Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Neural networks fundamentals in mobile robot control systems
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
Поставить закладку
3.1. Two layered neural network mathematical description
Для продолжения работы требуется
Registration
Предыдущая страница
Следующая страница
Table of contents
1. LECTURE: INTRODUCTION TO NEURAL NETWORKS
+
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
+
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
-
3.1. Two layered neural network mathematical description
3.2. Generalized delta rule
3.3. Network with linear output neurons
3.4. Structure of a multi-layered feedforward neural network
3.5. Description of a multi-layered feedforward neural network
3.6. Generalized Delta Rule for MFNN
3.7. Recursive computation of delta
3.8. Momentum BP algorithm
3.9. A Summary of BP learning algorithm
3.10. Some issues in BP learning algorithm
3.11. Local minimum problem
3.12. Problems
Practical training 5
3.13. Task for practical training 5
3.14. Example of the practical training 5 performing
3.15. Variants
3.16. Requirements to the results representation
Practical training 6
3.17 Task for practical training 6
3.18. Example of the practical training 6 performing
3.19. Variants
3.20. Requirements to the results representation
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
+
BIBLIOGRAPHY
Данный блок поддерживает скрол*