Am. Heart J. 2004. Vol. 147. N. 1. P. 100–105. DOI: 10.1016/j.ahj.2003.07.001.
  654. Bruunsgaard H., Bjerregaard E., Schroll M., Pedersen B.K. Muscle strength after resistance training is inversely correlated with baseline levels of soluble tumor necrosis factor receptors in the oldest old // J. Am. Geriatr. Soc. 2004. Vol. 52. N. 2. P. 237–241. DOI: 10.1111/j.1532-5415.2004.52061.x.
  655. Chupel M.U., Direito F., Furtado G.E. et al. Strength Training Decreases Inflammation and Increases Cognition and Physical Fitness in Older Women with Cognitive Impairment // Front. Physiol. 2017. Vol. 8. P. 377. DOI: 10.3389/fphys.2017.00377.
  656. Sardeli A.V., Tomeleri C.M., Cyrino E.S. et al. Effect of resistance training on inflammatory markers of older adults: A meta-analysis. Exp Gerontol. 2018. Vol. 111. P. 188–196. DOI: 10.1016/j.exger.2018.07.021.
  657. Qiu H.B., Li X.Y., Du B. et al. The keypoints in treatment of the critical novel coronavirus pneumonia patient // Chin. J. Tuberc. Respir. Dis. 2020. Vol. 43. DOI: 10.3760/cma.j.cn112147-20200222-00151.
  658. Bein T., Weber-Carstens S., Apfelbacher C. Long-Term outcome after the acute respiratory distress syndrome: different from general critical illness? // Curr. Opin. Crit. Care. 2018. Vol. 24. P. 35–40.
  659. Collen F.M., Wade D.T., Robb G.F., Bradshaw C.M. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment // Int. Disabil. Stud.1991. Vol. 13. N. 2. P. 50–54. DOI: 10.3109/03790799109166684.
  660. Hodgson C.L., Stiller K., Needham D.M. et al. Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults // Critical. Care. 2014. Vol. 18. N. 6. P. 658. DOI: 10.1186/s13054-014-0658-y.
  661. Белкин А.А., Алашеев А.М., Давыдова Н.С. и др. Обоснование реанимацион- ной реабилитации в профилактике и лечении синдрома «после интенсивной терапии» (ПИТ-синдром) // Вестник восстановительной медицины. 2014. T. 1. №59. C. 37–43.
  662. Ambrosino N., Venturelli E., Vagheggini G., Clini E. Rehabilitation, weaning and physical therapy strategies in chronic critically ill patients // Eur. Respir. J. 2012. Vol. 39. P. 487–492. DOI: 10.1183/09031936.00094411.
  663. Guarracino F., Vetrugno L., Forfori F. et al. Lung, heart, vascular, and diaphragm ultrasound examination of COVID-19 patients: a comprehensive approach //       J. Cardiothorac. Vasc. Anesth. 2021. Vol. 35. P. 1866–1874. DOI: 10.1053/j. jvca.2020.06.013.
  664. Shi Z., de Vries H.J., Vlaar A.P.J. et al. Diaphragm pathology in critically Ill patients with COVID-19 and postmortem findings from 3 medical centers // JAMA Int. Med. 2021. Vol. 181. N. 1. P. 122–124. DOI: 10.1001/jamainternmed.2020.6278.
  665. Лядов К.В., Конева Е.С., Полушкин В.Г., Султанов Э.Ю., Лукашин М.А. Ды- хательная реабилитация у больных вирусной пневмонией на фоне новой ко- ронавирусной инфекции // Пульмонология. 2020. Т. 30. №5. С. 569–576. DOI: 10.18093/0869-0189-2020-30-5-569-576.
  666. Kurtaiş Aytür Y., Köseoğlu B.F., Özyemişçi Taşkıran Ö. et al. Pulmonary rehabilitation principles in SARS-COV-2 infection (COVID-19): A guideline for the acute and subacute rehabilitation // Turk. J. Phys. Med. Rehab. 2020. Vol. 66. N. x. P. i–xvii. DOI: 10.5606/tftrd.2020.6444.
  667. Masiero S., Zampieri D., Felic A.D. The place of early rehabilitation in ICU for Covid-19 // Am. J. Phys. Med. Rehab. 2020. DOI: 10.1097/PHM.0000000000001478.
  668. Wiles C.M., Edwards R.H. The effect of temperature, ischaemia and contractile activity on the relaxation rate of human muscle // Clin. Physiol. 1982. Vol. 2. P. 485–97.
  669. Meftahi G., Jangravi Z., Sahraei H., Bahari Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: the contribution of «inflame-aging» // Inflamm. Res. 2020. Vol. 69. N. 9. P. 825–839. DOI: 10.1007/ s00011-020-01372-8.
  670. van Hees HW, Schellekens WJ, Linkels M et al. Plasma from septic shock patients induces loss of muscle protein // Crit. Care. 2011. Vol. 15. P. R233.
  671. Smith M.A., Reid M.B. Redox modulation of contractile function in respiratory and limb skeletal muscle // Respir. Physiol. Neurobiol. 2006. Vol. 151. P. 229–241.
  672. Samosawala N.R., Vaishali K., Kalyana B.C. Measurement of muscle strength with handheld dynamometer in Intensive Care Unit // Indian. J. Crit. Care Med. 2016. Vol. 20. P. 21–26. DOI: 10.4103/0972-5229.173683.
  673. Puthucheary Z.A., Rawal J., McPhail M. et al. Acute Skeletal MuscleWasting in Critical Illness // JAMA. 2013. Vol. 310. N. 15. P. 1591–1600. DOI: 10.1001/jama.2013.278481.
  674. Looijaard W.G., Dekker I.M., Stapel S.N. et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients // Critical Care. 2016. Vol. 20. P. 386. DOI: 10.1186/ s13054-016-1563-3.
  675. Manini T.M., Clark B.C., Nalls M.A. et al. Reduced physical activity increases intermuscular adipose tissue in healthy young adults // Am. J. Clin. Nutr. 2007. Vol. 85. P. 377–384.
  676. Sharshar T., Bastuji-Garin S., Stevens R.D. et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality // Crit. Care Med. 2009. Vol. 37. P. 3047–3053.
  677. Burtin C., Clerckx B., Robbeets C. et al. Early exercise in critically ill patients enhances short-term functional recovery // Crit. Care Med. 2009. Vol. 37. P. 2499–2505.
  678. Schweickert W.D., Pohlman M.C., Pohlman A.S. et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial // Lancet. 2009. Vol. 373. P. 1874–1882.
  679. Morris P.E., Goad A., Thompson C. et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure // Crit. Care Med. 2008. Vol. 36. P. 2238–2243.
  680. Larsen T., Lee A., Brooks D. et al. Effect of early mobility as a physiotherapy treatment for pneumonia: a systematic review and meta-analysis. Physiotherapy Canada // Physiother. Can. 2019. Vol. 71. N. 1. P. 82–89. doi.10.3138/ptc.2017-51.ep.
  681. Yang M., Yan Y., Yin X. et al. Chest physiotherapy for pneumonia in adults // Cochrane Database Syst. Rev. 2013. DOI: 10.1002/14651858.CD006338.pub3.
  682. Nava S. Rehabilitation of patients admitted to a respiratory intensive care unit // Arch. Phys. Med. Rehabil. 1998. Vol. 79. P. 849–854.
  683. Porta R., Vitacca M., Gilè L.S. et al. Supported arm training in patients recently weaned from mechanical ventilation // Chest. 2005. Vol. 128. P. 2511–2520.
  684. Al Chikhanie Y., Veale D., Schoeffler M. et al. Effectiveness of pulmonary rehabilitation in COVID-19 respiratory failure patients post-ICU // Resp. Phys.Neur. 2021. Vol. 287. P. 103639. DOI: 10.1016/j.resp.2021.103639.
  685. Sheehy L.M. Considerations for Postacute Rehabilitation for Survivors of COVID-19 // JMIR Pub. Health Surveill. 2020. Vol. 6. N. 2. P. e19462. DOI: 10.2196/19462.
  686. Clark R.A., Conway A., Poulsen V. et al. Alternative models of cardiac rehabilitation: a systematic review // Eur. J. Prev. Cardiol. 2015. Vol. 22. P. 35–74.
  687. Lear S.A., Spinelli J.J., Linden W. et al. The Extensive Lifestyle Management Intervention (ELMI) after cardiac rehabilitation: a 4-year randomized controlled trial // Am. Heart J. 2006. Vol. 152. P. 333–339. DOI: 10.1016/j.ahj.2005.12.023.
  688. Thomas E., Gallagher R., Grace S.L. Future-proofing cardiac rehabilitation: Transitioning services to telehealth during COVID-19 // Eur. J. Prev. Card. 2021. Vol. 28. P. e35–e36. DOI: 10.1177/2047487320922926.
  689. Лямина Н.П., Котельникова Е.В. Система поддержки принятия решений как компонент пациент-ориентированной модели кардиологической реабилита- ции //Доктор.Ру. 2017. T. 134. №5. С. 42–46.
  690. Лямина Н.П., Котельникова Е.В. Кардиореабилитация и цифровое здраво- охранение — перспективы и реалии. В монографии «Кардиореабилитация и вторичная профилактика» / Под ред. Д.М. Аронова. М.: ГЭОТАР-Медиа, 2021. 464 с. DOI: 10.33029/9704-6218-8-CAR-2021-1-464.
  691. Neubeck L., Hansen T., Jaarsma T., Klompstra L., Gallagher R. Delivering healthcare remotely to cardiovascular patients during COVID-19 a rapid review of the evidence // Eur. J. Cardiovasc. Nurs. 2020. Vol. 19. P. 486–494.
  692. Martorella G., Fredericks S., Sanders J., Wynne R. Breaking pandemic chain reactions: telehealth psychosocial support in cardiovascular disease during COVID-19 // Eur. J. Cardiovasc. Nurs. 2021. Vol. 20. P. 1-2. DOI: 10.1093/eurjcn/zvaa011.
  693. Masiero S., Maccarone M.C., Agostini F. Health resort medicine can be a suitable setting to recover disabilities in patients tested negative for COVID-19 discharged from hospital? A challenge for the future // Int. J. Biomet. 2020. Vol. 5. P. 1–3. DOI: 10.1007/ s00484-020-01947-4.
  694. ISCO3. Потенциальное использование озона при инфекции SARS-CoV-2/ COVID-19. Мадрид, 2020. Международный научный комитет по озонотерапии. www.isco3.org.
  695. Kardeş S. Spa therapy (balneotherapy) for rehabilitation of survivors of COVID-19 with persistent symptoms // Med Hypotheses. 2021. Vol. 146. P. 110472. DOI: 10.1016/j. mehy.2020.110472.
  696. Centers for Disease Control and Prevention. Water and COVID-19. FAQs information about drinking water, treated recreational water, and wastewater. 2020. www.cdc.gov/ coronavirus/2019-ncov/php/water.html.
  697. Ide M.R., Belini M.A., Caromano F.A. Effects of an aquatic versus non-aquatic respiratory exercise program on the respiratory muscle strength in healthy aged persons // Clinics (Sao Paulo). 2005. Vol. 60. N. 2. P. 151–158. DOI: 10.1590/s1807- 59322005000200012.
  698. Wu L., Dong Y., Li J. et al. The effect of massage on the quality of life in patients recovering from COVID-19: A systematic review protocol // Medicine (Baltimore). 2020. Vol. 99. N. 23. P. e20529. DOI: 10.1097/MD.0000000000020529.
  699. Карамнова Н.С., Драпкина О.М. COVID-19 и питание: новые акценты, преж- ние приоритеты (обзор рекомендаций) // Кардиоваскулярная терапия и про- филактика. 2020. T. 19. №3. C. 2576. DOI: 10.15829/1728-8800-2020-2576.
  700. Barazzoni R., Bischoff S.C., Breda J. et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection // Clin. Nutr. 2020. Vol. 39. N. 6. P. 1631–1638. DOI: 10.1016/j.clnu.2020.03.022.
  701. Singer P., Blaser A.R., Berger M.M. et al. ESPEN guideline on clinical nutrition in the intensive care unit // Clin. Nutr. 2019. Vol. 38. P. 48–79. DOI: 10.1016/j.clnu.2018.08.037.
  702. Volkert D., Beck A.M., Cederholm T. et al. ESPEN guideline on clinical nutrition and hydration in geriatrics // Clin. Nutr. 2019. Vol. 38. N. 1. P. 10–47. DOI: 10.1016/j. clnu.2018.05.024.
  703. Kaiser M.J., Bauer J.M., Ramsch C. et al. MNA-International Group. Validation of the Mini Nutritional Assessment short-form (MNA-SF): a practical tool for identification of nutritional status // J. Nutr. Health Aging. 2009. Vol. 13. N. 9. P. 782–788.
  704. Stratton R.J., Hackston A., Longmore D. et al. Malnutrition in hospital outpatients and inpatients: prevalence, concurrent validity and ease of use of the ‘malnutrition universal screening tool’ (‘MUST’) for adults // Br. J. Nutr. 2004. Vol. 92. N. 5. P. 799–808. DOI: 10.1079/bjn20041258.
  705. Kondrup J., Rasmussen H.H., Hamberg O. et al. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials // Clin. Nutr. 2003. Vol. 22. N. 3. P. 321–36. DOI: 10.1016/s0261-5614(02)00214-5.
  706. Canales C., Elsayes A., Yeh D.D. et al. Nutrition Risk in Critically Ill Versus the Nutritional Risk Screening 2002: Are They Comparable for Assessing Risk of Malnutrition in Critically Ill Patients? // JPEN. 2019. Vol. 43. N. 1. P. 81–87. DOI: 10.1002/jpen.1181.
  707. Coruja M.K., Cobalchini Y., Wentzel C., Fink J.D.S. Nutrition Risk Screening in Intensive Care Units: Agreement Between NUTRIC and NRS 2002 Tools // Nutr. Clin. Pract. 2019. DOI: 10.1002/ncp.10419.
  708. Rattanachaiwong S., Zribi B., Kagan I. et al. Comparison of nutritional screening and diagnostic tools in diagnosis of severe malnutrition in critically ill patients // Clin. Nutr. 2020. Vol. pii. P. S0261-5614(20)30099-6. DOI: 10.1016/j.clnu.2020.02.035.
  709. Руководство по клиническому питанию // Под ред. В.М Луфта. СПБ.: Арт- Экспресс, 2016. 484 с.
  710. Gorbalenya A.E. Severe acute respiratory syndromerelated coronavirus — the species and its viruses, a statement of the Coronavirus Study Group. 2020. DOI: 10.1101/2020.02.07.937862.
  711. Martindale R., Patel J.J., Taylor B. et al. Nutrition therapy in the patient with COVID-19 disease requiring ICU care. www.sccm.org/COVID19RapidResources/Resources/ Nutrition-Therapyinthe-Patient-with-COVID-19-Dis.
  712. Im J.H., Je Y.S., Baek J. et al. Nutritional status of patients with COVID-19 // Int. J. Infect. Dis. 2020. Vol. 100. P. 390–393. DOI: 10.1016/j.ijid.2020.08.018.
  713. Galmés S., Serra F., Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework // Nutrients. 2020. Vol. 12. N. 9. P. 2738. DOI: 10.3390/nu12092738.
  714. Пасечник И.Н. Нутритивная поддержка больных коронавирусной инфекци- ей в критических состояниях // Анестезиология и реаниматология. 2020. T. 3. C. 69–74 DOI: 10.17116/anaesthesiology202003169.
  715. Лейдерман И.Н., Грицан А.И., Заболотских И.Б., и др. Периоперационная ну- тритивная поддержка. Клинические рекомендации // Вестник интенсивной терапии им. А.И. Салтанова. 2018. T. 3. C. 5–21. DOI: 10.21320/1818-474X-2018- 3-5-2.
  716. Гречко А.В., Евдокимов Е.А., Котенко О.Н., и др. Нутритивная поддержка па- циентов с коронавирусной инфекцией COVID-19 // Клиническое питание и метаболизм. 2020. T. 1. №2. C. 56–91. DOI: 10.36425/clinnutrit42278.
  717. Singer P., Rattanachaiwong S. To eat or to breathe? The answer is both! Nutritional management during noninvasive ventilation // Crit. Care. 2018. Vol. 22. N. 1. P. 27. DOI: 10.1186/s13054-018-1947-7.
  718. Hellerman Itzhaki M., Singer P. Advances in Medical Nutrition Therapy:Parenteral Nutrition // Nutrients. 2020. Vol. 12. N. 3. P. E717. DOI: 10.3390/nu12030717.
  719. Дмитриев А.В., Мачулина И.А., Шестопалов А.Е. Роль фармако- и микрону- триентов в нутритивно-метаболической терапии COVID-19 и других вирусных инфекций // Медицинский алфавит. 2021. T. N. 4. C. 56-63. DOI: 10.33667/2078- 5631-2021-4-56-63.
  720. Vigeland C.L., Beggs H.S., Collins S.L. et al. Inhibition of glutamine metabolism accelerates resolution of acute lung injury // Physiol. Rep. 2019. Vol. 7. N. 5. P. e14019. DOI: 10.14814/phy2.14019.
  721. Chiumello D. Editor. Acute respiratory distress syndrome. Springer International Publishing Switzerland. 2017. P. 341. DOI: 10.1007/978-3-319-41852-0.
  722. Stehle P., Ellger B., Kojic D., Feuersenger A. Glutamine Dipeptide-Supplemented Parenteral Nutrition Improves the Clinical Outcomes of Critically Ill Patients: A Systematic Evaluation of Randomised Controlled Trials // Clin. Nutr. ESPEN. 2017. Vol. 17. P. 75–85. DOI: 10.1016/j.clnesp.2016.09.007.
  723. Петрова М.В., Бутров А.В., Гречко А.В. и др. Влияние инфузии на развитие послеоперационной кишечной недостаточности // Общая реаниматология. 2018. T. 14. №1. С. 50–57.
  724. van Zanten ARH, De Waele E., Wischmeyer P.E. Nutrition therapy and critical illness: practical guidance for the ICU, post-ICU, and long-term convalescence phases // Critical. Care. 2019. Vol. 23. P. 368. DOI: 10.1186/s13054-019-2657-5.
  725. Guidance on management of nutrition and dietetic services during the COVID-19 pandemic. Version 1.2 // Critical Care Specialist Group (CCSG) of the BDA. 2020. www.bda.uk.com/uploads/assets/f5215258-7a34-4426-83620ba89f87c638/63decf82- db85-41d7-b5a6cbabe757a4a2/CCSG-Guidance-for-COVID-19-Formatted.pdf.
  726. Белкин А.А. Синдром последствий интенсивной терапии (ПИТ-синдром) // Вестник интенсивной терапии им. А.И. Салтанова. 2018. Т. 2. С. 12−23. DOI: 10.21320/1818-474X-2018-2-12-23.
  727. O’Neil K.H., Purdy M., Falk J., Gallo L. The Dysphagia Outcome and Severity Scale // Dysphagia. 1999. Vol. 14. N. 3. P. 139–145.
  728. Rofes L., Arreola V., Clavé P. The volume-viscosity swallow test for clinical screening of dysphagia and aspiration // Nestle Nutr. Inst. Workshop Ser. 2012. Vol. 72. P. 33–42. DOI: 10.1159/000339979.
  729. Белкин А.А., Ершов В.И., Иванова Г.Е. Нарушение глотания при неотложных состояниях — постэкстубационная дисфагия // Анестезиология и реанимато- логия. 2018. № 4. С. 76–82. DOI: 10.17116/anaesthesiology201804176.
  730. Siervo M., Lara J., Chowdhury S. et al. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta- analysis // Br. J. Nutr. 2015. Vol. 113. N. 1. P. 1–15. DOI: 10.1017/S0007114514003341.
  731. Grosso G., Mistretta A., Frigiola A., Gruttadauria S., Biondi A., Basile F. et al. Mediterranean diet and cardiovascular risk factors: a systematic review // Crit. Rev. Food Sci. Nutr. 2014. Vol. 54. N. 5. P. 593–610.
  732. Adamsson V., Reumark A., Fredriksson I.B., Hammarström E., Vessby B., Johansson G. et al. Effects of a healthy Nordic diet on cardiovascular risk factors in hypercholesterolaemic subjects: a randomized controlled trial (NORDIET) // J. Int. Med. 2011. Vol. 269. N. 2. P. 150–159.
  733. Kanerva N., Kaartinen N.E., Rissanen H., Knekt P., Eriksson J.G., Saaksjarvi K. et al. Associations of the Baltic Sea diet with cardiometabolic risk factors: a metaanalysis of three Finnish studies // Br. J. Nutr. 2014. Vol. 112. N. 4. P. 616–266.
  734. Приказ МЗ РФ №330 от 5.09.2003 г. (с поправками от 24.11.2016 г.) МЗ РФ «О ме- рах по совершенствованию лечебного питания в лечебно-профилактических учреждениях Российской Федерации». www.base.garant.ru.
  735. Приказ МЗ РФ №279н от 05.05.2016 г. «Об утверждении порядка организации анаторно-курортного лечения». www.base.garant.ru.
  736. Folstein M.F., Folstein S.E., McHugh P.R. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician // J. Psychiatric. Res. 1975. Vol. 12. N. 3. P. 189–198.
  737. Sullivan M., Edgley K., DeHousx E. A survey of multiple sclerosis, part 1: perceived cognitive problems and compensatory strategy use // Can. J.  Rehabil. 1990. Vol. 4.  P. 99–105.
  738. British Geriatrics Society. COVID-19: Dementia and cognitive impairment. www.bgs. org.uk/resources/covid-19-dementiaand-cognitive-impairment.
  739. Mazza M.G., De Lorenzo R., Conte C. et al. COVID-19 BioB  Outpatient  Clinic Study group, Benedetti F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors // Brain. Behav. Immun. 2020. Vol. 89. P. 594– 600.
  740. Rajeswari S., SanjeevaReddy N. Efficacy of progressive muscle relaxation on pregnancy outcome among anxious Indian primi mothers // Iran. J. Nurs. Midwifery Res. 2019. Vol. 25. P. 23–30. DOI: 10.4103/ijnmr.IJNMR_207_18.
  741. Bastien C.H., Vallières A., Morin C.M. Validation of the Insomnia Severity Index as an outcome measure for insomnia research // Sleep. Med. 2001. Vol. 2. P. 297–307.
  742. Liu K., Chen Y., Wu D. et al. Effects of progressive muscle relaxation on anxiety and sleep quality in patients with COVID-19 // Compl. Ther.Clin. Pract. 2020. Vol. 39. P. 101132. DOI: 10.1016/j.ctcp.2020.101132.
  743. Chegeni P.S., Gholami M., Azargoon A. et al. The effect of progressive muscle relaxation on the management of fatigue and quality of sleep in patients with chronic obstructive pulmonary disease: a randomized controlled clinical trial // Compl. Ther. Clin. Pract. 2018. Vol. 31. P. 64–70. DOI: 10.1016/j. ctcp.2018.01.010.
  744. Лямина Н.П., Макарова М.Р., Сомов Д.А., и др. Сердечно-сосудистые заболе- вания в контексте пандемии COVID-19: диагностика, лечение и реабилитация. Методическое пособие. М. 2020. 68 с.
  745. Havranek E.P., Mujahid M.S., Barr D.A. et al. Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association // Circ. 2015. Vol. 132. P. 873–898. DOI: 10.1161/CIR.0000000000000228.
  746. Drucker D.J. Coronavirus infections and type 2 diabetes — shared pathways with therapeutic implications // Endocr. Rev. 2020. Vol. 1. N. 41. Issue. 3. P. bnaa011. DOI: 10.1210/endrev/bnaa011.
  747. Garcia-Aymerich J., Lange P., Benet M. et al. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population based cohort study // Am. J. Respir. Crit. Care Med. 2007. Vol. 175. P. 458–463.
  748. Vardava C.I., Nikitara K. COVID-19 and smoking: A systematic review of the evidence // Tob. Induc. Dis. 2020. Vol. 18. P. 20. DOI: 10.18332/tid/119324.
  749. Alqahtani J.S., Oyelade T., Aldhahir A.M., Alghamdi S.M., Almehmadi M., Alqahtani A.S. et al. Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis // PLoS One. 2020. Vol. 15. N. 5. P. e0233147. DOI: 10.1371/journal.pone.0233147.
  750. Piepoli M.F., Hoes A.W., Agewall S. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice // Eur. Heart J. 2016. Vol. 37. P. 2315–2381. DOI: 10.1093/eurheartj/ehw106.
  751. Бойцов С.А., Погосова Н.В., Бубнова М.Г. и др. Кардиоваскулярная профилак- тика 2017. Российские национальные рекомендации // Российский кардиоло- гический журнал. 2018. T. 23. №6. С. 7–122. DOI: 10.15829/1560-4071-2018-6-7- 122.
  752. Гамбарян М.Г., Калинина А.М., Гамбарян М.Г. Оказание медицинской помо- щи по профилактике и отказу от курения. Методические рекомендации. М. 2012. 42 с.
  753. Alenina N., Bader M. ACE2 in brain physiology and pathophysiology: Evidence from transgenic nimal models // Neurochem. Res. 2019. Vol. 44. N. 6. P. 1323–1329. DOI: 10.1007/s11064-018-2679-4.
  754. Williams B., Mancia G., Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension // Eur. Heart J. 2018. Vol. 39. P. 3021–3104. DOI: 10.1093/eurheartj/ehy339.
  755. Артериальная гипертензия у взрослых. Клинические рекомендации 2020 // Рос- сийский кардиологический журнал. 2020. Т. 25. №3. С. 3786. DOI: 10.15829/1560- 4071-2020-3-3786.
  756. Statement of the European Society of Hypertension (ESH) on hypertension, renin angiotensin system blockers and COVID-19. European Society of Hypertension. 2020. www.eshonline.org/spotlights/esh-statement-on-covid-19/.
  757. Position statement of the ESC Council on hypertension on ACE-inhibitors and angiotensin receptor blockers. European Society of Cardiology. 2020. www.escardio. org/Councils/Councilon-Hypertension-(CHT)/ News/position-statement-of- theesccouncil-on-hypertension-on-ace-inhibitors-and-ang.
  758. Golucci A., Marson F.A., Ribeiro A.F., Nogueira R.J.N. Lipid profile associated with the systemic inflammatory response syndrome and sepsis in critically ill patients // Nutrition. 2018. Vol. 55. P. 7–14.
  759. Bellia A., Andreadi A., Giudice L. et al. Atherogenic Dyslipidemia on Admission Is Associated With Poorer Outcome in People With and Without Diabetes Hospitalized for COVID-19 // Diabetes Care. 2021. Vol. 44. P. 2149–2157. DOI: 10.2337/dc20-2838.
  760. van Leeuwen H.J., Heezius E.C., Dallinga G.M. et al. Lipoprotein metabolism in  patients with severe sepsis // Crit. Care Med. 2003. Vol. 31. P. 1359–1366.
  761. Chien J.Y., Jerng J.S., Yu C.J., Yang P.C. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis // Crit. Care Med. 2005. Vol. 33. P. 1688–1693.
  762. Sorokin A.V., Karathanasis S.K., Yang Z.H. et al. COVID-19-associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches // FASEB J. 2020. Vol. 34. P. 9843–9853.
  763. Hu X., Chen D., Wu L. et al. Low serum cholesterol level among patients with COVID-19 infection in Wenzhou, China // China. 2020. DOI: 10.2139/ssrn.3544826.
  764. Greenhalgh T., Koh G.C.H., Car J. Covid-19: a remote assessment in primary care // BMJ. 2020. Vol. 368. P. m1182.
  765. Iqbal Z., Ho J.H., Adam S. et al. Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: An expert panel position statement from HEART UK // Atherosclerosis. 2020. Vol. 313. P. 126–136. DOI: 10.1016/j.atherosclerosis.2020.09.008.
  766. Шляхто Е.В., Арутюнов Г.П., Беленков Ю.Н. и др. Применение статинов, антикоагулянтов, антиагрегантов и антиаритмических препаратов у па- циентов с COVID-19 // Кардиология. 2020. T. 60. №6. С. 4–14. DOI: 10.18087/ cardio.2020.6.n1180.
  767. Mach F., Baigent C., Catapano A.L. et al. 2019 ESC/EAS Guidelines for themanagement of dyslipidaemias: lipid modification to reduce cardiovascular risk. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) // Eur. Heart J. 2020. Vol. 41. P. 111–188. DOI: 10.1093/eurheartj/ehz/455.
  768. Petrilli C.M., Jones S.A., Yang J. et al. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City // MedR xiv:2020.2004.2008.20057794.
  769. Zhu L., She Z-G., Cheng X. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes // Cell Metab. 2020. Vol. 31. N. 16. P. 1068–1077. DOI: 10.1016/j.cmet.2020.04.021
  770. Bode B., Garrett V., Messler J. et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States // J. Diabetes. Sci. Technol. 2020. DOI: 10.1177/1932296820924469.
  771. Kornum J.B., Thomsen R.W., Riis A. et al. Diabetes, glycemic control, and risk of hospitalization with pneumonia: A population-based case-control study. Diabetes Care. 2008. Vol. 31. N. 8. P. 1541–1545. DOI: 10.2337/dc08-0138.
  772. Montefusco L., Ben Nasr M., D’Addio F. et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection // Nat. Metab. 2021. Vol. 3. N. 6. P. 774–785. DOI: 10.1038/s42255-021-00407-6.
  773. Ma W.X., Ran X.W. The Management of Blood Glucose Should be Emphasized in the Treatment of COVID-19 // Sichuan Da Xue Xue Bao Yi Xue Ban. 2020. Vol. 51. N. 2. P. 146–150. DOI: 10.12182/20200360606.
  774. Wang B., Li R., Lu Z., Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis // Aging (Albany NY). 2020. Vol. 12. N. 7. P. 6049–6057. DOI: 10.18632/aging.1030007.
  775. Lighter J., Phillips M., Hochman S. et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission // Clin. Infect. Dis. 2020. Vol. 71. N. 15. P. 896–897. DOI: 10.1093/cid/ciaa415.
  776. Garg S., Kim L., Whitaker M. et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 - COVID-NET, 14 States // MMWR Morb. Mortal. Wkly. Rep. 2020. Vol. 69. P. 15. DOI: 10.15585/mmwr. mm6915e3.
  777. Zhu Z,. Hasegawa K., Ma B. et al. Association of obesity and its genetic predisposition with the risk of severe COVID-19: analysis of population-based cohort data // Metabolism. 2020. Vol. 112. P. 154345. DOI: 10.1016/j.metabol.2020.154345.
  778. Petersen A., Bressem K., Albrecht J. et al. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany // Metabolism. 2020. Vol. 110. P. 154317.
  779. Goyal P. et al. Clinical characteristics of COVID-19 in New York City // N. Engl. J. Med. 2020. Vol. 382. P. 2372–2274.
  780. Zheng K.I., Gao F., Wang X.B. et al. Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease // Metabolism. 2020. N. 108. P. 154244. DOI: 10.1016/j.metabol.2020.154244.
  781. Fresán U., Guevara M., Elía F. et al. Independent role of morbid obesity as a risk factor for COVID-19 hospitalization: a Spanish population-based cohort study // Obesity. 2020. DOI: 10.1002/oby.23029.782. Bello-Chavolla O., Bahena-López J.P., Antonio- Villa N.E. et al. Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico // J. Clin. Endocrinol. Metab. 2020. Vol. 105. N. 8. P. 2752–2761. DOI: 10.1210/clinem/ dgaa346.
  782. Hussain A., Mahawar K., Xia Z. et al. Obesity and mortality of COVID-19 // Obesity Res. Clin. Pract. 2020. Vol. 14. N. 4. P. 295–300. DOI: 10.1016/j.orcp.2020.07.002.
  783. Pranata R., Lim M.A., Yonas E. et al. Body mass index and outcome in patients with COVID-19: a dose-response meta-analysis // Diabetes Metab. 2020. Vol. S1262- 3636(20)30097–5. DOI: 10.1016/j.diabet.2020.07.005.
  784. Kass D.A., Duggal P., Cingolani O. Obesity could shift severe COVID-19 disease to younger ages // Lancet. 2020. Vol. 395. P. 1544–1545.
  785. Yilmaz C., Ravikumar P., Gyawali D. et al. Alveolarcapillary adaptation to chronic hypoxia in the fatty lung // Acta Physiol. 2015. Vol. 213. N. 4. P. 933–946. DOI: 10.1111/ apha.12419.
  786. Foster D.J., Ravikumar P., Bellotto D.J. et al. Fatty diabetic lung: altered alveolar structure and surfactant protein expression // Am. J. Lung Cell. Mol. Physiol. 2010. Vol. 298. N. 3. P. L392–403. DOI: 10.1152/ajplung.00041.2009.
  787. McNelis J.C., Olefsky J.M. Macrophages, immunity, and metabolic disease // Immunity. 2014. Vol. 41. P. 36–48. DOI: 10.1016/j.immuni.2014.05.010.
  788. Zhu X., Yang L., Huang K. COVID-19 and Obesity: Epidemiology, Pathogenesis and Treatment Diabetes // Metabolic Syndrome and Obesity: Targets and Therapy. 2020. N. 13. P. 4953–4959. DOI: 10.2147/DMSO.S285197.
  789. Barbar S., Noventa F., Rossetto V. et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score // J. Thromb. Haemost. 2010. Vol. 8. P. 2450–2457. DOI: 10.1111/j.1538- 7836.2010.04044.x.
  790. Kahn S.R., Lim W., Dunn A.S. et al. Prevention of VTE in Nonsurgical Patients. Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines // Chest. 2012. Vol. 141. P. e195S–e226S. DOI: 10.1378/chest.11-2296.
  791. Gibson C.M., Spyropoulos A.C., Cohen A.T. et al. The IMPROVEDD VTE Risk Score: Incorporation of D-Dimer into the IMPROVE Score to Improve Venous Thromboembolism Risk Stratification // TH Open. 2017. Vol. 1. P. e56–e65. DOI: 10.1055/s-0037-1603929.
  792. Bikdeli B., Madhavan M.V., Jimenez D. et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up // JACC. 2020. DOI: 10.1016/j.jacc.2020.04.031.
  793. Bestall J.C., Paul E.A., Garrod R. et al. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease // Thorax. 1999. Vol. 54. N. 7. P. 581–586.
  794. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Revised. 2019. www.gold-copd.com.
  795. Witek T.J. Jr., Mahler D.A. Minimal important difference of the transition dyspnoea index in a multinational clinical trial // Eur. Respir. J. 2003. Vol. 21. N. 2. P. 267–272.
  796. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion // Scand. J. Work Environ. Health. 1990. Vol. 16. Suppl 1. P. 55–58.
  797. McGavin C.R., Artvinli M., Naoe H., McHardy G.J. Dyspnoea, disability, and distance walked: comparison of estimates of exercise performance in respiratory disease // Br. Med. J. 1978. Vol. 2. N. 6132. P. 241–243.
  798. Чучалин А.Г. Пульмонология [Электронный ресурс]: Национальное руковод- ство. Краткое издание / Под ред. А. Г. Чучалина. М.: ГЭОТАР-Медиа, 2020. 768 с.
  799. Гуцол Л.О., Корытов Л.И., Губина М.И. Физиологические и патофизиологиче- ские аспекты внешнего дыхания. Иркутск: ИГМУ, 2014. 116 с.
  800. Левитэ Е.М., Уклонский А.Н., Кулаков В.Ф. Роль мертвого пространства в фор- мировании и диагностике дыхательной недостаточности // Общая реанимато- логия. 2009. №2. С. 76–78.
  801. Авдеев С.Н. Оценка силы дыхательных мышц в клинической практике // Ат- мосфера. Пудьмонология и аллергология. 2008. №4. С. 12–17.
  802. Evans J.A., Whitelaw W.A. The assessment of maximal respiratory mouth pressures in adults // Respir. Care. 2009. Vol. 54. N. 10. P. 1348–1359.
  803. Pessoa I.M.S., Parreira V.F., Fregonezi G.A. et al. Reference values for maximal inspiratory pressure: A systematic review // Can. Respir. J. 2014. Vol. 21. N. 1. P. 43. DOI: 10.1155/2014/982374.
  804. Rodrigues A., Da Silva M.L., Berton D.C. et al. Maximal Inspiratory Pressure: Does the Choice of Reference Values Actually Matter? // Chest. 2017Vol. 152. N. 1. P. 32–39.
  805. McConnell A.K., Copestake A.J. Maximum static respiratory pressures in healthy men and women: issues of reproducibility and interpretation.Respiration. 1999. Vol. 66. N. 5. P. 251-258.
  806. Uldry C., Fitting J.W. Maximal values of sniff nasal inspiratory pressure in healthy subjects // Thorax. 1995. Vol. 50. N. 4. P. 371–375.
  807. Сегизбаева М.О., Александрова Н.П. Оценка функционального состояния ды- хательных мышц: методические аспекты и интерпретация данных // Физиоло- гия человека. 2019. T. 45. №2. C. 115–127. DOI: 10.1134/S0131164619010120.
  808. Miller M.R., Hankinson J., Brusasco V. et al. Standardisation of spirometry // Eur. Respir. J. 2005. Vol. 26. P. 319–338.
  809. Лунина М.Д., Никифоров В.С., Яковлева Н.Г., Балясина Н.С. Актуальные во- просы клинического применения спирометрии // Архивъ внутренней медици- ны. 2016. T. 6. C. 19–24.
  810. Чикина С.Ю., Черняк А.В. Спирометрия в повседневной врачебной практике // Атмосфера. Пульмонология и аллергология. 2007. T. 1. C. 6–11.
  811. Pellegrino R., Viegi G., Brusasco V. et al. Interpretative strategies for lung function tests // Eur. Respir. J. 2005. Vol. 26. N. 5. P. 948–968.
  812. Савушкина О.И., Черняк А.В. Теоретические и методические аспекты боди- плетизмографии и ее клиническое применение. Бюллетень. 2016. Вып. 60. С. 117–124. DOI: 10.12737/20131.
  813. Савушкина О.И., Неклюдова Г.В., Черняк А.В. Теоретические, методические и клинические аспекты исследования диффузионной способности легких. Бюл- летень 2016. Вып. 59. С. 119–124.
  814. Graham B.L., Brusasco V., Burgos F. et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung // Eur. Respir. J. 2017. Vol. 49. N. 1. P. pii:1600016. DOI: 10.1183/13993003.00016-2016.
  815. Неклюдова Г.В., Черняк А.В. Клиническое значение исследования диффузи- онной способности легких. Атмосфера // Пульмонология и аллергология. 2013. №4. С.54–59.
  816. Tisdale J.E., Jayes H.A., Kingery J.R. et al. Development and validation of a risk score to predict Q–T interval prolongation in hospitalized patients // Circ. Cardiovasc. Qual. Outcomes. 2013. Vol. 6. P. 479–487. DOI: 10.1161/CIRCOUTCOMES.113.000152.
  817. Treacy D., Hassett L. The Short Physical Performance Battery // J. Physiother. 2017. DOI: 10.1016/j.jphys.2017.04.002.
  818. Morse J.M., Morse R.M., Tylko S. Development of a scale to identify the fall-prone patient // Can. J. Aging. 1989. Vol. 8. N. 4. P. 366–377.
  819. Mathias S., Nayak U.S.L., Isaacs 8. Balance in the elderly patient: The «Get-up and Go» test // Arch. Phys. Med. Rehabil. 1986. Vol. 67. P. 387.
  820. Аронов Д.М., Лупанов В.П. Функциональные пробы в кардиологии. М.: МЕД- пресс-информ, 2002. с. 296.
  821. Fletcher G.F., Ades P.A., Kligfield P. et al. Exercise standards for testing and training. A Scientific Statement from the American Heart Association // Circulation. 2013. Vol. 128. P. 873–934. DOI: 10.1161/CIR.0b013e31829b5b44.
  822. Бубнова М.Г., Персиянова-Дуброва А.Л. Применение теста с шестиминутной ходьбой в кардиореабилитации // Кардиоваскулярная терапия и профилакти- ка. 2020. T. 19. №4. С. 2561. DOI: 10.15829/1728-8800-2020-2561.
  823. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test // Am. J. Respir. Crit. Care Med. 2002. Vol. 166. N. 1. P. 111–117. DOI: 10.1164/ajrccm.166.1.at1102
  824. Opasich C., De Feo S., Pinna G.D. et al. Distance walked in the 6-minute test soon after cardiac surgery: toward an efficient use in the individual patient // Chest. 2004. Vol. 126. N. 6. P. 1796–801. DOI: 10.1378/chest.126.6.1796.
  825. Adsett J., Mullins R., Hwang R. et al. Repeat six-minute walk tests in patients with chronic heart failure: are they clinically necessary?// Eur. J. Cardiovasc. Prev. Rehabil. 2011. Vol. 18. N. 4. P. 601–606. DOI: 10.1177/1741826710389403.
  826. Holland A.E., Spruit M.A., Troosters T. et al. An official European Respiratory Society/ American Thoracic Society technical standard: field walking tests in chronic respiratory disease // Eur. Respir. J. 2014. Vol. 44. N. 6. P. 1428–1446.
  827. Jones C.J., Rikli R.E., Measuring functional fitness of older adults // J. Active Aging. 2002. P. 24–30.
  828. Vaidya T., Chambellan A., de Bisschop C. Sit-to-stand tests for COPD: a literature review // Respir. Med. 2017. Vol. 128. P. 70–77.
  829. Briand J., Behal H., Chenivesse C. et al. The 1-minute sit-to-stand test to detect exercise-induced oxygen desaturation in patients with interstitial lung disease // Ther. Adv. Respir. Dis. 2018. Vol. 12. P. 1–10. DOI: 10.1177/1753466618793028.
  830. Bohannon R.W., Wang Y.C., Gershon R.C. Two-minute walk test performance by adults 18 to 85 years: normative values, reliability, and responsiveness // Arch. Phys. Med. Rehabil. 2015. Vol. 96. N. 3. P. 472–477.
  831. Crook S., Busching G., Schultz K. et al. A multicentre validation of the 1-min sit-to- stand test in patients with COPD // Eur. Respir. J. 2017. Vol. 49. P. 3.
  832. Haas F., Sweeney G., Pierre A. et al. Validation of a 2 Minute Step Test for Assessing Functional Improvement // J. Ther. Rehab. 2017. Vol. 5. P. 71–81. DOI: 10.4236/ ojtr.2017.52007.
  833. Coquart J.B., Lemaitre F., Castres I. et al. Reproducibility and sensitivity of the 6-Minute Stepper Test in patients with COPD // COPD. 2015. Vol. 12. N. 5. P. 533–538.
  834. Vanderthommen M., Depresseux J.C., Dauchat L. et al. Spatial distribution of blood flow in electrically stimulated human muscle: a positron emission tomography study // Muscle Nerve. 2000. Vol. 23. N. 4. P. 482–489.
  835. Rose D.J. Promoting functional independence in older adults at risk for falls: The need for a multidimensional programming approach // J. Aging. Physical Activity. 2002.
  836. Harris-Love M.O., Seamon B.A., Teixeira C., Ismail C. Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and Image J for the grayscale analysis of muscle echogenicity // Peer. J. 2016. Vol. 22. N. 4. P. e1721.
  837. Robles P.G., Mathur S., Janaudis-Fereira T. et al. Measurement of peripheral muscle strength in individuals with chronic obstructive pulmonary disease: a systematic review // J. Cardiopulm. Rehabil. Prev. 2011. Vol. 31. N. 1. P. 11–24.
  838. Moisey L.L., Mourtzakis M., Cotton V.A. et al. Scelenal muscle predicts ventilator-free days, ICU-days, and mortality in enderly ICU patients. Crit. Care Med.2013. Vol. 17. P. R206.
  839. Malmstrom T.K., Morley J.E. SARC-F: a simple questionnaire to rapidly diagnose sarcopenia // J. Am. Med. Dir. Assoc. 2013. Vol. 14. N. 8. P. 531–532.
  840. Looijaard W.G., Dekker I.M., Stapel S.N. et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients // Critical Care. 2016. Vol. 20. P. 386. DOI: 10.1186/ s13054-016-1563-3.
  841. Cruz-Jentoft A.J. et al. Sarcopenia: revised European consensus on definition and diagnosis // Age Ageing. 2019. Vol. 48. N. 1. P. 6–31.
  842. Biolo G., Cederholm T., Muscaritoli M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia // Clin. Nutr. 2014. Vol. 33. P. 737–748.
  843. The EuroQol group.EuroQol – a new facility for the measurement of health related quality of life // Health Policy. 1990. Vol. 16. P. 199–208.
  844. Ware J.E., Snow K.K., Kosinski M., Gandek B. SF-36 Health Survey. Manual and interpretation guide.The Health Institute, New England Medical Center. Boston, Mass.1993.
  845. Ware J.E., Kosinski M., Keller S.D. SF-36 Physical and Mental Health Summary Scales: A User`s Manual. The Health Institute, New England Medical Center. Boston, Mass.1994.
  846. Jones P.W., Quirk F.H., Baveystock C.M. The St George’s Respiratory Questionnaire // Respir. Med. 1991. Vol. 85. Suppl. B. P. 25–31.
  847. Mahoney F.I., Barthel D.W. Functional evaluation: the Barthel index // Md. State Medical. J. 1965. Vol. 14. P. 56–61.
  848. Lawton M.P., Brody E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living // The Gerontologist. 1961. Vol. 9. N. 3. P. 179–186.
  849. Rockwood K., Song X., MacKnight C. et al. A global clinical measure of fitness and frailty in elderly people // CMAJ. 2005. Vol. 173. N. 5. P. 489–495.
  850. HFSA/ACC/AHA Statement Addresses Concerns Re: Using RAAS Antagonists in COVID-19. 2020. www.acc.org/latest-incardiology/articles/2020/03/17/08/59/hfsa- acc-aha-statementaddresses-concerns-re-using-raas-antagonists-in-COVID-19.
  851. Zhang P., Zhu L., Cai J. et al. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19 // Circ. Res. 2020. Vol. 126. P. 1671– 1681. DOI: 10.1161/CIRCRESAHA.120.317134.
  852. Gao C., Cai Y., Zhang K. et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study // Eur. Heart J. 2020. Vol. 41. P. 2058–2066. DOI: 10.1093/eurheartj/ehaa433.
  853. Mancia G., Rea F., Ludergnani M. et al. Renin-angiotensin-aldosterone system blockers and the risk of Covid-19. N. Engl. J. Med. 2020. Vol. 382. P. 2431–2440. DOI: 10.1056/NEJMoa2006923.
  854. Reynolds H.R., Adhikari S., Pulgarin C.et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19 // N. Engl. J. Med. 2020. Vol. 382. P. 2441–2448.
  855. Pirola C.J., Sookoian S. Estimation of Renin-Angiotensin-Aldosterone-System (RAAS)-Inhibitor effect on COVID-19 outcome: A Meta-analysis // J. Infection. 2020. Vol. 81. P. 276–281. DOI: 10.1016/j.jinf.2020.05.052.
  856. Cannata F., Chiarito M., Bernhard R. et al. Continuation versus discontinuation of ACE inhibitors or angiotensin II receptor blockers in COVID-19: effects on blood pressure control and mortality // Eur. Heart J. – Cardiovascular Pharmacotherapy. 2020. Vol. 6. P. 412–414. DOI: 10.1093/ehjcvp/pvaa056.
  857. Liabeuf S., Moragny J., Bennis Y. et al. Association between renin–angiotensin system inhibitors and COVID-19 complications // Eur. Heart J. – Cardiovascular Pharmacotherapy. 2021. Vol. 7. P. 426–434. DOI: 10.1093/ehjcvp/pvaa062.
  858. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients // jmedRxiv. 2020. https:// www.medrxiv.org/content/10.1101/2020.05.06.20092999v1.
  859. Visseren F.L.J., Mach F., Smulders Y.M. et al. 2021 ESC Guidelines on cardiovascular disease рrevention in clinical practice // Eur. Heart J. 2021. Vol. 42. N. 34. P. 3277–3337. DOI: 10.1093/eurheartj/ehab484.
  860. Fan Z., Chen L., Li J. et al. Clinical features of COVID-19-related liver damage // Clin. Gastroenterol.Hepatol.2020.Vol.18.P.1561–1566.DOI:10.1101/2020.02.26.200226971.
  861. Masana L., Correig E., Rodríguez-Borjabad C. et al. on behalf of the STACOV-XULA research group. Effect of statin therapy on sars-cov-2 infection-related mortality in hospitalized patients. 2020. https://academic.oup.com/ehjcvp/advance-article/ doi/10.1093/ehjcvp/pvaa128/5949102.
  862. Kow C.S., Hasan S.S. Meta-analysis of Effectiveness of Statins in Patients with Severe COVID-19. Am J Cardiol. 2020. Vol. 134. P. 153-155. DOI: 10.1016/j. amjcard.2020.08.004.
  863. Kollias A., Kyriakoulis K.G., Kyriakoulis I.G. et al. Statin use and mortality in COVID-19 patients: Updated systematic review and meta-analysis // Atherosclerosis. 2021. Vol. 330. P. 114–121. DOI: 10.1016/j.atherosclerosis.2021.06.911.
  864. DanielsID L.B., Ren J., Kumar K. et al. Relation of prior statin and anti-hypertensive use to severity of disease among patients hospitalized with COVID-19: Findings from the American Heart Association’s COVID-19 Cardiovascular Disease Registry // PLoS One. 2021. Vol. 16. N. 7. P. e0254635. DOI: 10.1371/journal.pone.0254635.
  865. Schol-Gelok S., van der Hulle T., Biedermann J.S. et al. Clinical effects of antiplatelet drugs and statins on D-dimer levels // Eur. J. Clin. Invest. 2018. Vol. 48. N. 7. P. e12944. DOI: 10.1111/eci.12944.
  866. Laufs U., Gertz K., Huang P. et al. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice // Stroke. 2000. Vol. 31. N. 10. P. 2442–2449. DOI: 10.1161/01.str.31.10.2442.
  867. Masamura K., Oida K., Kanehara H. et al. Pitavastatin-induced thrombomodulin expression by endothelial cells acts via inhibition of small G proteins of the Rho family // Arterioscler. Thromb. Vasc. Biol. 2003. Vol. 23. P. 512–517.
  868. Markle R.A., Han J., Summers B.D. et al. Pitavastatin alters the expression of thrombotic and fibrinolytic proteins in human vascular cells // J. Cell Biochem. 2003. Vol. 90. P. 23–32.
  869. Nägele M.P., Haubner B., Tanner F.C. et al. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications // Atherosclerosis. 2020. Vol. 314. P. 58– 62. DOI: 10.1016/j.atherosclerosis.2020.10.014.
  870. Nagashima T., Okazaki H., Yudoh K. et al. Apoptosis of rheumatoid synovial cells by statins through the blocking of protein geranylgeranylation: a potential therapeutic approach to rheumatoid arthritis // Arthritis. Rheum. 2006. Vol. 54. N. 2. P. 579–586. DOI: 10.1002/art.21564.
  871. Vandermeer M.L., Thomas A.R., Kamimoto L. et al. Association between use of statins and mortality among patients hospitalized with laboratory-confirmed influenza virus infections: a multistate study // J. Infect. Dis.2012. Vol. 205. N. 1. P. 13–19. DOI: 10.1093/infdis/jir695.
  872. Frost F.J., Petersen H., Tollestrup K., Skipper B. Influenza and COPD mortality protection as pleiotropic, dose-dependent effects of statins // Chest. 2007. Vol. 131. N. 4. P. 1006–1012. DOI: 10. 1378/chest.06-1997.
  873. Fedson D.S. Pandemic influenza: a potential role for statins in treatment and prophylaxis // Clin. Infect. Dis. 2006. Vol. 43. N. 2. P. 199–205. DOI: 10.1086/505116 PMID: 16779747.
  874. Fedson D.S. Treating influenza with statins and other immunomodulatory agents // Antiviral. Res. 2013. Vol. 99. P. 417–435. DOI: 10.1016/j.antiviral.2013.06.018.
  875. Massachusetts General Hospital COVID-19. Treatment Guidance Version 1.36. The General Hospital Corporation.2020. https://medach.pro/post/2322.
  876. Yuan S. Statins May Decrease the Fatality Rate of Middle East Respiratory Syndrome Infection // mBio. 2015. Vol. 6. N. 4. P. e01120. DOI: 10.1128/mBio.01120-15.
  877. Yuan X., Deng Y., Guo X. et al. Atorvastatin attenuates myocardial remodeling induced by chronic intermittent hypoxia in rats: partly involvement of TLR-4/MYD88 pathway // Biochem. Biophys. Res. Commun. 2014. Vol. 446. N. 1. P. 292–297. DOI: 10.1016/j.bbrc.2014.02.091.
  878. Totura A.L., Whitmore A., Agnihothram S. et al. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio. 2015. Vol. 6. N. 3. P. e00638-15. DOI: 10.1128/ mBio.00638-15.
  879. Rodrigues-Diez R.R., Tejera-Muñoz A., Marquez-Exposito L. et al. Statins: Could an old friend help in the fight against COVID-19? // Br. J. Pharmacol. 2020. Vol. 10.N. 1111. P. 15166. DOI: 10.1111/bph.15166.
  880. Zhang X.J., Qin J.J., Cheng X. et al. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19 // Cell Metab. 2020. Vol. 32. N. 2. P. 176–187.e4. DOI: 10.1016/j.cmet.2020.06.015.
  881. Bifulco M., Gazzerro P. Statins in coronavirus outbreak: It’s time for experimental and clinical studies // Pharmacol. Res. 2020. Vol. 156. P. 104803. DOI: 10.1016/j. phrs.2020.104803.
  882. Reiner Z., Hatamipour M., Banach M. et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction // Arch. Med. Sci. 2020. Vol. 16. N. 3. P. 490– 496. DOI: 10.5114/aoms.2020.94655.
  883. Fedson D.S. A practical treatment for patients with Ebola virus disease // J. Infect. Dis. 2015. Vol. 211. P. m661–662.
  884. Gao P., Wu W., Tian R. et al. Association between tachyarrhythmia and mortality in a cohort of critically ill patients with coronavirus disease 2019 (COVID-19) // Ann. Transl. Med. 2021. Vol. 9. P. 883.
  885. Chow J.H., Khanna A.K., Kethireddy S. et al. Aspirin Use is Associated with Decreased Mechanical Ventilation, ICU Admission, and In-Hospital Mortality in Hospitalized Patients with COVID-19 // Anesth. Analg. J. Publish. 2020. DOI: 10.1213/ ANE.0000000000005292. https://journals.lww.com/anesthesia-analgesia.
  886. The Liverpool Drug Interaction Group. www.covid19-druginteractions. org/.
  887. Jing-Chun S., Gang W., Wei Z. et al. Chinese expert consensus for diagnosis and treatment of coagulation dysfunction in COVID-19 // Mil. Med. Res. 2020. Vol. 7. N. 1. P. 335–344. DOI: 10.1186/s40779-020-00247-7.
  888. Авдеев С.Н., Базарова А.В., Баранова А.В. и др. Резолюция Международной встречи экспертов по научному обмену опытом применения антикоагулянтов у пациентов с COVID-19 // Российский кардиологический журнал. 2020. T. 25. №9. С. 92–94. DOI: 10.15829/1560-4071-2020-4099.
  889. Paranjpe I., Fuster V., Lala A. et al. Association of Treatment Dose Anticoagulation with In-Hospital Survival Among Hospitalized Patients with COVID-19 // J. Am. Coll. Cardiol. 2020. Vol. 76. N. 1. P. 122–124. DOI: 10.1016/j.jacc.2020.05.001.
  890. Lemos A.C.B., do Espirito Santo D.A., Salvetti M.C. et al. Therapeutic versus prophylactic anticoagulation for severe COVID-19: A randomized phase II clinical trial (HESACOVID) // Thromb Res. 2020. Vol. 196. P. 359–366. DOI: 10.1016/j. thromres.2020.09.026.
  891. Арутюнов Г.П., Козиолова Н.А., Тарловская Е.И. и др. Согласованная позиция экспертов Евразийской ассоциации терапевтов по некоторым новым механиз- мам патогенеза COVID-19: фокус на гемостаз, вопросы гемотрансфузии и си- стему транспорта газов крови // Кардиология. 2020. T. 60. №5. С. 9–19. DOI: 10.18087/cardio.2020.5.n1132.
  892. Hunt B., Retter A., McClintock C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19. 2020. https://thrombosisuk.org/downloads/t&h%20 and%20covid.pdf.
  893. Cuker A., Tseng E.K., Nieuwlaat R. et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19 // Blood advances. 2021. Vol. 5. N. 3. P. 872–888. http://ashpublications. org/ bloodadvances/ article-pdf/5/3/872/1799535/ advancesadv2020003763c.pdf.
  894. Арутюнов А.Г., Сеферович П., Бакулин И.Г. и др. Реабилитация после COVID-19. Резолюция Международного совета экспертов Евразийской ассо- циации терапевтов и Российского кардиологического общества // Российский кардиологический журнал. 2021. T. 26. №9. С. 4694. DOI: 10.15829/1560-4071- 2021-4694.
  895. Almario C.V., Chey W.D., Spiegel B.M.R. Increased Risk of COVID-19 Among Users of Proton Pump Inhibitors // Am. J. Gastroenterol. 2020. Vol. 115. N. 10. P. 1707-1715. DOI: 10.14309/ajg.0000000000000798.
  896. Langford B.J. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis // Clin. Mic. Inf. 2020. Vol. 26. N. 12. P. 1622–1629. DOI: 10.1016/j. cmi.2020.07.016.
  897. Savarino V., Marabotto E., Furnari M. et al. Latest insights into the hot question of proton pump inhibitor safety — a narrative review // Dig. Liver. Dis. 2020. Vol. 52. N. 8. P. 842–852. DOI: 10.1016/j.dld.2020.04.020.
  898. Драпкина О.М., Маев И.В., Бакулин И.Г. и др. Временные методические реко- мендации «Болезни органов пищеварения в условиях пандемии новой коро- навирусной инфекции (COVID-19)». Версия 2 // Профилактическая медицина. 2021. T. 25(5-2. C. 4–41. DOI: 10.17116/profmed2021240524.
  899. Classification of Functioning, Disability and Health (ICF). Exposure draft for comment. Geneva: WHO, 2013. 127 p.
  900. Иванова Г.Е., Мельникова Е.В., Шмонин А.А. и др. Применение Международ- ной классификации функционирования в процессе медицинской реабилита- ции // Вестник восстановительной медицины. 2018. T. 6. C. 2–77.
  901. Мельникова Е.В., Буйлова Т.В., Бодрова Р.А. и др. Использование междуна- родной классификации функционирования (МКФ) в амбулаторной и стацио- нарной медицинской реабилитации: инструкция для специалистов // Вестник Восстановительной медицины. 2017. Т. 82. №6. С. 7–20.
  902. Бубнова М.Г., Аронов Д.М. Кардиореабилитация: этапы, принципы и между- народная классификация функционирования // Профилактическая медици- на. 2020. T. 23, № 5. С. 40–49. DOI: 10.17116/profmed20202305140.
  903. Mukhopadhyay A. et al. Association of modified NUTRIC score with 28-day mortality in critically ill patients // Clin. Nutr. 2017. Vol. 36. N. 4. P. 1143–1148.
  904. Enright P.L., Sherrill D.L. Reference equations for the six-minute walk in healthy adults // Am. J. Respir. Crit. Care Med. 1998. Vol. 158. P. 1384–1387. DOI: 10.1164/ ajrccm.158.5.9710086.
  905. Troosters T., Gosselink R., Decramer M. Six-minute walking distance in healthy elderly subjects // Eur. Respir. J. 1999. Vol. 1. P. 270–274. DOI: 10.1034/j.1399- 3003.1999.14b06.x.
  906. Doyle G.R., McCutcheon J.A. Clinical Procedures for Safer Patient Care. Chapter 3.

Для продолжения работы требуется Registration
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
Список литературы
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу

Table of contents

Данный блок поддерживает скрол*