Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы

  1. World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Report of a WHO/IDF consultation. Geneva, 2006
  2. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications : report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva, 1999
  3. Дедов ИИ, Шестакова МВ, Майоров АЮ, и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. – 10-й выпуск. Сахарный диабет. 2021;24(S1). doi: 10.14341/DM12802
  4. Дедов ИИ, Шестакова МВ. Сахарный диабет типа 2: от теории к практике. МИА, 2016
  5. Schwartz SS, Epstein S, Corkey BE, et al. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell–Centric Classification Schema. Diabetes Care. 2016;39(2):179–186. doi: 10.2337/dc15-1585
  6. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. 2021
  7. Дедов ИИ, Шестакова МВ, Галстян ГР. Распространенность сахарного диабета 2 типа у взрослого населения России (исследование NATION). Сахарный диабет. 2016;19(2):104–112. doi: 10.14341/DM2004116-17
  8. World Health Organization. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy. Geneva, 2013
  9. World Health Organization. Classification of diabetes mellitus. World Health Organization. 2019
  10. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(Supplement_1):S17–S38. doi: 10.2337/dc22-S002
  11. World Health Organization, International Diabetes Federation. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia. Geneva, http://www.who.int/diabetes/publications/diagnosis_diabetes2006/en/index.html (2006)
  12. World Health Organization. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva, 2011
  13. International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes. Diabetes Care. 2009;32(7):1327–1334. doi: 10.2337/dc09-9033
  14. Дедов ИИ, Шестакова МВ. Сахарный диабет: диагностика, лечение, профилактика. Москва: МИА, 2011
  15. Umpierrez G, Korytkowski M. Diabetic emergencies — ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nat Rev Endocrinol. 2016;12(4):222–232. doi: 10.1038/nrendo.2016.15
  16. González-Lao E, Corte Z, Simón M, et al. Systematic review of the biological variation data for diabetes related analytes. Clin Chim Acta. 2019;48861–67. doi: 10.1016/j.cca.2018.10.031
  17. Leighton E, Sainsbury CA, Jones GC. A Practical Review of C-Peptide Testing in Diabetes. Diabetes Ther. 2017;8(3):475–487. doi: 10.1007/s13300-017-0265-4
  18. Силко ЮВ, Никонова ТВ, Иванова ОН, и др. Латентный аутоиммунный диабет взрослых: информативность аутоантител. Терапевтический архив (архив до 2018 г). 2016;88(10):42–45. doi: 10.17116/terarkh2016881042-45
  19. Sosenko JM, Skyler JS, Palmer JP, et al. The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients. Diabetes Care. 2013;36(9):2615–2620. doi: 10.2337/dc13-0425
  20. Shields BM, Hicks S, Shepherd MH, et al. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–2508. doi: 10.1007/s00125-010-1799-4
  21. Shepherd M, Sparkes AC, Hattersley AT. Genetic testing in maturity onset diabetes of the young (MODY): a new challenge for the diabetic clinic. Pract Diabetes Int. 2001;18(1):16– 21. doi: 10.1002/pdi.108
  22. American Diabetes Association. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(Supplement_1):S46–S59. doi: 10.2337/dc22-S004
  23. National Kidney Foundation. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013;3(1):1–150.
  24. International Council of Ophthalmology. ICO Guidelines for Diabetic Eye Care. San Francisco, http://www.icoph.org/downloads/ICOGuidelinesforDiabeticEyeCare.pdf (2017)
  25. Solomon SD, Chew E, Duh EJ, et al. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(3):412–418. doi: 10.2337/dc16- 2641
  26. Canadian Ophthalmological Society Diabetic Retinopathy Clinical Practice Guideline Expert Committee, Hooper P, Boucher MC, et al. Canadian Ophthalmological Society Evidence-based Clinical Practice Guidelines for the Management of Diabetic Retinopathy - executive summary. Can J Ophthalmol. 2012;47(2):91–101. doi: 10.1016/j.jcjo.2012.01.022
  27. Klein R, Klein BE, Moss SE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. VII. Diabetic nonproliferative retinal lesions. Ophthalmology. 1987;94(11):1389–1400. doi: 10.1016/s0161-6420(87)33275-0
  28. Klein R, Klein BE, Moss SE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. X. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more. Arch Ophthalmol. 1989;107(2):244–249. doi: 10.1001/archopht.1989.01070010250031
  29. Public Health England. NHS diabetic eye screening (DES) programme, https://www.gov.uk/topic/population-screening-programmes/diabetic-eye
  30. NHS Scotland National Diabetes Retinopathy Screening, https://www.ndrs.scot.nhs.uk/Links/index.htm/
  31. American Diabetes Association. 12. Retinopathy, Neuropathy, and Foot Care: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(Supplement_1):S185–S194. doi: 10.2337/dc22-S012
  32. Boulton AJM, Malik RA, Arezzo JC, et al. Diabetic Somatic Neuropathies. Diabetes Care. 2004;27(6):1458–1486. doi: 10.2337/diacare.27.6.1458
  33. England JD, Gronseth GS, Franklin G, et al. Distal symmetric polyneuropathy: A definition for clinical research: Report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2005;64(2):199–207. doi: 10.1212/01.WNL.0000149522.32823.EA
  34. Hingorani A, LaMuraglia GM, Henke P, et al. The management of diabetic foot: A clinical practice guideline by the Society for Vascular Surgery in collaboration with the American Podiatric Medical Association and the Society for Vascular Medicine. J Vasc Surg. 2016;63(2):3S-21S. doi: 10.1016/j.jvs.2015.10.003
  35. Hart T, Milner R, Cifu A. Management of a Diabetic Foot. JAMA. 2017;318(14):1387– 1388. doi: 10.1001/jama.2017.11700
  36. Gæde P, Oellgaard J, Carstensen B, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016;59(11):2298–2307. doi: 10.1007/s00125- 016-4065-6
  37. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865.
  38. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–853.
  39. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559. doi: 10.1056/NEJMoa0802743
  40. Duckworth W, Abraira C, Moritz T, et al. Glucose Control and Vascular Complications in Veterans with Type 2 Diabetes. N Engl J Med. 2009;360(2):129–139. doi: 10.1056/NEJMoa0808431
  41. ADVANCE Collaborative Group, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572. doi: 10.1056/NEJMoa0802987
  42. Skyler JS, Bergenstal R, Bonow RO, et al. Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials: A position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology. Diabetes Care. 2009;32(1):187–192. doi: 10.2337/dc08-9026
  43. Дедов ИИ, Шестакова МВ, Аметов АС, и др. Консенсус совета экспертов Российской ассоциации эндокринологов по инициации и интенсификации сахароснижающей терапии у больных сахарным диабетом 2 типа. Сахарный диабет. 2011;14(4):6–17. doi: 10.14341/2072-0351-5810
  44. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55(6):1577–1596. doi: 10.1007/s00125-012-2534-0
  45. Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Eye Study Group and the Action to Control Cardiovascular Risk in Diabetes Follow-On (ACCORDION) Study Group. Persistent Effects of Intensive Glycemic Control on Retinopathy in Type 2 Diabetes in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Follow-On Study. Diabetes Care. 2016;39(7):1089–1100. doi: 10.2337/dc16- 0024
  46. American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(Supplement_1):S83–S96. doi: 10.2337/dc22- S006
  47. Nathan DM, Kuenen J, Borg R, et al. Translating the A1C Assay Into Estimated Average Glucose Values. Diabetes Care. 2008;31(8):1473–1478. doi: 10.2337/dc08-0545
  48. Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019;42(8):1593–1603. doi: 10.2337/dci19-0028
  49. Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care. 2019;42(3):400–405. doi: 10.2337/dc18-1444
  50. Beck RW, Bergenstal RM, Cheng P, et al. The Relationships Between Time in Range, Hyperglycemia Metrics, and HbA1c. J Diabetes Sci Technol. 2019;13(4):614–626. doi: 10.1177/1932296818822496
  51. Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes. Diabetes Technol Ther. 2019;21(2):81–85. doi: 10.1089/dia.2018.0310
  52. American Diabetes Association. Introduction: Standards of Medical Care in Diabetes— 2022. Diabetes Care. 2022;45(Supplement_1):S1–S2. doi: 10.2337/dc22-Sint
  53. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685– 696. doi: 10.1016/S0140-6736(04)16895-5
  54. Cholesterol Treatment Trialists’ (CTT) Collaborators, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–125. doi: 10.1016/S0140- 6736(08)60104-X
  55. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–1278. doi: 10.1016/S0140-6736(05)67394- 1
  56. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. J Am Coll Cardiol. 2019;73(24):e285– e350. doi: 10.1016/j.jacc.2018.11.003
  57. Cholesterol Treatment Trialists’ (CTT) Collaboration, Fulcher J, O’Connell R, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–1405. doi: 10.1016/S0140-6736(14)61368-4
  58. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–1681. doi: 10.1016/S0140-6736(10)61350-5
  59. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–188. doi: 10.1093/eurheartj/ehz455
  60. ONTARGET Investigators, Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–1559. doi: 10.1056/NEJMoa0801317
  61. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension. J Hypertens. 2017;35(5):922–944. doi: 10.1097/HJH.0000000000001276
  62. Grenier J, Goodman SG, Leiter LA, et al. Blood Pressure Management in Adults With Type 2 Diabetes: Insights From the Diabetes Mellitus Status in Canada (DM-SCAN) Survey. Can J Diabetes. 2018;42(2):130–137. doi: 10.1016/j.jcjd.2017.01.005
  63. ACCORD Study Group, Cushman WC, Evans GW, et al. Effects of intensive blood- pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–1585. doi: 10.1056/NEJMoa1001286
  64. ГОСТ Р ИСО 15197-2015 Тест-системы для диагностики in vitro. Требования к системам мониторинга глюкозы в крови для самоконтроля при лечении сахарного диабета. Москва: Стандартинформ, 2015
  65. Holman RR, Paul SK, Bethel MA, et al. 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. N Engl J Med. 2008;359(15):1577–1589. doi: 10.1056/NEJMoa0806470
  66. Sheppard P, Bending J, Huber J. Pre- and post-prandial capillary glucose self-monitoring achieves better glycaemic control than pre-prandial only monitoring. Pract Diabetes Int. 2005;22(1):15–22. doi: 10.1002/pdi.733
  67. Boutati EI, Raptis SA. Self-Monitoring of Blood Glucose as Part of the Integral Care of Type 2 Diabetes. Diabetes Care. 2009;32(suppl_2):S205–S210. doi: 10.2337/dc09-S312
  68. Harris MI. Frequency of Blood Glucose Monitoring in Relation to Glycemic Control in Patients With Type 2 Diabetes. Diabetes Care. 2001;24(6):979–982. doi: 10.2337/diacare.24.6.979
  69. Coster S, Gulliford MC, Seed PT, et al. Self-monitoring in Type 2 diabetes mellitus: a meta- analysis. Diabet Med. 2000;17(11):755–761.
  70. Welschen LMC, Bloemendal E, Nijpels G, et al. Self-Monitoring of Blood Glucose in Patients With Type 2 Diabetes Who Are Not Using Insulin: A systematic review. Diabetes Care. 2005;28(6):1510–1517. doi: 10.2337/diacare.28.6.1510
  71. Davidson MB, Castellanos M, Kain D, et al. The effect of self monitoring of blood glucose concentrations on glycated hemoglobin levels in diabetic patients not taking insulin: A blinded, randomized trial. Am J Med. 2005;118(4):422–425. doi: 10.1016/j.amjmed.2004.12.006
  72. Davis WA, Bruce DG, Davis TME. Does self-monitoring of blood glucose improve outcome in type 2 diabetes? The Fremantle Diabetes Study. Diabetologia. 2007;50(3):510– 515. doi: 10.1007/s00125-006-0581-0
  73. Farmer A, Wade A, Goyder E, et al. Impact of self monitoring of blood glucose in the management of patients with non-insulin treated diabetes: open parallel group randomised trial. BMJ. 2007;335(7611):132. doi: 10.1136/bmj.39247.447431.BE
  74. Allemann S, Houriet C, Diem P, et al. Self-monitoring of blood glucose in non-insulin treated patients with type 2 diabetes: a systematic review and meta-analysis. Curr Med Res Opin. 2009;25(12):2903–2913. doi: 10.1185/03007990903364665
  75. Jansen JP. Self-monitoring of glucose in type 2 diabetes mellitus:a Bayesian meta-analysis of direct and indirect comparisons. Curr Med Res Opin. 2006;22(4):671–681. doi: 10.1185/030079906X96308
  76. McGeoch G, Derry S, Moore RA. Self-monitoring of blood glucose in type-2 diabetes: what is the evidence? Diabetes Metab Res Rev. 2007;23(6):423–440. doi: 10.1002/dmrr.749
  77. Poolsup N, Suksomboon N, Rattanasookchit S. Meta-Analysis of the Benefits of Self- Monitoring of Blood Glucose on Glycemic Control in Type 2 Diabetes Patients: An Update. Diabetes Technol Ther. 2009;11(12):775–784. doi: 10.1089/dia.2009.0091
  78. St John A, Davis WA, Price CP, et al. The value of self-monitoring of blood glucose: a review of recent evidence. J Diabetes Complications. 2010;24(2):129–141. doi: 10.1016/j.jdiacomp.2009.01.002
  79. Towfigh A, Romanova M, Weinreb JE, et al. Self-monitoring of blood glucose levels in patients with type 2 diabetes mellitus not taking insulin: a meta-analysis. Am J Manag Care. 2008;14(7):468–475.
  80. Ham P. Glycemic control in the hospital: what to do when experts disagree. Am Fam Physician. 2010;81(9):1078.
  81. Lewandrowski K. Point-of-care testing: an overview and a look to the future (circa 2009, United States). Clin Lab Med. 2009;29(3):421–432. doi: 10.1016/j.cll.2009.06.015
  82. Klonoff DC, Perz JF. Assisted Monitoring of Blood Glucose: Special Safety Needs for a New Paradigm in Testing Glucose. J Diabetes Sci Technol. 2010;4(5):1027–1031. doi: 10.1177/193229681000400501
  83. World Health Organization. WHO injection safety. Fact sheet No. 231. Revised May 2016. Geneva, 2016
  84. Thompson ND, Perz JF. Eliminating the blood: ongoing outbreaks of hepatitis B virus infection and the need for innovative glucose monitoring technologies. J Diabetes Sci Technol. 2009;3(2):283–288. doi: 10.1177/193229680900300208
  85. Jovanovic L, Savas H, Mehta M, et al. Frequent Monitoring of A1C During Pregnancy as a Treatment Tool to Guide Therapy. Diabetes Care. 2011;34(1):53–54. doi: 10.2337/dc10- 1455
  86. Sacks DB, Bruns DE, Goldstein DE, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2002;48(3):436– 472.
  87. American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, et al. Consensus statement on the worldwide standardisation of the HbA1c measurement. Diabetologia. 2007;50(10):2042–2043. doi: 10.1007/s00125-007-0789-7
  88. Driskell OJ, Holland D, Waldron JL, et al. Reduced Testing Frequency for Glycated Hemoglobin, HbA 1c , Is Associated With Deteriorating Diabetes Control. Diabetes Care. 2014;37(10):2731–2737. doi: 10.2337/dc14-0297
  89. Consensus Committee. Consensus statement on the worldwide standardization of the hemoglobin A1C measurement: the American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, and the Inte. Diabetes Care. 2007;30(9):2399–2400. doi: 10.2337/dc07-9925
  90. Sacks DB. Measurement of Hemoglobin A1c: A new twist on the path to harmony. Diabetes Care. 2012;35(12):2674–2680. doi: 10.2337/dc12-1348
  91. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631–1640. doi: 10.2337/dc17-1600
  92. Haak T, Hanaire H, Ajjan R, et al. Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial. Diabetes Ther. 2017;8(1):55–73. doi: 10.1007/s13300-016-0223-6
  93. Beck RW, Riddlesworth TD, Ruedy K, et al. Continuous Glucose Monitoring Versus Usual Care in Patients With Type 2 Diabetes Receiving Multiple Daily Insulin Injections: A Randomized Trial. Ann Intern Med. 2017;167(6):365–374. doi: 10.7326/M16-2855
  94. Carlson AL, Mullen DM, Bergenstal RM. Clinical Use of Continuous Glucose Monitoring in Adults with Type 2 Diabetes. Diabetes Technol Ther. 2017;19(S2):S4–S11. doi: 10.1089/dia.2017.0024
  95. Ajjan RA, Cummings MH, Jennings P, et al. Optimising use of rate-of-change trend arrows for insulin dosing decisions using the FreeStyle Libre flash glucose monitoring system. Diabetes Vasc Dis Res. 2019;16(1):3–12. doi: 10.1177/1479164118795252
  96. Evert AB, Boucher JL, Cypress M, et al. Nutrition Therapy Recommendations for the Management of Adults With Diabetes. Diabetes Care. 2014;37(Supplement_1):S120– S143. doi: 10.2337/dc14-S120
  97. Davies MJ, D’Alessio DA, Fradkin J, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–2701. doi: 10.2337/dci18-0033
  98. MacLeod J, Franz MJ, Handu D, et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Nutrition Intervention Evidence Reviews and Recommendations. J Acad Nutr Diet. 2017;117(10):1637–1658. doi: 10.1016/j.jand.2017.03.023
  99. Mudaliar U, Zabetian A, Goodman M, et al. Cardiometabolic Risk Factor Changes Observed in Diabetes Prevention Programs in US Settings: A Systematic Review and Meta- analysis. PLOS Med. 2016;13(7):e1002095. doi: 10.1371/journal.pmed.1002095
  100. Balk EM, Earley A, Raman G, et al. Combined Diet and Physical Activity Promotion Programs to Prevent Type 2 Diabetes Among Persons at Increased Risk: A Systematic Review for the Community Preventive Services Task Force. Ann Intern Med. 2015;163(6):437–451. doi: 10.7326/M15-0452
  101. Franz MJ, Boucher JL, Rutten-Ramos S, et al. Lifestyle Weight-Loss Intervention Outcomes in Overweight and Obese Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Acad Nutr Diet. 2015;115(9):1447– 1463. doi: 10.1016/j.jand.2015.02.031
  102. Schwingshackl L, Chaimani A, Hoffmann G, et al. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol. 2018;33(2):157–170. doi: 10.1007/s10654-017- 0352-x
  103. Trumbo P, Schlicker S, Yates AA, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–1630.
  104. Hamdy O, Mottalib A, Morsi A, et al. Long-term effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5- year longitudinal study. BMJ Open Diabetes Res Care. 2017;5(1):e000259. doi: 10.1136/bmjdrc-2016-000259
  105. Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–551. doi: 10.1016/S0140-6736(17)33102-1
  106. Mottalib A, Salsberg V, Mohd-Yusof B-N, et al. Effects of nutrition therapy on HbA1c and cardiovascular disease risk factors in overweight and obese patients with type 2 diabetes. Nutr J. 2018;17(1):42. doi: 10.1186/s12937-018-0351-0
  107. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. doi: 10.1056/NEJMoa1800389
  108. Saslow LR, Daubenmier JJ, Moskowitz JT, et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes. 2017;7(12):304. doi: 10.1038/s41387-017-0006-9
  109. Emadian A, Andrews RC, England CY, et al. The effect of macronutrients on glycaemic control: a systematic review of dietary randomised controlled trials in overweight and obese adults with type 2 diabetes in which there was no difference in weight loss between treatment groups. Br J Nutr. 2015;114(10):1656–1666. doi: 10.1017/S0007114515003475
  110. Gardner CD, Trepanowski JF, Del Gobbo LC, et al. Effect of Low-Fat vs Low- Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion. JAMA. 2018;319(7):667–679. doi: 10.1001/jama.2018.0245
  111. Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–1473. doi: 10.3945/ajcn.117.153148
  112. Grotz VL, Pi-Sunyer X, Porte D, et al. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis. Regul Toxicol Pharmacol. 2017;8822–33. doi: 10.1016/j.yrtph.2017.05.011
  113. Miller PE, Perez V. Low-calorie sweeteners and body weight and composition: a meta- analysis of randomized controlled trials and prospective cohort studies. Am J Clin Nutr. 2014;100(3):765–777. doi: 10.3945/ajcn.113.082826
  114. Rogers PJ, Hogenkamp PS, de Graaf C, et al. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes. 2016;40(3):381–394. doi: 10.1038/ijo.2015.177
  115. Franz MJ, MacLeod J, Evert A, et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. J Acad Nutr Diet. 2017;117(10):1659–1679. doi: 10.1016/j.jand.2017.03.022
  116. Bowen ME, Cavanaugh KL, Wolff K, et al. The diabetes nutrition education study randomized controlled trial: A comparative effectiveness study of approaches to nutrition in diabetes self-management education. Patient Educ Couns. 2016;99(8):1368–1376. doi: 10.1016/j.pec.2016.03.017
  117. Savoca MR, Miller CK, Ludwig DA. Food habits are related to glycemic control among people with type 2 diabetes mellitus. J Am Diet Assoc. 2004;104(4):560–566. doi: 10.1016/j.jada.2004.01.013
  118. Arnold L, Mann JI, Ball MJ. Metabolic effects of alterations in meal frequency in type 2 diabetes. Diabetes Care. 1997;20(11):1651–1654. doi: 10.2337/diacare.20.11.1651
  119. Marran KJ, Davey B, Lang A, et al. Exponential increase in postprandial blood-glucose exposure with increasing carbohydrate loads using a linear carbohydrate-to-insulin ratio. South African Med J. 2013;103(7):461–463. doi: 10.7196/samj.6382
  120. Rossi MCE, Nicolucci A, Di Bartolo P, et al. Diabetes Interactive Diary: A New Telemedicine System Enabling Flexible Diet and Insulin Therapy While Improving Quality of Life: An open-label, international, multicenter, randomized study. Diabetes Care. 2010;33(1):109–115. doi: 10.2337/dc09-1327
  121. Bergenstal RM, Johnson M, Powers MA, et al. Adjust to target in type 2 diabetes: comparison of a simple algorithm with carbohydrate counting for adjustment of mealtime insulin glulisine. Diabetes Care. 2008;31(7):1305–1310. doi: 10.2337/dc07-2137
  122. Tunbridge FK, Home PD, Murphy M, et al. Does flexibility at mealtimes disturb blood glucose control on a multiple insulin injection regimen? Diabet Med. 1991;8(9):833–838. doi: 10.1111/j.1464-5491.1991.tb02121.x
  123. Huckvale K, Adomaviciute S, Prieto JT, et al. Smartphone apps for calculating insulin dose: a systematic assessment. BMC Med. 2015;13(1):106. doi: 10.1186/s12916-015-0314-7
  124. U.S. Department of Health and Human Services, U.S. Department of Agriculture. 2015– 2020 Dietary Guidelines for Americans. 8th Edition. Washington, 2015
  125. Hegde S V., Adhikari P, M N, et al. Effect of daily supplementation of fruits on oxidative stress indices and glycaemic status in type 2 diabetes mellitus. Complement Ther Clin Pract. 2013;19(2):97–100. doi: 10.1016/j.ctcp.2012.12.002
  126. Shin JY, Kim JY, Kang HT, et al. Effect of fruits and vegetables on metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2015;66(4):416–425. doi: 10.3109/09637486.2015.1025716
  127. Petersen KS, Clifton PM, Blanch N, et al. Effect of improving dietary quality on carotid intima media thickness in subjects with type 1 and type 2 diabetes: a 12-mo randomized controlled trial. Am J Clin Nutr. 2015;102(4):771–779. doi: 10.3945/ajcn.115.112151
  128. Viguiliouk E, Kendall CWC, Blanco Mejia S, et al. Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS One. 2014;9(7):e103376. doi: 10.1371/journal.pone.0103376
  129. Hollænder PLB, Ross AB, Kristensen M. Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr. 2015;102(3):556–572. doi: 10.3945/ajcn.115.109165
  130. Te Morenga LA, Howatson AJ, Jones RM, et al. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr. 2014;100(1):65–79. doi: 10.3945/ajcn.113.081521
  131. Wang X, Ouyang Y, Liu J, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta- analysis of prospective cohort studies. BMJ. 2014;349g4490. doi: 10.1136/bmj.g4490
  132. Ekinci EI, Clarke S, Thomas MC, et al. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care. 2011;34(3):703–709. doi: 10.2337/dc10-1723
  133. Azadbakht L, Fard NRP, Karimi M, et al. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care. 2011;34(1):55–57. doi: 10.2337/dc10- 0676
  134. Chiavaroli L, de Souza RJ, Ha V, et al. Effect of Fructose on Established Lipid Targets: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. J Am Heart Assoc. 2015;4(9):e001700. doi: 10.1161/JAHA.114.001700
  135. Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity. Circulation. 2016;133(2):187–225. doi: 10.1161/CIRCULATIONAHA.115.018585
  136. Blomster JI, Zoungas S, Chalmers J, et al. The relationship between alcohol consumption and vascular complications and mortality in individuals with type 2 diabetes. Diabetes Care. 2014;37(5):1353–1359. doi: 10.2337/dc13-2727
  137. Ahmed AT, Karter AJ, Warton EM, et al. The relationship between alcohol consumption and glycemic control among patients with diabetes: the Kaiser Permanente Northern California Diabetes Registry. J Gen Intern Med. 2008;23(3):275–282. doi: 10.1007/s11606- 007-0502-z
  138. Pietraszek A, Gregersen S, Hermansen K. Alcohol and type 2 diabetes. A review. Nutr Metab Cardiovasc Dis. 2010;20(5):366–375. doi: 10.1016/j.numecd.2010.05.001
  139. 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, 2018
  140. Boulé NG, Haddad E, Kenny GP, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286(10):1218–1227. doi: 10.1001/jama.286.10.1218
  141. Rejeski WJ, Ip EH, Bertoni AG, et al. Lifestyle Change and Mobility in Obese Adults with Type 2 Diabetes. N Engl J Med. 2012;366(13):1209–1217. doi: 10.1056/NEJMoa1110294
  142. Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and Type 2 Diabetes: The American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary. Diabetes Care. 2010;33(12):2692–2696. doi: 10.2337/dc10- 1548
  143. Church TS, Blair SN, Cocreham S, et al. Effects of Aerobic and Resistance Training on Hemoglobin A 1c Levels in Patients With Type 2 Diabetes. JAMA. 2010;304(20):2253– 2262. doi: 10.1001/jama.2010.1710
  144. Sluik D, Buijsse B, Muckelbauer R, et al. Physical Activity and Mortality in Individuals With Diabetes Mellitus. Arch Intern Med. 2012;172(17):1285–1295. doi: 10.1001/archinternmed.2012.3130
  145. Colberg SR, Sigal RJ, Yardley JE, et al. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–2079. doi: 10.2337/dc16-1728
  146. Jelleyman C, Yates T, O’Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942– 961. doi: 10.1111/obr.12317
  147. Little JP, Gillen JB, Percival ME, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol. 2011;111(6):1554–1560. doi: 10.1152/japplphysiol.00921.2011
  148. U.S. Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. 2008
  149. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019pii: S0140-6736(19)31149-3 [Epub ahead of print]. doi: 10.1016/S0140- 6736(19)31149-3
  150. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347–357. doi: 10.1056/NEJMoa1812389
  151. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–2128. doi: 10.1056/NEJMoa1504720
  152. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644–657. doi: 10.1056/NEJMoa1611925
  153. Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383(15):1425–1435. doi: 10.1056/NEJMoa2004967
  154. Maruthur NM, Tseng E, Hutfless S, et al. Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes. Ann Intern Med. 2016;164(11):740–751. doi: 10.7326/M15-2650
  155. Matthews DR, Paldánius PM, Proot P, et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet. 2019;394(10208):1519–1529. doi: 10.1016/S0140-6736(19)32131-2
  156. Phung OJ, Sobieraj DM, Engel SS, et al. Early combination therapy for the treatment of type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes, Obes Metab. 2014;16(5):410–417. doi: 10.1111/dom.12233
  157. Abdul-Ghani MA, Puckett C, Triplitt C, et al. Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the Efficacy and Durability of Initial Combination Therapy for Type 2 Diabetes (EDICT. Diabetes, Obes Metab. 2015;17(3):268–275. doi: 10.1111/dom.12417
  158. Henry RR, Murray A V., Marmolejo MH, et al. Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract. 2012;66(5):446–456. doi: 10.1111/j.1742-1241.2012.02911.x
  159. Hadjadj S, Rosenstock J, Meinicke T, et al. Initial Combination of Empagliflozin and Metformin in Patients With Type 2 Diabetes. Diabetes Care. 2016;39(10):1718–1728. doi: 10.2337/dc16-0522
  160. Rosenstock J, Chuck L, González-Ortiz M, et al. Initial Combination Therapy With Canagliflozin Plus Metformin Versus Each Component as Monotherapy for Drug-Naïve Type 2 Diabetes. Diabetes Care. 2016;39(3):353–362. doi: 10.2337/dc15-1736
  161. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–322. doi: 10.1056/NEJMoa1603827
  162. Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834–1844. doi: 10.1056/NEJMoa1607141
  163. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–39. doi: 10.1016/S0140-6736(18)32590-X
  164. Bethel MA, Patel RA, Merrill P, et al. Cardiovascular outcomes with glucagon-like peptide- 1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6(2):105–113. doi: 10.1016/S2213-8587(17)30412-6
  165. Monami M, Marchionni N, Mannucci E. Glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized clinical trials. Eur J Endocrinol. 2009;160(6):909–917. doi: 10.1530/EJE-09-0101
  166. Zelniker TA, Wiviott SD, Raz I, et al. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus. Circulation. 2019;139(17):2022–2031. doi: 10.1161/CIRCULATIONAHA.118.038868
  167. Singh AK, Singh R. Heart failure hospitalization with SGLT-2 inhibitors: a systematic review and meta-analysis of randomized controlled and observational studies. Expert Rev Clin Pharmacol. 2019;12(4):299–308. doi: 10.1080/17512433.2019.1588110
  168. Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and Clinical Outcomes in Patients With Type 2 Diabetes Mellitus, Established Cardiovascular Disease, and Chronic Kidney Disease. Circulation. 2018;137(2):119–129. doi: 10.1161/CIRCULATIONAHA.117.028268
  169. Mann JFE, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377(9):839–848. doi: 10.1056/NEJMoa1616011
  170. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019;394(10193):131–138. doi: 10.1016/S0140-6736(19)31150-X
  171. Singh S, Wright EE, Kwan AYM, et al. Glucagon-like peptide-1 receptor agonists compared with basal insulins for the treatment of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes, Obes Metab. 2017;19(2):228–238. doi: 10.1111/dom.12805
  172. Levin PA, Nguyen H, Wittbrodt E, et al. Glucagon-like peptide-1 receptor agonists: a systematic review of comparative effectiveness research. Diabetes, Metab Syndr Obes Targets Ther. 2017;10123–139. doi: 10.2147/DMSO.S130834
  173. Abd El Aziz MS, Kahle M, Meier JJ, et al. A meta-analysis comparing clinical effects of short- or long-acting GLP-1 receptor agonists versus insulin treatment from head-to-head studies in type 2 diabetic patients. Diabetes, Obes Metab. 2017;19(2):216–227. doi: 10.1111/dom.12804
  174. Giorgino F, Benroubi M, Sun J-H, et al. Efficacy and Safety of Once-Weekly Dulaglutide Versus Insulin Glargine in Patients With Type 2 Diabetes on Metformin and Glimepiride (AWARD-2). Diabetes Care. 2015;38(12):2241–2249. doi: 10.2337/dc14-1625
  175. Aroda VR, Bain SC, Cariou B, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, mul. Lancet Diabetes Endocrinol. 2017;5(5):355–366. doi: 10.1016/S2213-8587(17)30085-2
  176. Davies M, Heller S, Sreenan S, et al. Once-Weekly Exenatide Versus Once- or Twice-Daily Insulin Detemir: Randomized, open-label, clinical trial of efficacy and safety in patients with type 2 diabetes treated with metformin alone or in combination with sulfonylureas. Diabetes Care. 2013;36(5):1368–1376. doi: 10.2337/dc12-1333
  177. Diamant M, Van Gaal L, Stranks S, et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet. 2010;375(9733):2234–2243. doi: 10.1016/S0140- 6736(10)60406-0
  178. Дедов ИИ, Шестакова МВ, Петеркова ВА, и др. Проект рекомендаций Российской ассоциации эндокринологов по применению биосимиляров инсулина. Сахарный диабет. 2021;24(1):76–79.
  179. Erpeldinger S, Rehman MB, Berkhout C, et al. Efficacy and safety of insulin in type 2 diabetes: meta-analysis of randomised controlled trials. BMC Endocr Disord. 2016;16(1):39. doi: 10.1186/s12902-016-0120-z
  180. Owens DR, Traylor L, Mullins P, et al. Patient-level meta-analysis of efficacy and hypoglycaemia in people with type 2 diabetes initiating insulin glargine 100U/mL or neutral protamine Hagedorn insulin analysed according to concomitant oral antidiabetes therapy. Diabetes Res Clin Pract. 2017;12457–65. doi: 10.1016/j.diabres.2016.10.022
  181. Дедов ИИ, Шестакова МВ, Аметов АС, и др. Инициация и интенсификация сахароснижающей терапии у больных сахарным диабетом 2 типа: обновление консенсуса совета экспертов Российской ассоциации эндокринологов (2015). Сахарный диабет. 2015;18(1):5–23. doi: 10.14341/DM201515-23
  182. Raskin P, Allen E, Hollander P, et al. Initiating Insulin Therapy in Type 2 Diabetes: A comparison of biphasic and basal insulin analogs. Diabetes Care. 2005;28(2):260–265. doi: 10.2337/diacare.28.2.260
  183. Porcellati F, Lucidi P, Cioli P, et al. Pharmacokinetics and Pharmacodynamics of Insulin Glargine Given in the Evening as Compared With in the Morning in Type 2 Diabetes. Diabetes Care. 2015;38(3):503–512. doi: 10.2337/dc14-0649
  184. Wang Z, Hedrington MS, Gogitidze Joy N, et al. Dose-Response Effects of Insulin Glargine in Type 2 Diabetes. Diabetes Care. 2010;33(7):1555–1560. doi: 10.2337/dc09-2011
  185. Cai X, Gao X, Yang W, et al. Comparison between insulin degludec/liraglutide treatment and insulin glargine/lixisenatide treatment in type 2 diabetes: a systematic review and meta- analysis. Expert Opin Pharmacother. 2017;18(17):1789–1798. doi: 10.1080/14656566.2017.1400011
  186. Gough SCL, Bode B, Woo V, et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 di. Lancet Diabetes Endocrinol. 2014;2(11):885–893. doi: 10.1016/S2213-8587(14)70174-3
  187. Rosenstock J, Aronson R, Grunberger G, et al. Benefits of LixiLan, a Titratable Fixed-Ratio Combination of Insulin Glargine Plus Lixisenatide, Versus Insulin Glargine and Lixisenatide Monocomponents in Type 2 Diabetes Inadequately Controlled on Oral Agents: The LixiLan-O Randomized Trial. Diabetes Care. 2016;39(11):2026–2035. doi: 10.2337/dc16-0917
  188. American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(Supplement_1):S125–S143. doi: 10.2337/dc22-S009
  189. Rosenstock J, Emral R, Sauque-Reyna L, et al. Advancing Therapy in Suboptimally Controlled Basal Insulin–Treated Type 2 Diabetes: Clinical Outcomes With iGlarLixi Versus Premix BIAsp 30 in the SoliMix Randomized Controlled Trial. Diabetes Care. 2021dc210393. doi: 10.2337/dc21-0393
  190. Singh SR, Ahmad F, Lal A, et al. Efficacy and safety of insulin analogues for the management of diabetes mellitus: a meta-analysis. Can Med Assoc J. 2009;180(4):385–397. doi: 10.1503/cmaj.081041
  191. Horvath K, Jeitler K, Berghold A, et al. Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus. Cochrane database Syst Rev. 2007(2):CD005613. doi: 10.1002/14651858.CD005613.pub3
  192. Monami M, Marchionni N, Mannucci E. Long-acting insulin analogues versus NPH human insulin in type 2 diabetes. Diabetes Res Clin Pract. 2008;81(2):184–189. doi: 10.1016/j.diabres.2008.04.007
  193. Riddle MC, Rosenstock J, Gerich J. The Treat-to-Target Trial: Randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care. 2003;26(11):3080–3086. doi: 10.2337/diacare.26.11.3080
  194. Hermansen K, Davies M, Derezinski T, et al. A 26-Week, Randomized, Parallel, Treat-to- Target Trial Comparing Insulin Detemir With NPH Insulin as Add-On Therapy to Oral Glucose-Lowering Drugs in Insulin-Naive People With Type 2 Diabetes. Diabetes Care. 2006;29(6):1269–1274. doi: 10.2337/dc05-1365
  195. Bolli GB, Riddle MC, Bergenstal RM, et al. New insulin glargine 300 U/ml compared with glargine 100 U/ml in insulin-naïve people with type 2 diabetes on oral glucose-lowering drugs: a randomized controlled trial (EDITION 3). Diabetes, Obes Metab. 2015;17(4):386– 394. doi: 10.1111/dom.12438
  196. Terauchi Y, Koyama M, Cheng X, et al. New insulin glargine 300 U/ml versus glargine 100 U/ml in Japanese people with type 2 diabetes using basal insulin and oral antihyperglycaemic drugs: glucose control and hypoglycaemia in a randomized controlled trial (EDITION JP 2). Diabetes, Obes Metab. 2016;18(4):366–374. doi: 10.1111/dom.12618
  197. Yki-Järvinen H, Bergenstal RM, Bolli GB, et al. Glycaemic control and hypoglycaemia with new insulin glargine 300 U/ml versus insulin glargine 100 U/ml in people with type 2 diabetes using basal insulin and oral antihyperglycaemic drugs: the EDITION 2 randomized 12-month trial including 6-month extensi. Diabetes, Obes Metab. 2015;17(12):1142–1149. doi: 10.1111/dom.12532
  198. Marso SP, McGuire DK, Zinman B, et al. Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes. N Engl J Med. 2017;377(8):723–732. doi: 10.1056/NEJMoa1615692
  199. Rodbard HW, Cariou B, Zinman B, et al. Comparison of insulin degludec with insulin glargine in insulin-naive subjects with Type 2 diabetes: a 2-year randomized, treat-to-target trial. Diabet Med. 2013;30(11):1298–1304. doi: 10.1111/dme.12303
  200. Wysham C, Bhargava A, Chaykin L, et al. Effect of Insulin Degludec vs Insulin Glargine U100 on Hypoglycemia in Patients With Type 2 Diabetes. JAMA. 2017;318(1):45–56. doi: 10.1001/jama.2017.7117
  201. Zinman B, Philis-Tsimikas A, Cariou B, et al. Insulin Degludec Versus Insulin Glargine in Insulin-Naive Patients With Type 2 Diabetes: A 1-year, randomized, treat-to-target trial (BEGIN Once Long). Diabetes Care. 2012;35(12):2464–2471. doi: 10.2337/dc12-1205
  202. Madenidou A-V, Paschos P, Karagiannis T, et al. Comparative Benefits and Harms of Basal nsulin Analogues for Type 2 Diabetes. Ann Intern Med. 2018;169(3):165–174. doi: 10.7326/M18-0443
  203. Roussel R, Ritzel R, Boëlle-Le Corfec E, et al. Clinical perspectives from the BEGIN and EDITION programmes: Trial-level meta-analyses outcomes with either degludec or glargine 300 U/mL vs glargine 100 U/mL in T2DM. Diabetes Metab. 2018;44(5):402–409. doi: 10.1016/j.diabet.2018.02.002
  204. Davidson JA, Liebl A, Christiansen JS, et al. Risk for nocturnal hypoglycemia with biphasic insulin aspart 30 compared with biphasic human insulin 30 in adults with type 2 diabetes mellitus: A meta-analysis. Clin Ther. 2009;31(8):1641–1651. doi: 10.1016/j.clinthera.2009.08.011
  205. Rys P, Wojciechowski P, Siejka S, et al. A comparison of biphasic insulin aspart and insulin glargine administered with oral antidiabetic drugs in type 2 diabetes mellitus - a systematic review and meta-analysis. Int J Clin Pract. 2014;68(3):304–313. doi: 10.1111/ijcp.12337
  206. Riddle MC, Yki-Järvinen H, Bolli GB, et al. One-year sustained glycaemic control and less hypoglycaemia with new insulin glargine 300 U/ml compared with 100 U/ml in people with type 2 diabetes using basal plus meal-time insulin: the EDITION 1 12-month randomized trial, including 6-month extension. Diabetes, Obes Metab. 2015;17(9):835–842. doi: 10.1111/dom.12472
  207. Heller S, Bode B, Kozlovski P, et al. Meta-analysis of insulin aspart versus regular human insulin used in a basal-bolus regimen for the treatment of diabetes mellitus. J Diabetes. 2013;5(4):482–491. doi: 10.1111/1753-0407.12060
  208. Mannucci E, Monami M, Marchionni N. Short-acting insulin analogues vs. regular human insulin in type 2 diabetes: a meta-analysis. Diabetes, Obes Metab. 2009;11(1):53–59. doi: 10.1111/j.1463-1326.2008.00934.x
  209. Rodbard HW, Visco VE, Andersen H, et al. Treatment intensification with stepwise addition of prandial insulin aspart boluses compared with full basal-bolus therapy (FullSTEP Study): a randomised, treat-to-target clinical trial. Lancet Diabetes Endocrinol. 2014;2(1):30–37. doi: 10.1016/S2213-8587(13)70090-1
  210. Diamant M, Nauck MA, Shaginian R, et al. Glucagon-Like Peptide 1 Receptor Agonist or Bolus Insulin With Optimized Basal Insulin in Type 2 Diabetes. Diabetes Care. 2014;37(10):2763–2773. doi: 10.2337/dc14-0876
  211. Eng C, Kramer CK, Zinman B, et al. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet. 2014;384(9961):2228–2234. doi: 10.1016/S0140- 6736(14)61335-0
  212. Maiorino MI, Chiodini P, Bellastella G, et al. Insulin and Glucagon-Like Peptide 1 Receptor Agonist Combination Therapy in Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care. 2017;40(4):614–624. doi: 10.2337/dc16- 1957
  213. Buse JB, Vilsbøll T, Thurman J, et al. Contribution of Liraglutide in the Fixed-Ratio Combination of Insulin Degludec and Liraglutide (IDegLira). Diabetes Care. 2014;37(11):2926–2933. doi: 10.2337/dc14-0785
  214. Aroda VR, Rosenstock J, Wysham C, et al. Efficacy and Safety of LixiLan, a Titratable Fixed-Ratio Combination of Insulin Glargine Plus Lixisenatide in Type 2 Diabetes Inadequately Controlled on Basal Insulin and Metformin: The LixiLan-L Randomized Trial. Diabetes Care. 2016;39(11):1972–1980. doi: 10.2337/dc16-1495
  215. Triplitt C. How to Initiate, Titrate, and Intensify Insulin Treatment in Type 2 Diabetes. US Pharm. 2017;32(10):10–16.
  216. Elliott J, Lawton J, Rankin D, et al. The 5x1 DAFNE study protocol: a cluster randomised trial comparing a standard 5 day DAFNE course delivered over 1 week against DAFNE training delivered over 1 day a week for 5 consecutive weeks. BMC Endocr Disord. 2012;12(1):28. doi: 10.1186/1472-6823-12-28
  217. Haas L, Maryniuk M, Beck J, et al. National Standards for Diabetes Self-Management Education and Support. Diabetes Care. 2013;36(Supplement_1):S100–S108. doi: 10.2337/dc13-S100
  218. Powers MA, Bardsley J, Cypress M, et al. Diabetes Self-management Education and Support in Type 2 Diabetes: A Joint Position Statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Diabetes Care. 2015;38(7):1372–1382. doi: 10.2337/dc15-0730
  219. Майоров АЮ, Мельникова ОГ, Котешкова ОМ, и др. Техника инъекций и инфузии при лечении сахарного диабета. Методическое руководство. Москва: ООО ‘АРТИНФО’, 2018
  220. Frid AH, Kreugel G, Grassi G, et al. New Insulin Delivery Recommendations. Mayo Clin Proc. 2016;91(9):1231–1255. doi: 10.1016/j.mayocp.2016.06.010
  221. Uzun S, Inanc N, Azal S. Determining optimal needle length for subcutaneous insulin injection. J Diab Nurs. 2001;5(10):83–87.
  222. Hirsch LJ, Gibney MA, Albanese J, et al. Comparative glycemic control, safety and patient ratings for a new 4 mm × 32G insulin pen needle in adults with diabetes. Curr Med Res Opin. 2010;26(6):1531–1541. doi: 10.1185/03007995.2010.482499
  223. Miwa T, Itoh R, Kobayashi T, et al. Comparison of the Effects of a New 32-Gauge×4-mm Pen Needle and a 32-Gauge×6-mm Pen Needle on Glycemic Control, Safety, and Patient Ratings in Japanese Adults with Diabetes. Diabetes Technol Ther. 2012;14(12):1084–1090. doi: 10.1089/dia.2012.0170
  224. Nagai Y, Ohshige T, Arai K, et al. Comparison Between Shorter Straight and Thinner Microtapered Insulin Injection Needles. Diabetes Technol Ther. 2013;15(7):550–555. doi: 10.1089/dia.2012.0334
  225. Bergenstal RM, Strock ES, Peremislov D, et al. Safety and Efficacy of Insulin Therapy Delivered via a 4mm Pen Needle in Obese Patients With Diabetes. Mayo Clin Proc. 2015;90(3):329–338. doi: 10.1016/j.mayocp.2014.12.014
  226. Kreugel G, Kees J, Jongbloed A, et al. The influence of needle length on glycemic control and patient preference in obese diabetic patients. Diabetes. 2009;58A117.
  227. Schwartz S, Hassman D, Shelmet J, et al. A multicenter, open-label, randomized, two- period crossover trial comparing glycemic control, satisfaction, and preference achieved with a 31 gauge x 6 mm needle versus a 29 gauge x 12.7 mm needle in obese patients with diabetes mellitus. Clin Ther. 2004;26(10):1663–1678. doi: 10.1016/j.clinthera.2004.10.007
  228. Strauss K, Hannet I, McGonigle J, et al. Ultra-short (5 mm) insulin needles: Trial results and clinical recommendations. Pract Diabetes Int. 1999;16(7):218–222. doi: 10.1002/pdi.1960160711
  229. Kreugel G, Keers JC, Kerstens MN, et al. Randomized Trial on the Influence of the Length of Two Insulin Pen Needles on Glycemic Control and Patient Preference in Obese Patients with Diabetes. Diabetes Technol Ther. 2011;13(7):737–741. doi: 10.1089/dia.2011.0010
  230. McKay M, Compion G, Lytzen L. A Comparison of Insulin Injection Needles on Patients’ Perceptions of Pain, Handling, and Acceptability: A Randomized, Open-Label, Crossover Study in Subjects with Diabetes. Diabetes Technol Ther. 2009;11(3):195–201. doi: 10.1089/dia.2008.0054
  231. Birkebaek NH, Solvig J, Hansen B, et al. A 4-mm Needle Reduces the Risk of Intramuscular Injections Without Increasing Backflow to Skin Surface in Lean Diabetic Children and Adults. Diabetes Care. 2008;31(9):e65. doi: 10.2337/dc08-0977
  232. Schuler G, Pelz K, Kerp L. Is the reuse of needles for insulin injection systems associated with a higher risk of cutaneous complications? Diabetes Res Clin Pract. 1992;16(3):209– 212.
  233. Johansson U-B, Amsberg S, Hannerz L, et al. Impaired Absorption of Insulin Aspart From Lipohypertrophic Injection Sites. Diabetes Care. 2005;28(8):2025–2027. doi: 10.2337/diacare.28.8.2025
  234. Chowdhury TA, Escudier V. Poor glycaemic control caused by insulin induced lipohypertrophy. BMJ. 2003;327(7411):383–384. doi: 10.1136/bmj.327.7411.383
  235. Chantelau E, Lee DM, Hemmann DM, et al. What makes insulin injections painful? BMJ. 1991;303(6793):26–27. doi: 10.1136/bmj.303.6793.26
  236. Caffrey R. Are All Syringes Created Equal?: How to choose and use today’s insulin syringes. Am J Nurs. 2003;103(6):46–49.
  237. Braak EWT, Woodworth JR, Bianchi R, et al. Injection Site Effects on the Pharmacokinetics and Glucodynamics of Insulin Lispro and Regular Insulin. Diabetes Care. 1996;19(12):1437–1440. doi: 10.2337/diacare.19.12.1437
  238. Frid A. Fat thickness and insulin administration, what do we know? Infusystems Int. 2006;5(3):17–19.
  239. Lippert WC, Wall EJ. Optimal Intramuscular Needle-Penetration Depth. Pediatrics. 2008;122(3):e556–e563. doi: 10.1542/peds.2008-0374
  240. Sonoki K, Yoshinari M, Iwase M, et al. Regurgitation of Blood into Insulin Cartridges in the Pen-like Injectors. Diabetes Care. 2001;24(3):603–604. doi: 10.2337/diacare.24.3.603
  241. Shikata T, Karasawa T, Abe K, et al. Hepatitis B e Antigen and Infectivity of Hepatitis B Virus. J Infect Dis. 1977;136(4):571–576. doi: 10.1093/infdis/136.4.571
  242. Scioli D, Pizzella T, Vollaro L, et al. The action of VIRKON No Foam on the hepatitis B virus. Eur J Epidemiol. 1997;13(8):879–883. doi: 10.1023/A:1007399926095
  243. Herdman ML, Larck C, Schliesser SH, et al. Biological contamination of insulin pens in a hospital setting. Am J Heal Pharm. 2013;70(14):1244–1248. doi: 10.2146/ajhp120728
  244. Cochran J, Conn VS. Meta-analysis of Quality of Life Outcomes Following Diabetes Self- management Training. Diabetes Educ. 2008;34(5):815–823. doi: 10.1177/0145721708323640
  245. Foster G, Taylor SJC, Eldridge SE, et al. Self-management education programmes by lay leaders for people with chronic conditions. Cochrane database Syst Rev. 2007(4):CD005108. doi: 10.1002/14651858.CD005108.pub2
  246. Johnson TM, Murray MR, Huang Y. Associations Between Self-Management Education and Comprehensive Diabetes Clinical Care. Diabetes Spectr. 2010;23(1):41–46. doi: 10.2337/diaspect.23.1.41
  247. Rubino F, Nathan DM, Eckel RH, et al. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes Care. 2016;39(6):861–877. doi: 10.2337/dc16-0236
  248. Cummings DE, Rubino F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals. Diabetologia. 2018;61(2):257–264. doi: 10.1007/s00125-017-4513-y
  249. Дедов ИИ, Мельниченко ГА, Шестакова МВ, и др. Национальные клинические рекомендации по лечению морбидного ожирения у взрослых. 3-ий пересмотр (лечение морбидного ожирения у взрослых). Ожирение и метаболизм. 2018;15(1):53–70. doi: 10.14341/OMET2018153-70
  250. Buchwald H, Estok R, Fahrbach K, et al. Weight and Type 2 Diabetes after Bariatric Surgery: Systematic Review and Meta-analysis. Am J Med. 2009;122(3):248-256.e5. doi: 10.1016/j.amjmed.2008.09.041
  251. Rubino F, Kaplan LM, Schauer PR, et al. The Diabetes Surgery Summit Consensus Conference. Ann Surg. 2010;251(3):399–405. doi: 10.1097/SLA.0b013e3181be34e7
  252. Zimmet P, Alberti KGM, Rubino F, et al. IDF’s view of bariatric surgery in type 2 diabetes. Lancet. 2011;378(9786):108–110. doi: 10.1016/S0140-6736(11)61027-1
  253. Kasama K, Mui W, Lee WJ, et al. IFSO-APC Consensus Statements 2011. Obes Surg. 2012;22(5):677–684. doi: 10.1007/s11695-012-0610-7
  254. Wentworth JM, Burton P, Laurie C, et al. Five-Year Outcomes of a Randomized Trial of Gastric Band Surgery in Overweight but Not Obese People With Type 2 Diabetes. Diabetes Care. 2017;40(4):e44–e45. doi: 10.2337/dc16-2149
  255. Cummings DE, Arterburn DE, Westbrook EO, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59(5):945–953. doi: 10.1007/s00125-016-3903-x
  256. Busetto L, Dicker D, Azran C, et al. Practical Recommendations of the Obesity Management Task Force of the European Association for the Study of Obesity for the Post- Bariatric Surgery Medical Management. Obes Facts. 2017;10(6):597–632. doi: 10.1159/000481825
  257. O’Kane M, Parretti HM, Pinkney J, et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery-2020 update. Obes Rev. 2020;21(11):e13087. doi: 10.1111/obr.13087
  258. Всемирная Организация Здравоохранения. Терапевтическое обучение больных. Программы непрерывного обучения для работников здравоохранения в области профилактики хронических заболеваний. Отчет рабочей группы ВОЗ. Москва, 1998
  259. Beck J, Greenwood DA, Blanton L, et al. 2017 National Standards for Diabetes Self- Management Education and Support. Diabetes Care. 2017;40(10):1409–1419. doi: 10.2337/dci17-0025
  260. Muhlhauser I, Berger M. Patient education - evaluation of a complex intervention. Diabetologia. 2002;45(12):1723–1733. doi: 10.1007/s00125-002-0987-2
  261. Майоров АЮ, Суркова ЕВ, Мотовилин ОГ, и др. Обучение больных диабетом: синтез доказательной медицины и психологического подхода. Сахарный диабет. 2011;14(1):46–52. doi: 10.14341/2072-0351-6249
  262. Deakin T, Whitham C. Structured patient education: the X-PERT Programme. Br J Community Nurs. 2009;14(9):398–404. doi: 10.12968/bjcn.2009.14.9.43916
  263. Clark M. Diabetes self-management education: A review of published studies. Prim Care Diabetes. 2008;2(3):113–120. doi: 10.1016/j.pcd.2008.04.004
  264. Steinsbekk A, Rygg L, Lisulo M, et al. Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv Res. 2012;12(1):213. doi: 10.1186/1472-6963-12- 213
  265. Deakin T, McShane CE, Cade JE, et al. Group based training for self-management strategies in people with type 2 diabetes mellitus. Cochrane database Syst Rev. 2005(2):CD003417. doi: 10.1002/14651858.CD003417.pub2
  266. Norris SL, Lau J, Smith SJ, et al. Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control. Diabetes Care. 2002;25(7):1159–1171. doi: 10.2337/diacare.25.7.1159
  267. He X, Li J, Wang B, et al. Diabetes self-management education reduces risk of all-cause mortality in type 2 diabetes patients: a systematic review and meta-analysis. Endocrine. 2017;55(3):712–731. doi: 10.1007/s12020-016-1168-2
  268. Assal JP. Educating the diabetic patient: which programme is specific to IDDM and to NIDDM? In: de Gryter W (ed) Concepts for the ideal diabetes clinic. New Yourk, 1992, pp. 89–104
  269. Анциферов МБ, Майоров АЮ, Суркова ЕВ, и др. Пособие для врачей «Структурированные программы обучения больных сахарным диабетом». 2003
  270. Майоров АЮ, Суркова ЕВ, Галстян ГР, et al. Структурированная программа обучения больных сахарным диабетом 2 типа на инсулинотерапии (с набором плакатов и карточек продуктов). 2006
  271. Мельниченко ГА, Суркова ЕВ, Майоров АЮ, и др. Результаты применения структурированной программы обучения больных сахарным диабетом 2 типа на инсулинотерапии. Сахарный диабет. 2008;11(4):71–75. doi: 10.14341/2072-0351-5595
  272. Duncan I, Ahmed T, Li Q (Emily), et al. Assessing the Value of the Diabetes Educator. Diabetes Educ. 2011;37(5):638–657. doi: 10.1177/0145721711416256
  273. DESG Working Group. Basic Curriculum for Health Сare Professionals on Diabetes Therapeutic Education. 2001
  274. Дедов ИИ, Суркова ЕВ, Майоров АЮ, и др. Программа подготовки специалистов в области обучения больных сахарным диабетом. Сахарный диабет. 2003;6(1):44–47. doi: 10.14341/2072-0351-6045
  275. Дедов ИИ, Суркова ЕВ, Майоров АЮ, и др. Терапевтическое обучение больных сахарным диабетом. Москва: Реафарм, 2004
  276. Суркова ЕВ, Майоров АЮ, Галстян ГР, и др. Обучение больных сахарным диабетом: Руководство для эндокринологов. Москва: Медицина для Вас, 2007
  277. Sadosky A, Schaefer C, Mann R, et al. Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: results from a retrospective chart review and cross-sectional survey. Diabetes Metab Syndr Obes. 2013;679–92. doi: 10.2147/DMSO.S37415
  278. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–173. doi: 10.1016/S1474-4422(14)70251-0
  279. Tesfaye S, Wilhelm S, Lledo A, et al. Duloxetine and pregabalin: High-dose monotherapy or their combination? The “COMBO-DN study” – a multinational, randomized, double- blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain. 2013;154(12):2616–2625. doi: 10.1016/j.pain.2013.05.043
  280. Waldfogel JM, Nesbit SA, Dy SM, et al. Pharmacotherapy for diabetic peripheral neuropathy pain and quality of life. Neurology. 2017;88(20):1958–1967. doi: 10.1212/WNL.0000000000003882
  281. Wiffen PJ, Derry S, Bell RF, et al. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017;6CD007938. doi: 10.1002/14651858.CD007938.pub4
  282. Wernicke JF, Pritchett YL, D’Souza DN, et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology. 2006;67(8):1411–1420. doi: 10.1212/01.wnl.0000240225.04000.1a
  283. Schwartz S, Etropolski M, Shapiro DY, et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial. Curr Med Res Opin. 2011;27(1):151–162. doi: 10.1185/03007995.2010.537589
  284. Seaquist ER, Anderson J, Childs B, et al. Hypoglycemia and Diabetes: A Report of a Workgroup of the American Diabetes Association and The Endocrine Society. Diabetes Care. 2013;36(5):1384–1395. doi: 10.2337/dc12-2480
  285. Cryer PE. Diverse Causes of Hypoglycemia-Associated Autonomic Failure in Diabetes. N Engl J Med. 2004;350(22):2272–2279. doi: 10.1056/NEJMra031354
  286. Seaquist ER, Anderson J, Childs B, et al. Hypoglycemia and Diabetes: A Report of a Workgroup of the American Diabetes Association and The Endocrine Society. J Clin Endocrinol Metab. 2013;98(5):1845–1859. doi: 10.1210/jc.2012-4127
  287. Slama G, Traynard PY, Desplanque N, et al. The search for an optimized treatment of hypoglycemia. Carbohydrates in tablets, solutin, or gel for the correction of insulin reactions. Arch Intern Med. 1990;150(3):589–593.
  288. Cryer PE, Preceded by: Cryer PE. Hypoglycemia in diabetes : pathophysiology, prevalence, and prevention. American Diabetes Association, https://www.worldcat.org/title/hypoglycemia-in-diabetes-pathophysiology-prevalence- and-prevention/oclc/953848679 (2016, accessed 28 July 2019)
  289. Karter AJ, Moffet HH, Liu JY, et al. Surveillance of Hypoglycemia—Limitations of Emergency Department and Hospital Utilization Data. JAMA Intern Med. 2018;178(7):987–988. doi: 10.1001/jamainternmed.2018.1014
  290. Eli Lilly Canada Inc. Glucagon (rDNA Origin) Product Monograph. Toronto, 2012
  291. Nordisk N. GlucaGen® (glucagon) Product monograph. Bagsvaerd, 2002
  292. Стандарт санаторно-курортной помощи больным сахарным диабетом. Проблемы стандартизации в здравоохранении. 2005(1):106–107.
  293. Агасиев АР. Потребность больных сахарным диабетом в дополнительных лечебно- диагностических услугах при санаторно-курортном лечении. Современная медицина: актуальные вопросы. 2015(42–43):93–97.
  294. Приказ Минздрава РФ от 28.09.2020 N 1029Н ‘Об утверждении перечней медицинских показаний и противопоказаний для санаторно-курортного лечения’
  295. Мустафина СВ, Рымар ОД, Сазонова ОВ, и др. Валидизация финской шкалы риска «FINDRISC» на европеоидной популяции Сибири. Сахарный диабет. 2016;19(2):113–118. doi: 10.14341/DM200418-10
  296. Lindström J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26(3):725–731. doi: 10.2337/diacare.26.3.725
  297. Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N Engl J Med. 2001;344(18):1343–1350. doi: 10.1056/NEJM200105033441801
  298. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512
  299. Diabetes Prevention Program Research Group, Knowler WC, Fowler SE, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet (London, England). 2009;374(9702):1677–1686. doi: 10.1016/S0140-6736(09)61457-4
  300. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. lancet Diabetes Endocrinol. 2015;3(11):866–875. doi: 10.1016/S2213-8587(15)00291-0
  301. Inker LA, Grams ME, Levey AS, et al. Relationship of Estimated GFR and Albuminuria to Concurrent Laboratory Abnormalities: An Individual Participant Data Meta-analysis in a Global Consortium. Am J Kidney Dis. 2019;73(2):206–217. doi: 10.1053/j.ajkd.2018.08.013
  302. American Diabetes Association. 11. Chronic Kidney Disease and Risk Management: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2022;45(Supplement_1):S175–S184. doi: 10.2337/dc22-S011
  303. James MT, Grams ME, Woodward M, et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. Am J Kidney Dis. 2015;66(4):602–612. doi: 10.1053/j.ajkd.2015.02.338
  304. Eberle C, Stichling S. Clinical Improvements by Telemedicine Interventions Managing Type 1 and Type 2 Diabetes: Systematic Meta-review. J Med Internet Res. 2021;23(2):e23244. doi: 10.2196/23244
  305. Hu Y, Wen X, Wang F, et al. Effect of telemedicine intervention on hypoglycaemia in diabetes patients: A systematic review and meta-analysis of randomised controlled trials. J Telemed Telecare. 2019;25(7):402–413. doi: 10.1177/1357633X18776823
  306. Wu C, Wu Z, Yang L, et al. Evaluation of the clinical outcomes of telehealth for managing diabetes. Medicine (Baltimore). 2018;97(43):e12962. doi: 10.1097/MD.0000000000012962
  307. de Boer IH, Caramori ML, Chan JCN, et al. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020;98(4):S1–S115. doi: 10.1016/j.kint.2020.06.019
  308. Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37(10):2864–2883. doi: 10.2337/dc14-1296
  309. Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta- analysis. Lancet (London, England). 2012;380(9854):1662–1673. doi: 10.1016/S0140- 6736(12)61350-6
  310. Kramer HJ, Nguyen QD, Curhan G, et al. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003;289(24):3273– 3277. doi: 10.1001/jama.289.24.3273
  311. Kasiske BL, Lakatua JD, Ma JZ, et al. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 1998;31(6):954–961.
  312. Murray DP, Young L, Waller J, et al. Is Dietary Protein Intake Predictive of 1-Year Mortality in Dialysis Patients? Am J Med Sci. 2018;356(3):234–243. doi: 10.1016/j.amjms.2018.06.010
  313. He FJ, MacGregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane database Syst Rev. 2004(3):CD004937. doi: 10.1002/14651858.CD00493
  314. Mills KT, Chen J, Yang W, et al. Sodium Excretion and the Risk of Cardiovascular Disease in Patients With Chronic Kidney Disease. JAMA. 2016;315(20):2200–2210. doi: 10.1001/jama.2016.4447
  315. Nilsson E, Gasparini A, Ärnlöv J, et al. Incidence and determinants of hyperkalemia and hypokalemia in a large healthcare system. Int J Cardiol. 2017;245277–284. doi: 10.1016/j.ijcard.2017.07.035
  316. Look AHEAD Research Group. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. lancet Diabetes Endocrinol. 2014;2(10):801– 809. doi: 10.1016/S2213-8587(14)70156-1
  317. Zoungas S, Arima H, Gerstein HC, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. lancet Diabetes Endocrinol. 2017;5(6):431–437. doi: 10.1016/S2213-8587(17)30104-3
  318. Zoungas S, Chalmers J, Neal B, et al. Follow-up of Blood-Pressure Lowering and Glucose Control in Type 2 Diabetes. N Engl J Med. 2014;371(15):1392–1406. doi: 10.1056/NEJMoa1407963
  319. Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019;7(11):845–854. doi: 10.1016/S2213-8587(19)30256-6
  320. Lo KB, Gul F, Ram P, et al. The Effects of SGLT2 Inhibitors on Cardiovascular and Renal Outcomes in Diabetic Patients: A Systematic Review and Meta-Analysis. Cardiorenal Med. 2020;10(1):1–10. doi: 10.1159/000503919
  321. Salah HM, Al’Aref SJ, Khan MS, et al. Effect of sodium-glucose cotransporter 2 inhibitors on cardiovascular and kidney outcomes—Systematic review and meta-analysis of randomized placebo-controlled trials. Am Heart J. 2021;23210–22. doi: 10.1016/j.ahj.2020.10.064
  322. McGuire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes. JAMA Cardiol. 2021;6(2):148. doi: 10.1001/jamacardio.2020.4511
  323. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323–334. doi: 10.1056/NEJMoa1515920
  324. Cherney DZI, Charbonnel B, Cosentino F, et al. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial. Diabetologia. 2021;64(6):1256–1267. doi: 10.1007/s00125-021-05407-5
  325. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380(24):2295–2306. doi: 10.1056/NEJMoa1811744
  326. Heerspink HJL, Stefánsson B V., Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436–1446. doi: 10.1056/NEJMoa2024816
  327. Lo C, Toyama T, Wang Y, et al. Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease. Cochrane database Syst Rev. 2018;9CD011798. doi: 10.1002/14651858.CD011798.pub2
  328. Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta- analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776– 785. doi: 10.1016/S2213-8587(19)30249-9
  329. Leehey DJ, Zhang JH, Emanuele N V., et al. BP and Renal Outcomes in Diabetic Kidney Disease: The Veterans Affairs Nephropathy in Diabetes Trial. Clin J Am Soc Nephrol. 2015;10(12):2159–2169. doi: 10.2215/CJN.02850315
  330. Emdin CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;313(6):603–615. doi: 10.1001/jama.2014.18574
  331. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–869. doi: 10.1056/NEJMoa011161
  332. Ravid M, Savin H, Jutrin I, et al. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med. 1993;118(8):577–581. doi: 10.7326/0003-4819-118-8- 199304150-00001
  333. Heart Outcomes Prevention Evaluation Study Investigators, Yusuf S, Sleight P, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342(3):145–153. doi: 10.1056/NEJM200001203420301
  334. Bandak G, Sang Y, Gasparini A, et al. Hyperkalemia After Initiating Renin-Angiotensin System Blockade: The Stockholm Creatinine Measurements (SCREAM) Project. J Am Heart Assoc. 2017;6(7):pii: e005428. doi: 10.1161/JAHA.116.005428
  335. Sumida K, Molnar MZ, Potukuchi PK, et al. Changes in Albuminuria and Subsequent Risk of Incident Kidney Disease. Clin J Am Soc Nephrol. 2017;12(12):1941–1949. doi: 10.2215/CJN.02720317
  336. Weil EJ, Fufaa G, Jones LI, et al. Effect of Losartan on Prevention and Progression of Early Diabetic Nephropathy in American Indians With Type 2 Diabetes. Diabetes. 2013;62(9):3224–3231. doi: 10.2337/db12-1512
  337. Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–1903. doi: 10.1056/NEJMoa1303154
  338. Bakris GL, Agarwal R, Chan JC, et al. Effect of Finerenone on Albuminuria in Patients With Diabetic Nephropathy: A Randomized Clinical Trial. JAMA. 2015;314(9):884–894. doi: 10.1001/jama.2015.10081
  339. Filippatos G, Anker SD, Böhm M, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–2114. doi: 10.1093/eurheartj/ehw132
  340. Bakris GL, Agarwal R, Anker SD, et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. 2020;383(23):2219–2229. doi: 10.1056/NEJMoa2025845
  341. Smart NA, Dieberg G, Ladhani M, et al. Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease. Cochrane database Syst Rev. 2014(6):CD007333. doi: 10.1002/14651858.CD007333.pub2
  342. Аветисов СЭ, Егоров ЕА, Мошетова ЛК, и др. Офтальмология. Национальное руководство. Краткое издание. Москва: ГЭОТАР-Медиа, 2014
  343. Giusti C GP. Advances in biochemical mechanisms of diabetic retinopathy. Eur Rev Med Pharmacol Sci. 2007;11(3):115–163.
  344. Дедов ИИ, Шестакова МВ, Викулова ОК, и др. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. doi: 10.14341/DM12759
  345. Porta M, Kohner E. Screening for Diabetic Retinopathy in Europe. Diabet Med. 1991;8(3):197–198. doi: 10.1111/j.1464-5491.1991.tb01571.x
  346. Early Treatment Diabetic Retinopathy Study Research Group. Early Photocoagulation for Diabetic Retinopathy. Ophthalmology. 1991;98(5):766–785. doi: 10.1016/S0161- 6420(13)38011-7
  347. Аветисов СЭ, Егоров ЕА, Мошетова ЛК, и др. Офтальмология: национальное руководство. 2-ое изд. Москва: ГЭОТАР-Медиа, 2018
  348. Neroev VV, Astakhov YS, Korotkih SA, et al. Protocol of intravitreal drug delivery. Consensus of the Expert Counsil of Retina and Optic Nerve Diseases of the All-Russian Public Organasation «Association of Ophthalmologists». Vestn oftal’mologii. 2020;136(6):251. doi: 10.17116/oftalma2020136062251
  349. International Diabetes Federation and The Fred Hollows Foundation. Diabetes eye health: A guide for health care professionals. Brussels: International Diabetes Federation, www.idf.org/eyecare (2015)
  350. American Academy of Ophthalmology. Comprehensive Adult Medical Eye Evaluation Preferred Practice Pattern®. 2020
  351. Mohamed Q, Gillies MC, Wong TY. Management of Diabetic Retinopathy: a systematic review. JAMA. 2007;298(8):902–916. doi: 10.1001/jama.298.8.902
  352. Kohner EM, Stratton IM, Aldington SJ, et al. Relationship between the severity of retinopathy and progression to photocoagulation in patients with Type 2 diabetes mellitus in the UKPDS (UKPDS 52). Diabet Med. 2001;18(3):178–184. doi: 10.1046/j.1464- 5491.2001.00458.x
  353. Shichiri M, Kishikawa H, Ohkubo Y, et al. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care. 2000;23(Suppl 2):B21– B29.
  354. Matthews DR, Stratton IM, Aldington SJ, et al. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Arch Ophthalmol. 2004;122(11):1631–1640. doi: 10.1001/archopht.122.11.1631
  355. Estacio RO, Jeffers BW, Gifford N, et al. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care. 2000;23(Suppl 2):B54–B64.
  356. Schrier RW, Estacio RO, Esler A, et al. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 2002;61(3):1086–1097. doi: 10.1046/j.1523-1755.2002.00213.x
  357. ACCORD Study Group, ACCORD Eye Study Group, Chew EY, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233– 244. doi: 10.1056/NEJMoa1001288
  358. Do D V, Wang X, Vedula SS, et al. Blood pressure control for diabetic retinopathy. Cochrane database Syst Rev. 2015;1CD006127. doi: 10.1002/14651858.CD006127.pub2
  359. Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the Management of Diabetic Macular Edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica. 2017;237(4):185–222. doi: 10.1159/000458539
  360. Mayer-Davis EJ, Bell RA, Reboussin BA, et al. Antioxidant nutrient intake and diabetic retinopathy. Ophthalmology. 1998;105(12):2264–2270. doi: 10.1016/S0161- 6420(98)91227-1
  361. Early Treatment Diabetic Retinopathy Study research group. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol (Chicago, Ill 1960). 1985;103(12):1796–1806.
  362. Бровкина АФ, Астахов ЮС (ред). Руководство по клинической офтальмологии. Москва: Медицинское информационное агентство, 2014
  363. Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology. 2020;127(1):P66–P145. doi: 10.1016/j.ophtha.2019.09.025
  364. Standards of Medical Care in Diabetes—2021 Abridged for Primary Care Providers. Clin Diabetes. 2021;39(1):14–43. doi: 10.2337/cd21-as01
  365. Moutray T, Evans JR, Lois N, et al. Different lasers and techniques for proliferative diabetic retinopathy. Cochrane database Syst Rev. 2018;3CD012314. doi: 10.1002/14651858.CD012314.pub2
  366. 14. Diabetic Retinopathy Study Research Group. Report No 14. Indications for photocoagulation treatment of diabetic retinopathy // Int. Ophthalmol. Clin.- 1987.- V. 27.- P. 239-252.
  367. Gross JG, Glassman AR, Jampol LM, et al. Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy. JAMA. 2015;314(20):2137–2146. doi: 10.1001/jama.2015.15217
  368. Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology. 1981;88(7):583–600.
  369. Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane database Syst Rev. 2014(11):CD011234. doi: 10.1002/14651858.CD011234.pub2
  370. Elman MJ, Ayala A, Bressler NM, et al. Intravitreal Ranibizumab for Diabetic Macular Edema with Prompt versus Deferred Laser Treatment: 5-Year Randomized Trial Results. Ophthalmology. 2015;122(2):375–381. doi: 10.1016/j.ophtha.2014.08.047
  371. Do D V, Nguyen QD, Boyer D, et al. One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology. 2012;119(8):1658–1665. doi: 10.1016/j.ophtha.2012.02.010
  372. Boyer DS, Yoon YH, Belfort R, et al. Three-Year, Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Diabetic Macular Edema. Ophthalmology. 2014;121(10):1904–1914. doi: 10.1016/j.ophtha.2014.04.024
  373. World Health Organization. Prevention of blindness from diabetes mellitus. Report of a WHO consultation. Geneva, 2006
  374. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema: Two-Year Results from a Comparative Effectiveness Randomized Clinical Trial. Ophthalmology. 2016;123(6):1351–1359. doi: 10.1016/j.ophtha.2016.02.022
  375. Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long- term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–986. doi: 10.1056/NEJM199309303291401
  376. ‘Управление плановой госпитализацией в многопрофильной больнице. Методические рекомендации N 2001/144’ (утв. Минздравом РФ 09.11.2001)
  377. Diabetic Retinopathy Clinical Research Network, Wells JA, Glassman AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;372(13):1193–1203. doi: 10.1056/NEJMoa1414264
  378. Papadopoulos N, Martin J, Ruan Q, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012;15(2):171–185. doi: 10.1007/s10456-011-9249-6
  379. Flynn HW, Chew EY, Simons BD, et al. Pars Plana Vitrectomy in the Early Treatment Diabetic Retinopathy Study. Ophthalmology. 1992;99(9):1351–1357. doi: 10.1016/S0161- 6420(92)31779-8
  380. Early Vitrectomy for Severe Proliferative Diabetic Retinopathy in Eyes with Useful Vision. Ophthalmology. 1988;95(10):1307–1320. doi: 10.1016/S0161-6420(88)33015-0
  381. Thompson JT, de Bustros S, Michels RG, et al. Results and Prognostic Factors in Vitrectomy for Diabetic Traction Retinal Detachment of the Macula. Arch Ophthalmol. 1987;105(4):497–502. doi: 10.1001/archopht.1987.01060040067035
  382. Misra A, Bachmann MO, Greenwood RH, et al. Trends in yield and effects of screening intervals during 17 years of a large UK community-based diabetic retinopathy screening programme. Diabet Med. 2009;26(10):1040–1047. doi: 10.1111/j.1464-5491.2009.02820.x
  383. Piyasena MMPN, Murthy GVS, Yip JLY, et al. Systematic review and meta-analysis of diagnostic accuracy of detection of any level of diabetic retinopathy using digital retinal imaging. Syst Rev. 2018;7(1):182. doi: 10.1186/s13643-018-0846-y
  384. Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–154. doi: 10.2337/dc16-2042
  385. Дедов ИИ, Шестакова МВ. Осложнения сахарного диабета: лечение и профилактика. Москва: МИА, 2017
  386. Старостина ЕГ. Диабетическая нейропатия: некоторые вопросы дифференциальной диагностики и системной терапии болевого синдрома. РМЖ. 2017(22):1665–1676.
  387. Gibbons CH, Freeman R. Treatment-induced neuropathy of diabetes: an acute, iatrogenic complication of diabetes. Brain. 2015;138(1):43–52. doi: 10.1093/brain/awu307
  388. Callaghan BC, Kerber KA, Lisabeth LL, et al. Role of Neurologists and Diagnostic Tests on the Management of Distal Symmetric Polyneuropathy. JAMA Neurol. 2014;71(9):1143– 1149. doi: 10.1001/jamaneurol.2014.1279
  389. Dyck PJ, Albers JW, Andersen H, et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev. 2011;27(7):620–628. doi: 10.1002/dmrr.1226
  390. Bril V, Perkins BA. Validation of the Toronto Clinical Scoring System for Diabetic Polyneuropathy. Diabetes Care. 2002;25(11):2048–2052. doi: 10.2337/diacare.25.11.2048
  391. Bastyr EJ, Price KL, Bril V, et al. Development and validity testing of the neuropathy total symptom score-6: questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin Ther. 2005;27(8):1278–1294. doi: 10.1016/j.clinthera.2005.08.002
  392. Xiong Q, Lu B, Ye H, et al. The Diagnostic Value of Neuropathy Symptom and Change Score, Neuropathy Impairment Score and Michigan Neuropathy Screening Instrument for Diabetic Peripheral Neuropathy. Eur Neurol. 2015;74(5–6):323–327. doi: 10.1159/000441449
  393. Meijer JWG, Smit AJ, Sonderen E V., et al. Symptom scoring systems to diagnose distal polyneuropathy in diabetes: the Diabetic Neuropathy Symptom score. Diabet Med. 2002;19(11):962–965. doi: 10.1046/j.1464-5491.2002.00819.x
  394. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–430. doi: 10.1016/S0140-6736(10)60576-4
  395. Pop-Busui R, Lu J, Brooks MM, et al. Impact of Glycemic Control Strategies on the Progression of Diabetic Peripheral Neuropathy in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) Cohort. Diabetes Care. 2013;36(10):3208–3215. doi: 10.2337/dc13-0012
  396. Jaiswal M, Lauer A, Martin CL, et al. Peripheral Neuropathy in Adolescents and Young Adults With Type 1 and Type 2 Diabetes From the SEARCH for Diabetes in Youth Follow- up Cohort: A pilot study. Diabetes Care. 2013;36(12):3903–3908. doi: 10.2337/dc13-1213
  397. Moghtaderi A, Bakhshipour A, Rashidi H. Validation of Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Clin Neurol Neurosurg. 2006;108(5):477– 481. doi: 10.1016/j.clineuro.2005.08.003
  398. Young MJ, Boulton AJ, MacLeod AF, et al. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia. 1993;36(2):150–154.
  399. Spallone V, Morganti R, D’Amato C, et al. Validation of DN4 as a screening tool for neuropathic pain in painful diabetic polyneuropathy. Diabet Med. 2012;29(5):578–585. doi: 10.1111/j.1464-5491.2011.03500.x
  400. Pham H, Armstrong DG, Harvey C, et al. Screening techniques to identify people at high risk for diabetic foot ulceration: a prospective multicenter trial. Diabetes Care. 2000;23(5):606–611. doi: 10.2337/diacare.23.5.606
  401. Apfel SC, Asbury AK, Bril V, et al. Positive neuropathic sensory symptoms as endpoints in diabetic neuropathy trials. J Neurol Sci. 2001;189(1–2):3–5.
  402. Kim Y, Kim H, Choi S, et al. Clinical Usefulness of the Two-site Semmes-Weinstein Monofilament Test for Detecting Diabetic Peripheral Neuropathy. J Korean Med Sci. 2003;18(1):103–107. doi: 10.3346/jkms.2003.18.1.103
  403. Perkins BA, Olaleye D, Zinman B, et al. Simple screening tests for peripheral neuropathy in the diabetes clinic. Diabetes Care. 2001;24(2):250–256. doi: 10.2337/diacare.24.2.250
  404. Perkins BA, Orszag A, Ngo M, et al. Prediction of incident diabetic neuropathy using the monofilament examination: a 4-year prospective study. Diabetes Care. 2010;33(7):1549– 1554. doi: 10.2337/dc09-1835
  405. Dyck PJ, Overland CJ, Low PA, et al. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve. 2010;42(2):157–164. doi: 10.1002/mus.21661
  406. Tesfaye S, Boulton AJM, Dyck PJ, et al. Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria, Estimation of Severity, and Treatments. Diabetes Care. 2010;33(10):2285–2293. doi: 10.2337/dc10-1303
  407. Feldman EL, Stevens MJ, Thomas PK, et al. A Practical Two-Step Quantitative Clinical and Electrophysiological Assessment for the Diagnosis and Staging of Diabetic Neuropathy. Diabetes Care. 1994;17(11):1281–1289. doi: 10.2337/diacare.17.11.1281
  408. Singleton JR, Smith AG, Bromberg MB. Increased Prevalence of Impaired Glucose Tolerance in Patients With Painful Sensory Neuropathy. Diabetes Care. 2001;24(8):1448– 1453. doi: 10.2337/diacare.24.8.1448
  409. Bongaerts BWC, Rathmann W, Heier M, et al. Older subjects with diabetes and prediabetes are frequently unaware of having distal sensorimotor polyneuropathy: the KORA F4 study. Diabetes Care. 2013;36(5):1141–1146. doi: 10.2337/dc12-0744
  410. Ang L, Jaiswal M, Martin C, et al. Glucose Control and Diabetic Neuropathy: Lessons from Recent Large Clinical Trials. Curr Diab Rep. 2014;14(9):528. doi: 10.1007/s11892-014- 0528-7
  411. Balducci S, Iacobellis G, Parisi L, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complications. 2006;20(4):216–223. doi: 10.1016/j.jdiacomp.2005.07.005
  412. Chantelau EA, Grützner G. Is the Eichenholtz classification still valid for the diabetic Charcot foot? Swiss Med Wkly. 2014;144w13948. doi: 10.4414/smw.2014.13948
  413. Удовиченко ОВ, Бублик ЕВ, Максимова НВ, и др. Эффективность иммобилизирующих разгрузочных повязок Total Contact Cast: обзор зарубежных рандомизированных клинических исследований и собственные данные. Сахарный диабет. 2010;13(2):50–55. doi: 10.14341/2072-0351-5674
  414. Molines L, Darmon P, Raccah D. Charcot’s foot: newest findings on its pathophysiology, diagnosis and treatment. Diabetes Metab. 2010;36(4):251–255. doi: 10.1016/j.diabet.2010.04.002
  415. Chantelau EA, Richter A. The acute diabetic Charcot foot managed on the basis of magnetic resonance imaging--a review of 71 cases. Swiss Med Wkly. 2013;143w13831. doi: 10.4414/smw.2013.13831
  416. Schaper NC, Apelqvist J, Bakker K. Reducing lower leg amputations in diabetes: a challenge for patients, healthcare providers and the healthcare system. Diabetologia. 2012;55(7):1869–1872. doi: 10.1007/s00125-012-2588-z
  417. Snyder RJ, Kirsner RS, Warriner RA, et al. Consensus recommendations on advancing the standard of care for treating neuropathic foot ulcers in patients with diabetes. Ostomy Wound Manage. 2010;56(4 Suppl):S1-24.
  418. Martín Noguerol T, Luna Alcalá A, Beltrán LS, et al. Advanced MR Imaging Techniques for Differentiation of Neuropathic Arthropathy and Osteomyelitis in the Diabetic Foot. RadioGraphics. 2017;37(4):1161–1180. doi: 10.1148/rg.2017160101
  419. Ertugrul BM, Lipsky BA, Savk O. Osteomyelitis or Charcot neuro-osteoarthropathy? Differentiating these disorders in diabetic patients with a foot problem. Diabet Foot Ankle. 2013;4(1):21855. doi: 10.3402/dfa.v4i0.21855
  420. Christensen TM, Gade-Rasmussen B, Pedersen LW, et al. Duration of off-loading and recurrence rate in Charcot osteo-arthropathy treated with less restrictive regimen with removable walker. J Diabetes Complications. 2012;26(5):430–434. doi: 10.1016/j.jdiacomp.2012.05.006
  421. Game FL, Catlow R, Jones GR, et al. Audit of acute Charcot’s disease in the UK: the CDUK study. Diabetologia. 2012;55(1):32–35. doi: 10.1007/s00125-011-2354-7
  422. Fernando M, Crowther R, Lazzarini P, et al. Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clin Biomech. 2013;28(8):831–845. doi: 10.1016/j.clinbiomech.2013.08.004
  423. Schaper NC, Netten JJ, Apelqvist J, et al. Practical Guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes Metab Res Rev. 2020;36(S1):e3266. doi: 10.1002/dmrr.3266
  424. Cavanagh PR, Bus SA. Off-loading the diabetic foot for ulcer prevention and healing. Plast Reconstr Surg. 2011;127 Suppl248S-256S. doi: 10.1097/PRS.0b013e3182024864
  425. Nilsson PM, Cederholm J, Zethelius BR, et al. Trends in blood pressure control in patients with type 2 diabetes: data from the Swedish National Diabetes Register (NDR). Blood Press. 2011;20(6):348–354. doi: 10.3109/08037051.2011.587288
  426. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–3104. doi: 10.1093/eurheartj/ehy339
  427. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Pr. Hypertension. 2018;71(6):e13–e115. doi: 10.1161/HYP.0000000000000065
  428. Pickering TG, Hall JE, Appel LJ, et al. Recommendations for Blood Pressure Measurement in Humans and Experimental Animals. Hypertension. 2005;45(1):142–161. doi: 10.1161/01.HYP.0000150859.47929.8e
  429. Powers BJ, Olsen MK, Smith VA, et al. Measuring blood pressure for decision making and quality reporting: where and how many measures? Ann Intern Med. 2011;154(12):781–788. doi: 10.7326/0003-4819-154-12-201106210-00005 de Boer IH, Bangalore S, Benetos A, et al. Diabetes and Hypertension: A Position Statement by the American Diabetes Association. Diabetes Care. 2017;40(9):1273–1284. doi: 10.2337/dci17-0026
  430. Bobrie G, Genès N, Vaur L, et al. Is ‘isolated home’ hypertension as opposed to ‘isolated office’ hypertension a sign of greater cardiovascular risk? Arch Intern Med. 2001;161(18):2205–2211.
  431. Sega R, Facchetti R, Bombelli M, et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation. 2005;111(14):1777–1783. doi: 10.1161/01.CIR.0000160923.04524.5B
  432. Arguedas JA, Leiva V, Wright JM. Blood pressure targets for hypertension in people with diabetes mellitus. Cochrane database Syst Rev. 2013(10):CD008277. doi: 10.1002/14651858.CD008277.pub2
  433. Brunström M, Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ. 2016;352i717. doi: 10.1136/bmj.i717
  434. Bulugahapitiya U, Siyambalapitiya S, Sithole J, et al. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med. 2009;26(2):142–148. doi: 10.1111/j.1464-5491.2008.02640.x
  435. Dickinson HO, Mason JM, Nicolson DJ, et al. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens. 2006;24(2):215– 233. doi: 10.1097/01.hjh.0000199800.72563.26
  436. Pimenta E, Gaddam KK, Oparil S, et al. Effects of Dietary Sodium Reduction on Blood Pressure in Subjects With Resistant Hypertension. Hypertension. 2009;54(3):475–481. doi: 10.1161/HYPERTENSIONAHA.109.131235
  437. Sofi F, Abbate R, Gensini GF, et al. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr. 2010;92(5):1189–1196. doi: 10.3945/ajcn.2010.29673
  438. Flegal KM, Kit BK, Orpana H, et al. Association of All-Cause Mortality With Overweight and Obesity Using Standard Body Mass Index Categories. JAMA. 2013;309(1):71–82. doi: 10.1001/jama.2012.113905
  439. Cushman WC, Cutler JA, Hanna E, et al. Prevention and Treatment of Hypertension Study (PATHS): effects of an alcohol treatment program on blood pressure. Arch Intern Med. 1998;158(11):1197–1207.
  440. Doll R, Peto R, Wheatley K, et al. Mortality in relation to smoking: 40 years’ observations on male British doctors. BMJ. 1994;309(6959):901–911. doi: 10.1136/bmj.309.6959.901
  441. Cornelissen VA, Fagard RH, Coeckelberghs E, et al. Impact of Resistance Training on Blood Pressure and Other Cardiovascular Risk Factors. Hypertension. 2011;58(5):950–958. doi: 10.1161/HYPERTENSIONAHA.111.177071
  442. Bakris GL, Weir MR, Study of Hypertension and the Efficacy of Lotrel in Diabetes (SHIELD) Investigators. Achieving goal blood pressure in patients with type 2 diabetes: conventional versus fixed-dose combination approaches. J Clin Hypertens (Greenwich). 2003;5(3):202–209.
  443. Webster R, Salam A, de Silva HA, et al. Fixed Low-Dose Triple Combination Antihypertensive Medication vs Usual Care for Blood Pressure Control in Patients With Mild to Moderate Hypertension in Sri Lanka: A Randomized Clinical Trial. JAMA. 2018;320(6):566–579. doi: 10.1001/jama.2018.10359
  444. Barzilay JI, Davis BR, Bettencourt J, et al. Cardiovascular outcomes using doxazosin vs. chlorthalidone for the treatment of hypertension in older adults with and without glucose disorders: a report from the ALLHAT study. J Clin Hypertens (Greenwich). 2004;6(3):116– 125.
  445. Weber MA, Bakris GL, Jamerson K, et al. Cardiovascular events during differing hypertension therapies in patients with diabetes. J Am Coll Cardiol. 2010;56(1):77–85. doi: 10.1016/j.jacc.2010.02.046
  446. Чазова ИЕ, Мычка ВБ. Новые возможности в лечении больных с метаболическим синдромом: результаты исследования ALMAZ. Системные гипертензии. 2006(2):14– 17.
  447. Chazova I, Schlaich MP. Improved Hypertension Control with the Imidazoline Agonist Moxonidine in a Multinational Metabolic Syndrome Population: Principal Results of the MERSY Study. Int J Hypertens. 2013;20131–9. doi: 10.1155/2013/541689
  448. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–477. doi: 10.1093/eurheartj/ehz425
  449. Underwood SR, Anagnostopoulos C, Cerqueira M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31(2):261–291. doi: 10.1007/s00259-003-1344-5
  450. Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. Epub ahead of print 31 August 2019. DOI: 10.1093/eurheartj/ehz486
  451. Bax JJ, Young LH, Frye RL, et al. Screening for coronary artery disease in patients with diabetes. Diabetes Care. 2007;30(10):2729–2736. doi: 10.2337/dc07-9927
  452. Meyers DG, Neuberger JS, He J. Cardiovascular Effect of Bans on Smoking in Public Places. J Am Coll Cardiol. 2009;54(14):1249–1255. doi: 10.1016/j.jacc.2009.07.022
  453. World Health Organization. IARC Handbooks of Cancer Prevention, Tobacco Control, vol. 14: Effectiveness of Tax and Price Policies for Tobacco Control. Lyon, 2011
  454. Critchley J, Capewell S. Smoking cessation for the secondary prevention of coronary heart disease. Cochrane database Syst Rev. 2004(1):CD003041. doi: 10.1002/14651858.CD003041.pub2
  455. Estruch R, Ros E, Salas-Salvadó J, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N Engl J Med. 2013;368(14):1279–1290. doi: 10.1056/NEJMoa1200303
  456. Yusuf S, Wittes J, Friedman L. Overview of results of randomized clinical trials in heart disease. I. Treatments following myocardial infarction. JAMA. 1988;260(14):2088–2093.
  457. Flather MD, Shibata MC, Coats AJS, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005;26(3):215–225. doi: 10.1093/eurheartj/ehi115
  458. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37(39):2999–3058. doi: 10.1093/eurheartj/ehw272
  459. Giugliano RP, Cannon CP, Blazing MA, et al. Benefit of Adding Ezetimibe to Statin Therapy on Cardiovascular Outcomes and Safety in Patients With Versus Without Diabetes Mellitus: Results From IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation. 2018;137(15):1571–1582. doi: 10.1161/CIRCULATIONAHA.117.030950
  460. Zhang X-L, Zhu Q-Q, Zhu L, et al. Safety and efficacy of anti-PCSK9 antibodies: a meta- analysis of 25 randomized, controlled trials. BMC Med. 2015;13(1):123. doi: 10.1186/s12916-015-0358-8
  461. ACCORD Study Group, Ginsberg HN, Elam MB, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–1574. doi: 10.1056/NEJMoa1001282
  462. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for themanagement of dyslipidaemias: lipid modification to reduce cardiovascular risk. Russ J Cardiol. 2020;25(5):3826. doi: 10.15829/1560-4071-2020-3826
  463. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–1861. doi: 10.1016/S0140- 6736(05)67667-2
  464. Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86. doi: 10.1136/bmj.324.7329.71
  465. Juul-Möller S, Edvardsson N, Jahnmatz B, et al. Double-blind trial of aspirin in primary prevention of myocardial infarction in patients with stable chronic angina pectoris. The Swedish Angina Pectoris Aspirin Trial (SAPAT) Group. Lancet. 1992;340(8833):1421– 1425. doi: 10.1016/0140-6736(92)92619-q
  466. Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS. Eur Heart J. 2018;39(3):213–260. doi: 10.1093/eurheartj/ehx419
  467. ASCEND Study Collaborative Group, Bowman L, Mafham M, et al. Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus. N Engl J Med. 2018;379(16):1529– 1539. doi: 10.1056/NEJMoa1804988
  468. Bhatt DL, Steg PG, Mehta SR, et al. Ticagrelor in patients with diabetes and stable coronary artery disease with a history of previous percutaneous coronary intervention (THEMIS- PCI): a phase 3, placebo-controlled, randomised trial. Lancet. 2019;394(10204):1169– 1180. doi: 10.1016/S0140-6736(19)31887-2
  469. Anand SS, Eikelboom JW, Dyal L, et al. Rivaroxaban Plus Aspirin Versus Aspirin in Relation to Vascular Risk in the COMPASS Trial. J Am Coll Cardiol. 2019;73(25):3271– 3280. doi: 10.1016/j.jacc.2019.02.079
  470. BARI 2D Study Group, Frye RL, August P, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–2515. doi: 10.1056/NEJMoa0805796
  471. Abdallah MS, Wang K, Magnuson EA, et al. Quality of life after PCI vs CABG among patients with diabetes and multivessel coronary artery disease: a randomized clinical trial. JAMA. 2013;310(15):1581–1590. doi: 10.1001/jama.2013.279208
  472. Neumann F-J, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165. doi: 10.1093/eurheartj/ehy394
  473. Roffi M, Patrono C, Collet J-P, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2016;37(3):267–315. doi: 10.1093/eurheartj/ehv320
  474. Senthinathan A, Kelly V, Dzingina M, et al. Hyperglycaemia in acute coronary syndromes: summary of NICE guidance. BMJ. 2011;343d6646. doi: 10.1136/bmj.d6646
  475. Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–1311. doi: 10.2337/dc12-0719
  476. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018;39(2):119–177. doi: 10.1093/eurheartj/ehx393
  477. Hernandez A V., Usmani A, Rajamanickam A, et al. Thiazolidinediones and Risk of Heart Failure in Patients with or at High Risk of Type 2 Diabetes Mellitus. Am J Cardiovasc Drugs. 2011;11(2):115–128. doi: 10.2165/11587580-000000000-00000
  478. Komajda M, McMurray JJV, Beck-Nielsen H, et al. Heart failure events with rosiglitazone in type 2 diabetes: data from the RECORD clinical trial. Eur Heart J. 2010;31(7):824–831. doi: 10.1093/eurheartj/ehp604
  479. Мареев ВЮ, Фомин ИВ, Агеев ФТ, и др. Сердечная недостаточность: хроническая и острая декомпенсированная. Диагностика, профилактика и лечение. Кардиология. 2018;58(6S):8–158. doi: 10.18087/cardio.2475
  480. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure. J Am Coll Cardiol. 2017;70(6):776–803. doi: 10.1016/j.jacc.2017.04.025
  481. Wiviott SD, Raz I, Bonaca MP, et al. The design and rationale for the Dapagliflozin Effect on Cardiovascular Events (DECLARE)-TIMI 58 Trial. Am Heart J. 2018;20083–89. doi: 10.1016/j.ahj.2018.01.012
  482. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995–2008. doi: 10.1056/NEJMoa1911303
  483. McMurray JJV, DeMets DL, Inzucchi SE, et al. A trial to evaluate the effect of the sodium– glucose co‐ transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA‐ HF). Eur J Heart Fail. 2019;21(5):665–675. doi: 10.1002/ejhf.1432
  484. Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413–1424. doi: 10.1056/NEJMoa2022190
  485. Eurich DT, Weir DL, Majumdar SR, et al. Comparative Safety and Effectiveness of Metformin in Patients With Diabetes Mellitus and Heart Failure. Circ Hear Fail. 2013;6(3):395–402. doi: 10.1161/CIRCHEARTFAILURE.112.000162
  486. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015;373(23):2247–2257. doi: 10.1056/NEJMoa1509225
  487. Holman RR, Bethel MA, Mentz RJ, et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377(13):1228–1239. doi: 10.1056/NEJMoa1612917
  488. Azoulay L, Suissa S. Sulfonylureas and the Risks of Cardiovascular Events and Death: A Methodological Meta-Regression Analysis of the Observational Studies. Diabetes Care. 2017;40(5):706–714. doi: 10.2337/dc16-1943
  489. Masoudi FA, Inzucchi SE, Wang Y, et al. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111(5):583–590. doi: 10.1161/01.CIR.0000154542.13412.B1
  490. Eurich DT, Majumdar SR, McAlister FA, et al. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28(10):2345– 2351. doi: 10.2337/diacare.28.10.2345
  491. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med. 2013;369(14):1317–1326. doi: 10.1056/NEJMoa1307684
  492. Zannad F, Cannon CP, Cushman WC, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385(9982):2067–2076. doi: 10.1016/S0140- 6736(14)62225-X
  493. Green JB, Bethel MA, Armstrong PW, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373(3):232–242. doi: 10.1056/NEJMoa1501352
  494. Rosenstock J, Perkovic V, Johansen OE, et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA. 2019;321(1):69–79. doi: 10.1001/jama.2018.18269
  495. Prompers L, Huijberts M, Apelqvist J, et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia. 2007;50(1):18–25. doi: 10.1007/s00125-006-0491-1
  496. Morbach S, Furchert H, Gröblinghoff U, et al. Long-term prognosis of diabetic foot patients and their limbs: amputation and death over the course of a decade. Diabetes Care. 2012;35(10):2021–2027. doi: 10.2337/dc12-0200
  497. National Institute for Health and Clinical Excellence. Diabetic Foot Problems. Inpatient management of diabetic foot problems. London, 2011
  498. Edmonds ME, Morrison N, Laws JW, et al. Medial arterial calcification and diabetic neuropathy. BMJ. 1982;284(6320):928–930. doi: 10.1136/bmj.284.6320.928
  499. Feinglass J, Shively VP, Martin GJ, et al. How ‘preventable’ are lower extremity amputations? A qualitative study of patient perceptions of precipitating factors. Disabil Rehabil. 2012;34(25):2158–2165. doi: 10.3109/09638288.2012.677936
  500. Sumpio BE, Armstrong DG, Lavery LA, et al. The role of interdisciplinary team approach in the management of the diabetic foot: a joint statement from the Society for Vascular Surgery and the American Podiatric Medical Association. J Vasc Surg. 2010;51(6):1504– 1506. doi: 10.1016/j.jvs.2010.04.010
  501. Ababneh M, Al Ayed MY, Robert AA, et al. Clinical Utility of the Ankle-Brachial Index and Toe Brachial Index in Patients with Diabetic Foot Ulcers. Curr Diabetes Rev.;15. Epub ahead of print 31 May 2019. DOI: 10.2174/1573399815666190531093238
  502. Management of peripheral arterial disease (PAD). TransAtlantic Inter-Society Consensus (TASC). Int Angiol. 2000;19(1 Suppl 1):1–304.
  503. Huen KH, Chowdhury R, Shafii SM, et al. Smoking Cessation Is the Least Successful Outcome of Risk Factor Modification in Uninsured Patients with Symptomatic Peripheral Arterial Disease. Ann Vasc Surg. 2015;29(1):42–49. doi: 10.1016/j.avsg.2014.09.014
  504. The Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–2222. doi: 10.1016/S0140-6736(10)60484-9
  505. Rickels MR, Mueller R, Teff KL, et al. β-cell secretory capacity and demand in recipients of islet, pancreas, and kidney transplants. J Clin Endocrinol Metab. 2010;95(3):1238–1246. doi: 10.1210/jc.2009-2289
  506. Российское общество ангиологов и сосудистых хирургов, Ассоциация сердечно- сосудистых хирургов России, Российское научное общество рентгенэндоваскулярных хирургов и интервенционных радиологов, et al. Национальные рекомендации по ведению пациентов с заболеваниями артерий нижних конечностей. Москва, 2013
  507. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice. The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representati. G Ital Cardiol (Rome). 2017;18(7):547–612. doi: 10.1714/2729.27821
  508. Schaper NC, van Netten JJ, Apelqvist J, et al. IWGDF Guidelines on the prevention and management of diabetic foot disease. 2019
  509. Mills JL, Conte MS, Armstrong DG, et al. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: Risk stratification based on Wound, Ischemia, and foot Infection (WIfI). J Vasc Surg. 2014;59(1):220-234.e2. doi: 10.1016/j.jvs.2013.08.003
  510. Collins R, Burch J, Cranny G, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334(7606):1257. doi: 10.1136/bmj.39217.473275.55
  511. Dominguez A, Bahadorani J, Reeves R, et al. Endovascular therapy for critical limb ischemia. Expert Rev Cardiovasc Ther. 2015;13(4):429–444. doi: 10.1586/14779072.2015.1019472
  512. Manzi M, Palena L, Cester G. Endovascular techniques for limb salvage in diabetics with crural and pedal disease. J Cardiovasc Surg (Torino). 2011;52(4):485–492.
  513. Belch JJF, Dormandy J. Results of the randomized, placebo-controlled clopidogrel and acetylsalicylic acid in bypass surgery for peripheral arterial disease (CASPAR) trial. J Vasc Surg. 2010;52(4):825-833.e2. doi: 10.1016/j.jvs.2010.04.027
  514. Cacoub PP, Bhatt DL, Steg PG, et al. Patients with peripheral arterial disease in the CHARISMA trial. Eur Heart J. 2008;30(2):192–201. doi: 10.1093/eurheartj/ehn534
  515. Aboyans V, Ricco J-B, Bartelink M-LEL, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39(9):763–816. doi: 10.1093/eurheartj/ehx095
  516. Anand SS, Bosch J, Eikelboom JW, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10117):219–229. doi: 10.1016/S0140- 6736(17)32409-1
  517. Kronlage M, Blessing E, Müller OJ, et al. Anticoagulation in addition to dual antiplatelet therapy has no impact on long-term follow-up after endovascular treatment of (sub)acute lower limb ischemia. Vasa. 2019;48(4):321–329. doi: 10.1024/0301-1526/a000786
  518. Monteiro-Soares M, Boyko EJ, Ribeiro J, et al. Predictive factors for diabetic foot ulceration: a systematic review. Diabetes Metab Res Rev. 2012;28(7):574–600. doi: 10.1002/dmrr.2319
  519. Crawford F, Cezard G, Chappell FM, et al. A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS). Health Technol Assess (Rockv). 2015;19(57):1–210. doi: 10.3310/hta19570
  520. Monteiro‐ Soares M, Russell D, Boyko EJ, et al. Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Diabetes Metab Res Rev. 2020;36(S1):e3273. doi: 10.1002/dmrr.3273
  521. Mayor J, Chung J, Zhang Q, et al. Using the Society for Vascular Surgery Wound, Ischemia, and foot Infection classification to identify patients most likely to benefit from revascularization. J Vasc Surg. 2019;70(3):776-785.e1. doi: 10.1016/j.jvs.2018.11.039
  522. Hinchliffe RJ, Forsythe RO, Apelqvist J, et al. Guidelines on diagnosis, prognosis, and management of peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update). Diabetes Metab Res Rev. 2020;36 Suppl 1e3276. doi: 10.1002/dmrr.3276
  523. Ndosi M, Wright-Hughes A, Brown S, et al. Prognosis of the infected diabetic foot ulcer: a 12-month prospective observational study. Diabet Med. 2018;35(1):78–88. doi: 10.1111/dme.13537
  524. Tan T-W, Shih C-D, Concha-Moore KC, et al. Disparities in outcomes of patients admitted with diabetic foot infections. PLoS One. 2019;14(2):e0211481. doi: 10.1371/journal.pone.0211481
  525. Zha M-L, Cai J-Y, Chen H-L. A Bibliometric Analysis of Global Research Production Pertaining to Diabetic Foot Ulcers in the Past Ten Years. J Foot Ankle Surg. 2019;58(2):253–259. doi: 10.1053/j.jfas.2018.08.052
  526. Peters EJG, Lipsky BA. Diagnosis and management of infection in the diabetic foot. Med Clin North Am. 2013;97(5):911–946. doi: 10.1016/j.mcna.2013.04.005
  527. Lavery LA, Peters EJG, Armstrong DG, et al. Risk factors for developing osteomyelitis in patients with diabetic foot wounds. Diabetes Res Clin Pract. 2009;83(3):347–352. doi: 10.1016/j.diabres.2008.11.030
  528. Sotto A, Richard J-L, Jourdan N, et al. Miniaturized Oligonucleotide Arrays. Diabetes Care. 2007;30(8):2051–2056. doi: 10.2337/dc07-0461
  529. Senneville É, Lipsky BA, Abbas ZG, et al. Diagnosis of infection in the foot in diabetes: a systematic review. Diabetes Metab Res Rev. 2020;36(S1):e3281. doi: 10.1002/dmrr.3281
  530. Peters EJG, Lipsky BA, Senneville É, et al. Interventions in the management of infection in the foot in diabetes: a systematic review. Diabetes Metab Res Rev. 2020;36(S1):e3282. doi: 10.1002/dmrr.3282
  531. Senneville E, Melliez H, Beltrand E, et al. Culture of Percutaneous Bone Biopsy Specimens For Diagnosis of Diabetic Foot Osteomyelitis: Concordance With Ulcer Swab Cultures. Clin Infect Dis. 2006;42(1):57–62. doi: 10.1086/498112
  532. Ertugrul MB, Baktiroglu S, Salman S, et al. Pathogens Isolated From Deep Soft Tissue and Bone in Patients With Diabetic Foot Infections. J Am Podiatr Med Assoc. 2008;98(4):290– 295. doi: 10.7547/0980290
  533. Noor S, Raghav A, Parwez I, et al. Molecular and culture based assessment of bacterial pathogens in subjects with diabetic foot ulcer. Diabetes Metab Syndr Clin Res Rev. 2018;12(3):417–421. doi: 10.1016/j.dsx.2018.03.001
  534. Percival SL, Malone M, Mayer D, et al. Role of anaerobes in polymicrobial communities and biofilms complicating diabetic foot ulcers. Int Wound J. 2018;15(5):776–782. doi: 10.1111/iwj.12926
  535. Álvaro-Afonso FJ, Lázaro-Martínez JL, García-Morales E, et al. Cortical disruption is the most reliable and accurate plain radiographic sign in the diagnosis of diabetic foot osteomyelitis. Diabet Med. 2019;36(2):258–259. doi: 10.1111/dme.13824
  536. O’Meara S, Nelson EA, Golder S, et al. Systematic review of methods to diagnose infection in foot ulcers in diabetes. Diabet Med. 2006;23(4):341–347. doi: 10.1111/j.1464- 5491.2006.01830.x
  537. Ramanujam CL, Han D, Zgonis T. Medical Imaging and Laboratory Analysis of Diagnostic Accuracy in 107 Consecutive Hospitalized Patients With Diabetic Foot Osteomyelitis and Partial Foot Amputations. Foot Ankle Spec. 2018;11(5):433–443. doi: 10.1177/1938640017750255
  538. Dinh MT, Abad CL, Safdar N. Diagnostic Accuracy of the Physical Examination and Imaging Tests for Osteomyelitis Underlying Diabetic Foot Ulcers: Meta‐ Analysis. Clin Infect Dis. 2008;47(4):519–527. doi: 10.1086/590011
  539. Cohen M, Cerniglia B, Gorbachova T, et al. Added value of MRI to X-ray in guiding the extent of surgical resection in diabetic forefoot osteomyelitis: a review of pathologically proven, surgically treated cases. Skeletal Radiol. 2019;48(3):405–411. doi: 10.1007/s00256-018-3045-y
  540. Lauri C, Tamminga M, Glaudemans AWJM, et al. Detection of Osteomyelitis in the Diabetic Foot by Imaging Techniques: A Systematic Review and Meta-analysis Comparing MRI, White Blood Cell Scintigraphy, and FDG-PET. Diabetes Care. 2017;40(8):1111– 1120. doi: 10.2337/dc17-0532
  541. Weinstein D, Wang A, Chambers R, et al. Evaluation of Magnetic Resonance Imaging in the Diagnosis of Osteomyelitis in Diabetic Foot Infections. Foot Ankle. 1993;14(1):18–22. doi: 10.1177/107110079301400104
  542. Bus SA. The Role of Pressure Offloading on Diabetic Foot Ulcer Healing and Prevention of Recurrence. Plast Reconstr Surg. 2016;138(3 Suppl):179S-187S. doi: 10.1097/PRS.0000000000002686
  543. Fernando ME, Crowther RG, Pappas E, et al. Plantar Pressure in Diabetic Peripheral Neuropathy Patients with Active Foot Ulceration, Previous Ulceration and No History of Ulceration: A Meta-Analysis of Observational Studies. PLoS One. 2014;9(6):e99050. doi: 10.1371/journal.pone.0099050
  544. Jeffcoate W, Game F, Turtle-Savage V, et al. Evaluation of the effectiveness and cost- effectiveness of lightweight fibreglass heel casts in the management of ulcers of the heel in diabetes: a randomised controlled trial. Health Technol Assess (Rockv). 2017;21(34):1–92. doi: 10.3310/hta21340
  545. Piaggesi A, Goretti C, Iacopi E, et al. Comparison of Removable and Irremovable Walking Boot to Total Contact Casting in Offloading the Neuropathic Diabetic Foot Ulceration. Foot Ankle Int. 2016;37(8):855–861. doi: 10.1177/1071100716643429
  546. Bus SA, van Netten JJ, Kottink AI, et al. The efficacy of removable devices to offload and heal neuropathic plantar forefoot ulcers in people with diabetes: a single-blinded multicentre randomised controlled trial. Int Wound J. 2018;15(1):65–74. doi: 10.1111/iwj.12835
  547. Gordon KA, Lebrun EA, Tomic-Canic M, et al. The role of surgical debridement in healing of diabetic foot ulcers. Skinmed. 2012;10(1):24–26.
  548. Митиш ВА, Ерошкин ИА, Галстян ГР, и др. Гнойно-некротические поражения нейроишемической формы синдрома диабетической стопы. Новые возможности комплексного хирургического лечения. Эндокринная хирургия. 2008;2(1):15–19. doi: 10.14341/2306-3513-2008-1-15-19
  549. Caputo WJ, Beggs DJ, DeFede JL, et al. A prospective randomised controlled clinical trial comparing hydrosurgery debridement with conventional surgical debridement in lower extremity ulcers. Int Wound J. 2008;5(2):288–294. doi: 10.1111/j.1742- 481X.2007.00490.x
  550. Jeffcoate WJ, Bus SA, Game FL, et al. Reporting standards of studies and papers on the prevention and management of foot ulcers in diabetes: required details and markers of good quality. Lancet Diabetes Endocrinol. 2016;4(9):781–788. doi: 10.1016/S2213- 8587(16)30012-2
  551. Vas P, Rayman G, Dhatariya K, et al. Effectiveness of interventions to enhance healing of chronic foot ulcers in diabetes: a systematic review. Diabetes Metab Res Rev. 2020;36(S1):e3284. doi: 10.1002/dmrr.3284
  552. Lipsky BA, Senneville É, Abbas ZG, et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev. 2020;36(S1):e3280. doi: 10.1002/dmrr.3280
  553. Selva Olid A, Solà I, Barajas-Nava LA, et al. Systemic antibiotics for treating diabetic foot infections. Cochrane Database Syst Rev. 2015;2015(9):CD009061. doi: 10.1002/14651858.CD009061.pub2
  554. Jongsma H, Bekken JA, Akkersdijk GP, et al. Angiosome-directed revascularization in patients with critical limb ischemia. J Vasc Surg. 2017;65(4):1208-1219.e1. doi: 10.1016/j.jvs.2016.10.100
  555. Lo ZJ, Lin Z, Pua U, et al. Diabetic Foot Limb Salvage—A Series of 809 Attempts and Predictors for Endovascular Limb Salvage Failure. Ann Vasc Surg. 2018;499–16. doi: 10.1016/j.avsg.2018.01.061
  556. Lejay A, Georg Y, Tartaglia E, et al. Long-Term Outcomes of Direct and Indirect Below- The-Knee Open Revascularization Based on the Angiosome Concept in Diabetic Patients with Critical Limb Ischemia. Ann Vasc Surg. 2014;28(4):983–989. doi: 10.1016/j.avsg.2013.08.026
  557. Hinchliffe RJ, Brownrigg JRW, Andros G, et al. Effectiveness of revascularization of the ulcerated foot in patients with diabetes and peripheral artery disease: a systematic review. Diabetes Metab Res Rev. 2016;32(S1):136–144. doi: 10.1002/dmrr.2705
  558. Capell WH, Bonaca MP, Nehler MR, et al. Rationale and design for the Vascular Outcomes study of ASA along with rivaroxaban in endovascular or surgical limb revascularization for peripheral artery disease (VOYAGER PAD). Am Heart J. 2018;19983–91. doi: 10.1016/j.ahj.2018.01.011
  559. Raymond Foley T, Singh GD, Kokkinidis DG, et al. High‐ Intensity Statin Therapy Is Associated With Improved Survival in Patients With Peripheral Artery Disease. J Am Heart Assoc. 2017;6(7):e005699. doi: 10.1161/JAHA.117.005699
  560. Yang Q, Zhang Y, Yin H, et al. Topical Recombinant Human Epidermal Growth Factor for Diabetic Foot Ulcers: A Meta-Analysis of Randomized Controlled Clinical Trials. Ann Vasc Surg. 2020;62442–451. doi: 10.1016/j.avsg.2019.05.041
  561. Berlanga-Acosta J, Fernández-Montequín J, Valdés-Pérez C, et al. Diabetic Foot Ulcers and Epidermal Growth Factor: Revisiting the Local Delivery Route for a Successful Outcome. Biomed Res Int. 2017;20171–10. doi: 10.1155/2017/2923759
  562. Lavery LA, Murdoch DP, Kim PJ, et al. Negative Pressure Wound Therapy With Low Pressure and Gauze Dressings to Treat Diabetic Foot Wounds. J Diabetes Sci Technol. 2014;8(2):346–349. doi: 10.1177/1932296813519012
  563. Liu Z, Dumville JC, Hinchliffe RJ, et al. Negative pressure wound therapy for treating foot wounds in people with diabetes mellitus. Cochrane Database Syst Rev. 2018;2018(10):CD010318. doi: 10.1002/14651858.CD010318.pub3
  564. Зайцева ЕЛ, Доронина ЛП, Молчков РВ, и др. Влияние терапии отрицательным давлением на репаративные процессы в мягких тканях нижних конечностей у пациентов с нейропатической и нейроишемической формами синдрома диабетической стопы. Сахарный диабет. 2014;17(3):113–121. doi: 10.14341/DM20143113-121
  565. Bonner T, Foster M, Spears-Lanoix E. Type 2 diabetes–related foot care knowledge and foot self-care practice interventions in the United States: a systematic review of the literature. Diabet Foot Ankle. 2016;7(1):29758. doi: 10.3402/dfa.v7.29758
  566. Netten JJ, Raspovic A, Lavery LA, et al. Prevention of foot ulcers in the at‐ risk patient with diabetes: a systematic review. Diabetes Metab Res Rev. 2020;36(S1):e3270. doi: 10.1002/dmrr.3270
  567. Donohoe ME, Fletton JA, Hook A, et al. Improving foot care for people with diabetes mellitus - a randomized controlled trial of an integrated care approach. Diabet Med. 2000;17(8):581–587. doi: 10.1046/j.1464-5491.2000.00336.x
  568. Guerin A, Nisenbaum R, Ray JG. Use of Maternal GHb Concentration to Estimate the Risk of Congenital Anomalies in the Offspring of Women with Prepregnancy Diabetes. Diabetes Care. 2007;30(7):1920–1925. doi: 10.2337/dc07-0278
  569. Lowe LP, Metzger BE, Dyer AR, et al. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: Associations of maternal A1C and glucose with pregnancy outcomes. Diabetes Care. 2012;35(3):574–580. doi: 10.2337/dc11-1687
  570. Wahabi HA, Alzeidan RA, Bawazeer GA, et al. Preconception care for diabetic women for improving maternal and fetal outcomes: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2010;10(1):63. doi: 10.1186/1471-2393-10-63
  571. Ray JG, O’Brien TE, Chan WS. Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. QJM. 2001;94(8):435–444. doi: 10.1093/qjmed/94.8.435
  572. Peterson C, Grosse SD, Li R, et al. Preventable health and cost burden of adverse birth outcomes associated with pregestational diabetes in the United States. Am J Obstet Gynecol. 2015;212(1):74.e1-74.e9. doi: 10.1016/j.ajog.2014.09.009
  573. Boulot P, Chabbert-Buffet N, D’Ercole C, et al. French multicentric survey of outcome of pregnancy in women with pregestational diabetes. Diabetes Care. 2003;26(11):2990–2993. doi: 10.2337/diacare.26.11.2990
  574. Ekpebegh CO, Coetzee EJ, van der Merwe L, et al. A 10-year retrospective analysis of pregnancy outcome in pregestational Type 2 diabetes: comparison of insulin and oral glucose-lowering agents. Diabet Med. 2007;24(3):253–258. doi: 10.1111/j.1464- 5491.2007.02053.x
  575. Roland JM, Murphy HR, Ball V, et al. The pregnancies of women with Type 2 diabetes: poor outcomes but opportunities for improvement. Diabet Med. 2005;22(12):1774–1777. doi: 10.1111/j.1464-5491.2005.01784.x
  576. Pollex EK, Feig DS, Lubetsky A, et al. Insulin Glargine Safety in Pregnancy: A transplacental transfer study. Diabetes Care. 2010;33(1):29–33. doi: 10.2337/dc09-1045
  577. Holcberg G, Tsadkin-Tamir M, Sapir O, et al. Transfer of insulin lispro across the human placenta. Eur J Obstet Gynecol Reprod Biol. 2004;115(1):117–118. doi: 10.1016/j.ejogrb.2003.10.006
  578. Boskovic R, Feig DS, Derewlany L, et al. Transfer of Insulin Lispro Across the Human Placenta: In vitro perfusion studies. Diabetes Care. 2003;26(5):1390–1394. doi: 10.2337/diacare.26.5.1390
  579. Suffecool K, Rosenn B, Niederkofler EE, et al. Insulin Detemir Does Not Cross the Human Placenta. Diabetes Care. 2015;38(2):e20–e21. doi: 10.2337/dc14-2090
  580. Bullo M, Tschumi S, Bucher BS, et al. Pregnancy Outcome Following Exposure to Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Antagonists. Hypertension. 2012;60(2):444–450. doi: 10.1161/HYPERTENSIONAHA.112.196352
  581. Bateman BT, Hernandez-Diaz S, Fischer MA, et al. Statins and congenital malformations: cohort study. BMJ. 2015;350(10):h1035. doi: 10.1136/bmj.h1035
  582. Chew EY, Mills JL, Metzger BE, et al. Metabolic Control and Progression of Retinopathy: The Diabetes in Early Pregnancy Study. Diabetes Care. 1995;18(5):631–637. doi: 10.2337/diacare.18.5.631
  583. Damm JA, Asbjornsdottir B, Callesen NF, et al. Diabetic Nephropathy and Microalbuminuria in Pregnant Women With Type 1 and Type 2 Diabetes: Prevalence, antihypertensive strategy, and pregnancy outcome. Diabetes Care. 2013;36(11):3489– 3494. doi: 10.2337/dc13-1031
  584. Ringholm L, Damm JA, Vestgaard M, et al. Diabetic Nephropathy in Women With Preexisting Diabetes: From Pregnancy Planning to Breastfeeding. Curr Diab Rep. 2016;16(2):12. doi: 10.1007/s11892-015-0705-3
  585. Carr DB, Koontz GL, Gardella C, et al. Diabetic nephropathy in pregnancy: suboptimal hypertensive control associated with preterm delivery. Am J Hypertens. 2006;19(5):513– 519. doi: 10.1016/j.amjhyper.2005.12.010
  586. Nevis IF, Reitsma A, Dominic A, et al. Pregnancy outcomes in women with chronic kidney disease: a systematic review. Clin J Am Soc Nephrol. 2011;6(11):2587–2598. doi: 10.2215/CJN.10841210
  587. O’Neill SM, Kenny LC, Khashan AS, et al. Different insulin types and regimens for pregnant women with pre-existing diabetes. Cochrane database Syst Rev. 2017;2CD011880. doi: 10.1002/14651858.CD011880.pub2
  588. Simmons D, Thompson CF, Conroy C, et al. Use of Insulin Pumps in Pregnancies Complicated by Type 2 Diabetes and Gestational Diabetes in a Multiethnic Community. Diabetes Care. 2001;24(12):2078–2082. doi: 10.2337/diacare.24.12.2078
  589. Murphy HR, Roland JM, Skinner TC, et al. Effectiveness of a Regional Prepregnancy Care Program in Women With Type 1 and Type 2 Diabetes: Benefits beyond glycemic control. Diabetes Care. 2010;33(12):2514–2520. doi: 10.2337/dc10-1113
  590. American Diabetes Association. 8. Obesity Management for the Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S100–S110. doi: 10.2337/dc21-S008
  591. Abell SK, Boyle JA, de Courten B, et al. Impact of type 2 diabetes, obesity and glycaemic control on pregnancy outcomes. Aust New Zeal J Obstet Gynaecol. 2017;57(3):308–314. doi: 10.1111/ajo.12521
  592. Inkster ME, Fahey TP, Donnan PT, et al. Poor glycated haemoglobin control and adverse pregnancy outcomes in type 1 and type 2 diabetes mellitus: Systematic review of observational studies. BMC Pregnancy Childbirth. 2006;6(1):30. doi: 10.1186/1471-2393- 6-30
  593. Wahabi HA, Esmaeil SA, Fayed A, et al. Pre-existing diabetes mellitus and adverse pregnancy outcomes. BMC Res Notes. 2012;5(1):496. doi: 10.1186/1756-0500-5-496
  594. Taylor C, McCance DR, Chappell L, et al. Implementation of guidelines for multidisciplinary team management of pregnancy in women with pre-existing diabetes or cardiac conditions: results from a UK national survey. BMC Pregnancy Childbirth. 2017;17(1):434. doi: 10.1186/s12884-017-1609-9
  595. Tieu J, Middleton P, Crowther CA, et al. Preconception care for diabetic women for improving maternal and infant health. Cochrane database Syst Rev. 2017;8CD007776. doi: 10.1002/14651858.CD007776.pub3
  596. Meneilly GS, Knip A, Miller DB, et al. Diabetes in Older People. Can J Diabetes. 2018;42(Suppl 1):S283–S295. doi: 10.1016/j.jcjd.2017.10.021
  597. LeRoith D, Biessels GJ, Braithwaite SS, et al. Treatment of Diabetes in Older Adults: An Endocrine Society* Clinical Practice Guideline. J Clin Endocrinol Metab. 2019;104(5):1520–1574. doi: 10.1210/jc.2019-00198
  598. Общероссийская общественная организация ‘Российская ассоциация геронтологов и гериатров’. Клинические рекомендации ‘Старческая астения’. 2020
  599. Общероссийская общественная организация ‘Российское общество психиатров’, Общественная организация ‘Российская ассоциация геронтологов и гериатров’. Когнитивные расстройства у лиц пожилого и старческого возраста. 2020
  600. International Diabetes Federation Working Group. Managing older people with Type 2 Diabetes . Global Guideline. Brussels: International Diabetes Federation, 2013
  601. Ткачева ОН, Рунихина НК, Остапенко ВС, и др. Валидация опросника для скрининга синдрома старческой астении в амбулаторной практике. Успехи геронтологии. 2017;30(2):236–242.
  602. American Diabetes Association. 13. Older Adults: Standards of Medical Care in Diabetes— 2022. Diabetes Care. 2022;45(Supplement_1):S195–S207. doi: 10.2337/dc22-S013
  603. Schernthaner G, Barnett AH, Patel S, et al. Safety and efficacy of the dipeptidyl peptidase- 4 inhibitor linagliptin in elderly patients with type 2 diabetes: a comprehensive analysis of data from 1331 individuals aged ≥ 65 years. Diabetes Obes Metab. 2014;16(11):1078– 1086. doi: 10.1111/dom.12321
  604. Round EM, Engel SS, Golm GT, et al. Safety of sitagliptin in elderly patients with type 2 diabetes: a pooled analysis of 25 clinical studies. Drugs Aging. 2014;31(3):203–214. doi: 10.1007/s40266-014-0155-7
  605. Barnett AH, Huisman H, Jones R, et al. Linagliptin for patients aged 70 years or older with type 2 diabetes inadequately controlled with common antidiabetes treatments: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9902):1413–1423. doi: 10.1016/S0140-6736(13)61500-7
  606. Karyekar CS, Ravichandran S, Allen E, et al. Tolerability and efficacy of glycemic control with saxagliptin in older patients (aged ≥ 65 years) with inadequately controlled type 2 diabetes mellitus. Clin Interv Aging. 2013;8419–430. doi: 10.2147/CIA.S41246
  607. Schwartz SL. Treatment of elderly patients with type 2 diabetes mellitus: a systematic review of the benefits and risks of dipeptidyl peptidase-4 inhibitors. Am J Geriatr Pharmacother. 2010;8(5):405–418. doi: 10.1016/j.amjopharm.2010.10.003
  608. Doucet J, Chacra A, Maheux P, et al. Efficacy and safety of saxagliptin in older patients with type 2 diabetes mellitus. Curr Med Res Opin. 2011;27(4):863–869. doi: 10.1185/03007995.2011.554532
  609. Rosenstock J, Wilson C, Fleck P. Alogliptin versus glipizide monotherapy in elderly type 2 diabetes mellitus patients with mild hyperglycaemia: a prospective, double-blind, randomized, 1-year study. Diabetes Obes Metab. 2013;15(10):906–914. doi: 10.1111/dom.12102
  610. Shorr RI, Ray WA, Daugherty JR, et al. Individual sulfonylureas and serious hypoglycemia in older people. J Am Geriatr Soc. 1996;44(7):751–755. doi: 10.1111/j.1532- 5415.1996.tb03729.x
  611. Shorr RI, Ray WA, Daugherty JR, et al. Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonylureas. Arch Intern Med. 1997;157(15):1681–1686.
  612. Greco D, Pisciotta M, Gambina F, et al. Severe hypoglycaemia leading to hospital admission in type 2 diabetic patients aged 80 years or older. Exp Clin Endocrinol diabetes. 2010;118(4):215–219. doi: 10.1055/s-0029-1241823
  613. Chilcott J, Tappenden P, Jones ML, et al. A systematic review of the clinical effectiveness of pioglitazone in the treatment of type 2 diabetes mellitus. Clin Ther. 2001;23(11):1792– 1823.
  614. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180(1):32–39. doi: 10.1503/cmaj.080486
  615. Приказ Министерства здравоохранения РФ от 21 марта 2014 г. № 125н ‘Об утверждении национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям’ (с изменениями и дополнениями)
  616. Приказ Министерства здравоохранения Российской Федерации от 14.09.2020 № 967н "О внесении изменения в приложение № 1 к приказу Министерства здравоохранения Российской Федерации от 21 марта 2014 г. № 125н "Об утверждении национального календаря профилактич
  617. Goeijenbier M, van Sloten TT, Slobbe L, et al. Benefits of flu vaccination for persons with diabetes mellitus: A review. Vaccine. 2017;35(38):5095–5101. doi: 10.1016/j.vaccine.2017.07.095
  618. Carman WF, Elder AG, Wallace LA, et al. Effects of influenza vaccination of health-care workers on mortality of elderly people in long-term care: a randomised controlled trial. Lancet. 2000;355(9198):93–97. doi: 10.1016/S0140-6736(99)05190-9
  619. Wilde JA, McMillan JA, Serwint J, et al. Effectiveness of Influenza Vaccine in Health Care Professionals. JAMA. 1999;281(10):908–913. doi: 10.1001/jama.281.10.908
  620. Nichol KL, Margolis KL, Lind A, et al. Side effects associated with influenza vaccination in healthy working adults. A randomized, placebo-controlled trial. Arch Intern Med. 1996;156(14):1546–1550.
  621. Simpson CR, Lone NI, Kavanagh K, et al. Evaluating the effectiveness, impact and safety of live attenuated and seasonal inactivated influenza vaccination: protocol for the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study. BMJ Open. 2017;7(2):e014200. doi: 10.1136/bmjopen-2016-014200
  622. Rondy M, El Omeiri N, Thompson MG, et al. Effectiveness of influenza vaccines in preventing severe influenza illness among adults: A systematic review and meta-analysis of test-negative design case-control studies. J Infect. 2017;75(5):381–394. doi: 10.1016/j.jinf.2017.09.010
  623. Darvishian M, van den Heuvel ER, Bissielo A, et al. Effectiveness of seasonal influenza vaccination in community-dwelling elderly people: an individual participant data meta- analysis of test-negative design case-control studies. Lancet Respir Med. 2017;5(3):200– 211. doi: 10.1016/S2213-2600(17)30043-7
  624. Remschmidt C, Wichmann O, Harder T. Vaccines for the prevention of seasonal influenza in patients with diabetes: systematic review and meta-analysis. BMC Med. 2015;13(1):53. doi: 10.1186/s12916-015-0295-6
  625. Demurtas J, Celotto S, Beaudart C, et al. The efficacy and safety of influenza vaccination in older people: An umbrella review of evidence from meta-analyses of both observational and randomized controlled studies. Ageing Res Rev. 2020;62101118. doi: 10.1016/j.arr.2020.101118
  626. Smith SA, Poland GA. Use of influenza and pneumococcal vaccines in people with diabetes. Diabetes Care. 2000;23(1):95–108. doi: 10.2337/diacare.23.1.95
  627. Чучалин АГ, Брико НИ, Авдеев СН, и др. Федеральные клинические рекомендации по вакцинопрофилактике пневмококковой инфекции у взрослых. Пульмонология. 2019;29(1):19–34. doi: 10.18093/0869-0189-2019-29-1-19-34
  628. Tin Tin Htar M, Stuurman AL, Ferreira G, et al. Effectiveness of pneumococcal vaccines in preventing pneumonia in adults, a systematic review and meta-analyses of observational studies. PLoS One. 2017;12(5):e0177985. doi: 10.1371/journal.pone.0177985
  629. Isturiz R, Webber C. Prevention of adult pneumococcal pneumonia with the 13-valent pneumococcal conjugate vaccine: CAPiTA, the community-acquired pneumonia immunization trial in adults. Hum Vaccin Immunother. 2015;11(7):1825–1827. doi: 10.1080/21645515.2015.1043502
  630. Webber C, Patton M, Patterson S, et al. Exploratory efficacy endpoints in the Community- Acquired Pneumonia Immunization Trial in Adults (CAPiTA). Vaccine. 2017;35(9):1266– 1272. doi: 10.1016/j.vaccine.2017.01.032
  631. LeBlanc JJ, ElSherif M, Ye L, et al. Streptococcus pneumoniae serotype 3 is masking PCV13-mediated herd immunity in Canadian adults hospitalized with community acquired pneumonia: A study from the Serious Outcomes Surveillance (SOS) Network of the Canadian immunization research Network (CIRN. Vaccine. 2019;37(36):5466–5473. doi: 10.1016/j.vaccine.2019.05.003
  632. Greenberg RN, Gurtman A, Frenck RW, et al. Sequential administration of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine in pneumococcal vaccine–naïve adults 60–64 years of age. Vaccine. 2014;32(20):2364–2374. doi: 10.1016/j.vaccine.2014.02.002
  633. Paradiso PR. Pneumococcal Conjugate Vaccine for Adults: A New Paradigm. Clin Infect Dis. 2012;55(2):259–264. doi: 10.1093/cid/cis359
  634. Feld J, Janssen A, Abbas Z, et al. Глобальные Практические Рекомендации Всемирной Гастроэнтерологической Организации. Гепатит B. World Gastroenterology Organisation, 2015
  635. Van Den Ende C, Marano C, Van Ahee A, et al. The immunogenicity and safety of GSK’s recombinant hepatitis B vaccine in adults: a systematic review of 30 years of experience. Expert Rev Vaccines. 2017;16(8):811–832. doi: 10.1080/14760584.2017.1338568
  636. Van Der Meeren O, Peterson JT, Dionne M, et al. Prospective clinical trial of hepatitis B vaccination in adults with and without type-2 diabetes mellitus. Hum Vaccin Immunother. 2016;12(8):2197–2203. doi: 10.1080/21645515.2016.1164362
  637. Elhanan E, Boaz M, Schwartz I, et al. A randomized, controlled clinical trial to evaluate the immunogenicity of a PreS/S hepatitis B vaccine Sci-B-VacTM, as compared to Engerix B®, among vaccine naïve and vaccine non-responder dialysis patients. Clin Exp Nephrol. 2018;22(1):151–158. doi: 10.1007/s10157-017-1416-7
  638. Van Der Meeren O, Crasta P, Cheuvart B, et al. Characterization of an age-response relationship to GSK’s recombinant hepatitis B vaccine in healthy adults: An integrated analysis. Hum Vaccin Immunother. 2015;11(7):1725–1728. doi: 10.1080/21645515.2015.1039758
  639. Keating GM, Noble S. Recombinant Hepatitis B Vaccine (Engerix-B??). Drugs. 2003;63(10):1021–1051. doi: 10.2165/00003495-200363100-00006
  640. Gregory JM, Slaughter JC, Duffus SH, et al. COVID-19 Severity Is Tripled in the Diabetes Community: A Prospective Analysis of the Pandemic’s Impact in Type 1 and Type 2 Diabetes. Diabetes Care. 2021;44(2):526–532. doi: 10.2337/dc20-2260
  641. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. doi: 10.1038/s41586-020- 2521-4
  642. Методические рекомендации (Письмо Министерства здравоохранения Российской Федерации от 21 января 2021г. №1/И/1-333)
  643. Приказ Министерства здравоохранения РФ от 9 декабря 2020 г. N 1307н "О внесении изменений в календарь профилактических прививок по эпидемическим показаниям, утвержденный приказом Министерства здравоохранения Российской Федерации от 21 марта 2014 г. N 125н
  644. Rogliani P, Chetta A, Cazzola M, et al. SARS-CoV-2 Neutralizing Antibodies: A Network Meta-Analysis across Vaccines. Vaccines. 2021;9(3):227. doi: 10.3390/vaccines9030227
  645. Logunov DY, Dolzhikova I V, Shcheblyakov D V, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–681. doi: 10.1016/S0140-6736(21)00234-8
  646. COVID-19 vaccines, http://www.ncbi.nlm.nih.gov/pubmed/33355732 (2006)
  647. Jones I, Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet. 2021;397(10275):642–643. doi: 10.1016/S0140-6736(21)00191-4
  648. Бакулин ИГ, Жданов КВ, Дроздова ЛЮ, и др. Возможности вакцинопрофилактики инфекционных заболеваний у взрослого населения. Профилактическая и клиническая медицина. 2020(4(77)):4–19. doi: 10.47843/2074-9120_2020_4_4
  649. Balakrishnan VS. The arrival of Sputnik V. Lancet Infect Dis. 2020;20(10):1128. doi: 10.1016/S1473-3099(20)30709-X
  650. COVID research: a year of scientific milestones. Nature. Epub ahead of print 5 May 2021. DOI: 10.1038/d41586-020-00502-w
  651. Шестакова МВ, Викулова ОК, Исаков МА, и др. Сахарный диабет и COVID-19: анализ клинических исходов по данным регистра сахарного диабета Российской Федерации. Проблемы эндокринологии. 2020;66(1):35–46. doi: 10.14341/probl12458
  652. Ho C-H, Jaw F-S, Wu C-C, et al. The Prevalence and the Risk Factors of Testosterone Deficiency in Newly Diagnosed and Previously Known Type 2 Diabetic Men. J Sex Med. 2015;12(2):389–397. doi: 10.1111/jsm.12777
  653. Ding EL, Song Y, Malik VS, et al. Sex Differences of Endogenous Sex Hormones and Risk of Type 2 Diabetes. JAMA. 2006;295(11):1288–1299. doi: 10.1001/jama.295.11.1288
  654. Kapoor D, Aldred H, Clark S, et al. Clinical and Biochemical Assessment of Hypogonadism in Men With Type 2 Diabetes: Correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30(4):911–917. doi: 10.2337/dc06-1426
  655. Tajar A, Huhtaniemi IT, O’Neill TW, et al. Characteristics of Androgen Deficiency in Late- Onset Hypogonadism: Results from the European Male Aging Study (EMAS). J Clin Endocrinol Metab. 2012;97(5):1508–1516. doi: 10.1210/jc.2011-2513
  656. Brand JS, Rovers MM, Yeap BB, et al. Testosterone, Sex Hormone-Binding Globulin and the Metabolic Syndrome in Men: An Individual Participant Data Meta-Analysis of Observational Studies. PLoS One. 2014;9(7):e100409. doi: 10.1371/journal.pone.0100409
  657. Дедов ИИ, Мокрышева НГ, Мельниченко ГА, и др. Проект клинических рекомендаций «Синдром гипогонадизма у мужчин». Ожирение и метаболизм. 2021;18(4):496–507. doi: 10.14341/omet12817

Для продолжения работы требуется Registration
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
Список литературы
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу