1. Harrison’s Principles of Internal Medicine, 20e | AccessMedicine | McGraw Hill Medical [Electronic resource]. URL: https://accessmedicine.mhmedical.com/book.aspx?bookID=2129 (accessed: 14.09.2021).
2. Melmed S. et al. Williams textbook of endocrinology. 2019. P. 1724.
3. N F. et al. Pituitary hormonal loss and recovery after transsphenoidal adenoma removal // Neurosurgery. Neurosurgery, 2008. Vol. 63, № 4. P. 709-718.
4. MJ H. et al. Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt wasting // J. Clin. Endocrinol. Metab. J Clin Endocrinol Metab, 2014. Vol. 99, № 1. P. 291-298.
5. A A. et al. The natural history of post-traumatic neurohypophysial dysfunction // Eur. J. Endocrinol. Eur J Endocrinol, 2005. Vol. 152, № 3. P. 371-377.
6. MK C. et al. Early central diabetes insipidus: An ominous sign in post-cardiac arrest patients // J. Crit. Care. J Crit Care, 2016. Vol. 32. P. 63-67.
7. JF C., TC H., JW F. Inappropriate secretion of antidiuretic hormone after transsphenoidal surgery for pituitary tumors // N. Engl. J. Med. N Engl J Med, 1984. Vol. 311, № 1. P. 3638.
8. J K. et al. Tumors metastatic to the pituitary gland: case report and literature review // J. Clin. Endocrinol. Metab. J Clin Endocrinol Metab, 2004. Vol. 89, № 2. P. 574-580.
9. V F. et al. Central diabetes insipidus due to acute monocytic leukemia: case report and review of the literature // J. Endocrinol. Invest. J Endocrinol Invest, 1992. Vol. 15, № 2. P. 127-130.
10. JM P., F G.-L., JM R. Primary hypothalamic-third ventricle lymphoma. Case report and review of the literature // Neurocirugia (Astur). Neurocirugia (Astur), 2002. Vol. 13, № 4. P. 305-310.
11. RP T. et al. Diabetes insipidus from neurosarcoidosis: long-term follow-up for more than eight years // Intern. Med. Intern Med, 2004. Vol. 43, № 10. P. 960-966.
12. O A. et al. Diabetes insipidus in Langerhans cell histiocytosis: When is treatment indicated? // Pediatr. Blood Cancer. Pediatr Blood Cancer, 2009. Vol. 52, № 5. P. 555-556.
13. J L. et al. Immune checkpoint inhibitor-associated pituitary-adrenal dysfunction: A systematic review and meta-analysis // Cancer Med. Cancer Med, 2019. Vol. 8, № 18. P. 7503-7515.
14. CY C. et al. Immune Checkpoint Inhibitors and Immune-Related Adverse Events in Patients With Advanced Melanoma: A Systematic Review and Network Meta-analysis // JAMA Netw. open. JAMA Netw Open, 2020. Vol. 3, № 3.
15. C C. et al. Hypophysitis due to IgG4-related disease responding to treatment with azathioprine: an alternative to corticosteroid therapy // Pituitary. Pituitary, 2014. Vol. 17, № 3. P. 251-256.
16. Центральный несахарный диабет: патогенетические и прогностические аспекты, дифференциальная диагностика [Electronic resource]. URL: https://www.elibrary.ru/item.asp?id=30337613 (accessed: 13.09.2021).
17. MH S.-R., CA S., A L. Genetics of Diabetes Insipidus // Endocrinol. Metab. Clin. North Am. Endocrinol Metab Clin North Am, 2017. Vol. 46, № 2. P. 305-334.
18. CG G. et al. Causes of reversible nephrogenic diabetes insipidus: a systematic review // Am. J. Kidney Dis. Am J Kidney Dis, 2005. Vol. 45, № 4. P. 626-637.
19. D B., DG B. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus // Nat. Rev. Nephrol. Nat Rev Nephrol, 2015. Vol. 11, № 10. P. 576-588.
20. M S., S O., A Y.-O. Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor gene mutations // Endocr. J. Endocr J, 2008. Vol. 55, № 2. P. 277-284.
21. Александровна П.Е. Первичные и вторичные синдромы гипо- и гипернатриемии в эндокринологии, их современная диагностика и лечение. 2019.
22. MF A. et al. Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus // J. Am. Soc. Nephrol. J Am Soc Nephrol, 2000. Vol. 11, № 6. P. 1044-1054.
23. Sakuma M. et al. Development of diagnostic criteria and severity scale for polydipsia: A systematic literature review and well-experienced clinicians’ consensus // Psychiatry Res. Elsevier, 2021. Vol. 297. P. 113708.
24. Ismail F.Y. et al. Clinical Semiology and Neuroradiologic Correlates of Acute Hypernatremic Osmotic Challenge in Adults: A Literature Review // AJNR Am. J. Neuroradiol. American Society of Neuroradiology, 2013. Vol. 34, № 12. P. 2225.
25. Haddad R. et al. Nocturia and Nocturnal Polyuria in Neurological Patients: From Epidemiology to Treatment. A Systematic Review of the Literature // Eur. Urol. Focus. Elsevier, 2020. Vol. 6, № 5. P. 922-934.
26. MR W. et al. Effect of canagliflozin on blood pressure and adverse events related to osmotic diuresis and reduced intravascular volume in patients with type 2 diabetes mellitus // J. Clin. Hypertens. (Greenwich). J Clin Hypertens (Greenwich), 2014. Vol. 16, № 12. P. 875-882.
27. MH G. et al. Hypernatremia, azotemia, and dehydration ue to high-protein tube feeding // Ann. Intern. Med. Ann Intern Med, 1968. Vol. 68, № 4. P. 778-791.
28. H R.-B. et al. Urea for the Treatment of Hyponatremia // Clin. J. Am. Soc. Nephrol. Clin J Am Soc Nephrol, 2018. Vol. 13, № 11. P. 1627-1632.
29. AM D. et al. A water deprivation test for the differential diagnosis of polyuria // JAMA. JAMA, 1963. Vol. 185, № 9. P. 699-703.
30. W F. et al. Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome-revisiting the direct and indirect water deprivation tests // J. Clin. Endocrinol. Metab. J Clin Endocrinol Metab, 2011. Vol. 96, № 5. P. 1506-1515.
31. M de F. et al. The water deprivation test and a potential role for the arginine vasopressin precursor copeptin to differentiate diabetes insipidus from primary polydipsia // Endocr. Connect. Endocr Connect, 2015. Vol. 4, № 2. P. 86-91.
32. Fenske W. et al. A Copeptin-Based Approach in the Diagnosis of Diabetes Insipidus // https://doi.org/10.1056/NEJMoa1803760. Massachusetts Medical Society, 2018. Vol. 379, № 5. P. 428-439.