Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Lectures on integral calculus of functions of one variable and series theory
9. Curves and calculating their length
Для продолжения работы требуется
Registration
Предыдущая страница
Следующая страница
Table of contents
Preface
Video lectures
1. Antiderivative and indefinite integral
+
2. Integration of rational functions
+
3. Integration of trigonometric functions
+
4. Integration of irrational functions
+
5. Definite integral and Darboux sums
+
6. Classes of integrable functions. Properties of a definite integral
+
7. Integral with a variable upper limit. Newton-Leibniz formula
+
8. Calculation of areas and volumes
+
9. Curves and calculating their length
-
Vector functions and their properties
Differentiable vector functions
Lagrange’s theorem for vector functions
Curves in three-dimensional space. Rectifiable curves
Properties of continuously differentiable curves
Versions of the formula for finding the length of a curve
10. Improper integrals: definition and properties
+
11. Absolute and conditional convergence of improper integrals
+
12. Numerical series
+
13. Convergence tests for numerical series with non-negative terms
+
14. Alternating series and conditional convergence
+
15. Functional sequences and series
+
16. Properties of uniformly converging sequences and series
+
17. Power series
+
18. Taylor series
+
19. Fourier series in Euclidean space
+
20. Fourier series in the space of integrable functions
+
References
Index
Данный блок поддерживает скрол*