Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Глава 6. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

6.1. Основные понятия и определения

При решении различных задач математики и физики, биологии и медицины довольно часто не удается сразу установить функциональную зависимость в виде формулы, связывающей переменные величины, которые описывают исследуемый процесс. Обычно приходится использовать уравнения, содержащие, кроме независимой переменной и неизвестной функции, еще и ее производные.

Определение. Уравнение, связывающее независимую переменную, неизвестную функцию и ее производные различных порядков, называется дифференциальным.

Неизвестную функцию обычно обозначают y(x) или просто y, а ее производные - y', y" и т. д.

Возможны и другие обозначения, например: если y = x(t), то x"(t), x""(t) - ее производные, а t - независимая переменная.

Определение. Если функция зависит от одной переменной, то дифференциальное уравнение называется обыкновенным. Общий вид обыкновенного дифференциального уравнения:

или

Функции F и f могут не содержать некоторых аргументов, но для того, чтобы уравнения были дифференциальными, существенно наличие производной.

Определение. Порядком дифференциального уравнения называется порядок старшей производной, входящей в него.

Например, x2y'- y = 0, y' + sinx = 0 - уравнения первого порядка, а y" + 2 y' + 5 y = x - уравнение второго порядка.

При решении дифференциальных уравнений используется операция интегрирования, что связано с появлением произвольной постоянной. Если действие интегрирования применяется n раз, то, очевидно, и в решении будет содержаться n произвольных постоянных.

Для продолжения работы требуется Registration
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
Глава 6. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу

Table of contents

Данный блок поддерживает скрол*