25. Rosenfield R.L., Ehrmann D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited // Endocr. Rev. 2016; 37: 467–520.
26. Goodman N.F., Cobin R.H., Futterweit W., Glueck J.S., Legro R.S., Carmina E., American Association of Clinical Endocrinologists (AACE); American College of Endocrinology (ACE); Androgen Excess and PCOS Society (AES). American association of clinical endocrinologists, American college of endocrinology, and androgen excess and PCOS society disease state clinical review: Guide to the best practices in the evaluation and treatment of polycystic ovary syndrome. Part 1 // Endocr. Pract. 2015; 21: 1291–1300.
27. Quigley M., Rakoff J., Yen S.S.C. Increased luteinising hormone sensitivity to dopamine inhibition in the polycystic ovary syndrome // J. Clin. Endocrinol. Metab. 1981; 52: 231.
28. Cumming D.C., Reid R.L., Quigley M.E., Rebar R.W., Yen S.S.C. Evidence for decreased endogenous dopamine and opioid inhibitory influences on LH secretion in polycystic ovary syndrome // Clin. Endocrinol. 1984; 20: 643–648.
29. Barbieri R.L., Makris A., Randall R.W., Daniels G., Kistner R.W., Ryan K.J. Insulin Stimulates Androgen Accumulation in Incubations of Ovarian Stroma Obtained from Women with Hyperandrogenism // J. Clin. Endocrinol. Metab. 1986; 62: 904–910.
30. Dunkel L., Sorva R., Voutilainen R. Low levels of sex hormone-binding globulin in obese children // J. Pediatr. 1985; 107: 95–97.
31. Adashi E.Y., Hsueh A.J., Yen S.S. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells // Endocrinology. 1981; 108: 1441–1449.
32. Soldani R., Cagnacci A., Yen S.S. Insulin, insulin-like growth factor I (IGF-I) and IGF-II enhance basal and gonadotrophin-releasing hormone-stimulated luteinizing hormone release from rat anterior pituitary cells in vitro // Eur. J. Endocrinol. 1994; 131: 641–645.
33. Poretsky L., Glover B., Laumas V., Kalin M., Dunaif A. The Effects of Experimental Hyperinsulinemia on Steroid Secretion, Ovarian [125 I] Insulin Binding, and Ovarian [125 I] Insulin-Like Growth-Factor I Binding in the Rat // Endocrinology. 1988; 122: 581–585.
34. Poretsky L., Cataldo N.A., Rosenwaks Z., Giudice L.C. The insulin-related ovarian regulatory system in health and disease // Endocr. Rev. 1999; 20: 535–582.
35. Franks S., Mason H., Willis D. Follicular dynamics in the polycystic ovary syndrome // Mol. Cell. Endocrinol. 2000; 163: 49–52.
36. Carmina E., Rosato F., Jannì A., Rizzo M., Longo R.A. Relative Prevalence of Different Androgen Excess Disorders in 950 Women Referred because of Clinical Hyperandrogenism // J. Clin. Endocrinol. Metab. 2006; 91: 2–6.
37. Dunaif A., Graf M., Mandeli J., Laumas V., Dobrjansky A. Characterization of Groups of Hyperaiidrogenic Women with Acanthosis Nigricans, Impaired Glucose Tolerance, and/or Hyperinsulinemia // J. Clin. Endocrinol. Metab. 1987; 65: 499–507.
38. Barber T.M., Wass J.A.H., McCarthy M.I., Franks S. Metabolic characteristics of women with polycystic ovaries and oligo-amenorrhoea but normal androgen levels: Implications for the management of polycystic ovary syndrome // Clin. Endocrinol. 2007; 66: 513–517.
39. Bevilacqua A., Bizzarri M. Inositols in Insulin Signaling and Glucose Metabolism // Int. J. Endocrinol. 2018: 1–8.
40. Halsted C.H. Handbook of Vitamins: Nutritional, Biochemical, and Clinical Aspects // J. Nutr. 1987; 117: 397.
41. Beemster P., Groenen P., Steegers-Theunissen R. Involvement of Inositol in Reproduction // Nutr. Rev. 2002; 60: 80–87.
42. Chukwuma C.I., Ibrahim M.A., Islam S. Myo-inositol inhibits intestinal glucose absorption and promotes muscle glucose uptake: A dual approach study // J. Physiol. Biochem. 2016; 72: 791–801.
43. Cammarata P.R., Chen H.Q., Yang J., Yorio T. Modulation of myo-[3H]inositol uptake by glucose and sorbitol in cultured bovine lens epithelial cells. II. Characterization of high- and low-affinity myo-inositol transport sites. Investig. Ophthalmol. Vis. Sci. 1992; 33: 3572–3580.
44. Kollros P.E., Goldstein G.W., Betz A.L. Myo-inositol transport into endothelial cells derived from nervous system microvessels. Brain Res. 1990; 511: 259–264.
45. Unfer V., Nestler J.E., Kamenov Z.A., Prapas N., Facchinetti F. Effects of Inositol(s) in Women with PCOS: A Systematic Review of Randomized Controlled Trials // Int. J. Endocrinol. 2016; 2016: 1–12.
46. Facchinetti F., Appetecchia M., Aragona C., Bevilacqua A., Espinola M.S.B., Bizzarri M., D’Anna R., Dewailly D., Diamanti-Kandarakis E., Marín I.H. et al. Experts’ opinion on inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: A further help for human reproduction and beyond. Expert Opin. Drug Metab. Toxicol. 2020; 16: 255–274.
47. Cabrera-Cruz H., Oróstica L., Plaza-Parrochia F., Torres-Pinto I., Romero C., Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment // Am. J. Physiol. Metab. 2020; 318: 237–248.
48. Unfer V., Carlomagno G., Papaleo E., Vailati S., Candiani M., Baillargeon J.-P. Hyperinsulinemia Alters Myoinositol to d-chiroinositol Ratio in the Follicular Fluid of Patients With PCOS. Reprod. Sci. 2014; 21: 854–858.