Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Neural networks fundamentals in mobile robot control systems
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
Поставить закладку
2.1. Parametric adaptation of the neural threshold element
Если Вы наш подписчик,то для того чтобы скопировать текст этой страницы в свой конспект,
используйте
просмотр в виде pdf
. Вам доступно 6 стр. из этой главы.
Для продолжения работы требуется
Registration
Предыдущая страница
Следующая страница
Table of contents
1. LECTURE: INTRODUCTION TO NEURAL NETWORKS
+
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
-
2.1. Parametric adaptation of the neural threshold element
2.2. The perceptron rule of adaptation
2.3. Mays adaptation rule
2.4. Adaptive linear element
2.5. α - Least Mean Square Algorithm
2.6. Mean Square Error Method
2.7. μ - Least Mean Square Algorithm
2.8. Adaline with sigmoidal functions
2.9. Backpropagation method
2.10. A simple network with three neurons
2.11. Backpropagation learning
2.12. Problems
Practical training 3
2.13. Task for practical training 3
2.14. Example of the practical training 3 performing
2.15. Variants
2.16. Requirements to the results representation
Practical training 4
2.17. Task for practical training 4
2.18. Example of the practical training 4 performing
2.19. Variants
2.20. Requirements to the results representation
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
+
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
+
BIBLIOGRAPHY
Данный блок поддерживает скрол*