Справка
x
Поиск
Закладки
Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Теория матриц
ЧАСТЬ ВТОРАЯ. СПЕЦИАЛЬНЫЕ ВОПРОСЫ И ПРИЛОЖЕНИЯ
Предыдущая страница
Следующая страница
Table of contents
Предисловие автора к первому изданию
Предисловие редактора ко второму изданию
ЧАСТЬ ПЕРВАЯ. ОСНОВЫ ТЕОРИИ
+
ЧАСТЬ ВТОРАЯ. СПЕЦИАЛЬНЫЕ ВОПРОСЫ И ПРИЛОЖЕНИЯ
-
ГЛАВА XI. КОМПЛЕКСНЫЕ СИММЕТРИЧЕСКИЕ, КОСОСИММЕТРИЧЕСКИЕ И ОРТОГОНАЛЬНЫЕ МАТРИЦЫ
§ 1. Некоторые формулы для комплексных ортогональных и унитарных матриц
§ 2. Полярное разложение комплексной матрицы
§ 3. Нормальная форма комплексной симметрической матрицы
§ 4. Нормальная форма комплексной кососимметрической матрицы
§ 5. Нормальная форма комплексной ортогональной матрицы
ГЛАВА XII. СИНГУЛЯРНЫЕ ПУЧКИ МАТРИЦ
§ 1. Введение
§ 2. Регулярный пучок матриц
§ 3. Сингулярные пучки. Теорема о приведении
§ 4. Каноническая форма сингулярного пучка матриц
§ 5. Минимальные индексы пучка. Критерий строгой эквивалентности пучков
§ 6. Сингулярные пучки квадратичных форм
§ 7. Приложения к дифференциальным уравнениям
ГЛАВА XIII. МАТРИЦЫ С НЕОТРИЦАТЕЛЬНЫМИ ЭЛЕМЕНТАМИ
§ 1. Общие свойства
§ 2. Спектральные свойства неразложимых неотрицательных матриц
§ 3. Разложимые матрицы
§ 4. Нормальная форма разложимой матрицы
§ 5. Примитивные и импримитивные матрицы
§ 6. Стохастические матрицы
§ 7. Предельные вероятности для однородной цепи Маркова с конечным числом состояний
§ 8. Вполне неотрицательные матрицы
§ 9. Осцилляционные матрицы
ГЛАВА XIV. РАЗЛИЧНЫЕ КРИТЕРИИ РЕГУЛЯРНОСТИ И ЛОКАЛИЗАЦИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ
§ 1. Критерий регулярности Адамара и его обобщения
§ 2. Норма матрицы
§ 3. Распространение критерия Адамара на блочные матрицы
§ 4. Критерий регулярности Фидлера
§ 5. Круги Гершгорина и другие области локализации
ГЛАВА XV. ПРИЛОЖЕНИЯ ТЕОРИИ МАТРИЦ К ИССЛЕДОВАНИЮ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 1. Системы линейных дифференциальных уравнений с переменными коэффициентами. Общие понятия
§ 2. Преобразование Ляпунова
§ 3. Приводимые системы
§ 4. Каноническая форма приводимой системы. Теорема Еругина
§ 5. Матрицант
§ 6. Мультипликативный интеграл. Инфинитезимальное исчисление Вольтерра
§ 7. Дифференциальные системы в комплексной области. Общие свойства
§ 8. Мультипликативный интеграл в комплексной области
§ 9. Изолированная особая точка
§ 10. Регулярная особая точка
§ 11. Приводимые аналитические системы
§ 12. Аналитические функции многих матриц и их применение к исследованию дифференциальных систем. Работы И.А. Лаппо-Данилевского
ГЛАВА XVI. ПРОБЛЕМА РАУСА-ГУРВИЦА И СМЕЖНЫЕ ВОПРОСЫ
§ 1. Введение
§ 2. Индексы Коши
§ 3. Алгоритм Рауса
§ 4. Особые случаи. Примеры
§ 5. Теорема Ляпунова
§ 6. Теорема Рауса-Гурвица
§ 7. Формула Орландо
§ 8. Особые случаи в теореме Рауса-Гурвица
§ 9. Метод квадратичных форм. Определение числа различных вещественных корней многочлена
§ 10. Бесконечные ганкелевы матрицы конечного ранга
§ 11. Определение индекса произвольной рациональной дроби через коэффициенты числители и знаменателя
§ 12. Второе доказательство теоремы Рауса-Гурвица
§ 13. Некоторые дополнения к теореме Рауса-Гурвица. Критерий устойчивости Льенара и Шипара
§ 14. Некоторые свойства многочлена Гурвица. Теорема Стилтьеса. Представление многочленов Гурвица при помощи непрерывных дробей
§ 15. Область устойчивости. Параметры Маркова
§ 16. Связь с проблемой моментов
§ 17. Связь между определителями Гурвица и определителями Маркова
§ 18. Теоремы Маркова и Чебышева
§ 19. Обобщенная задача Рауса-Гурвица
ДОБАВЛЕНИЕ. НЕРАВЕНСТВА ДЛЯ СОБСТВЕННЫХ И СИНГУЛЯРНЫХ ЧИСЕЛ (В. Б. Лидский)
+
Примечания
Список литературы
Предметный указатель
Данный блок поддерживает скрол*