Поиск
Озвучить текст Озвучить книгу
Изменить режим чтения
Изменить размер шрифта
Оглавление
Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.

Список литературы

  1. Budson A.E., Kowall N.W. Handbook of Alzheimer’s disease and other dementias. Wiley- Blackwell, 2013; 387 с.
  2. Яхно Н.Н., Захаров В.В., Локшина А.Б. и др. Деменции. Рук-во для врачей. 2-е изд. М.: Медпресс-информ, 2010; 272 с.
  3. Нейродегенеративные заболевания: от генома до целостного организма. / Под ред М.В.Угрюмова. Москва: научный мир, 2014; 848 с.
  4. Lehmann M., Barnes J., Ridgway G.R., et al. Global gray matter changes in posterior cortical atrophy: a serial imaging study. Alzheimers Dement. 2012; 8(6): c. 502–512.
  5. Ferreira D., Verhagen C., Hernández-Cabrera J.A., et al. Distinct subtypes of Alzheimer"s disease based on patterns of brain atrophy: longitudinal trajectories and clinical applications. Sci Rep. 2017; 7: 46263. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394684/pdf/srep46263.pdf
  6. Международная статистическая классификация болезней и проблем, связанных со здоровьем. Десятый пересмотр (МКБ-10). – Женева, ВОЗ, 1995.–317 с.
  7. Левин О.С. Диагностика и лечение когнитивных нарушений и деменции в клинической практике. М.: МЕДпресс-информ, 2019; 448 с.
  8. Яхно Н.Н., Захаров В.В. Когнитивные и эмоционально-аффективные нарушения при дисциркуляторной энцефалопатии. Рус. мед. журн. 2002; 10(12–13): c. 539–542.
  9. Dichgans M., Leys D. Vascular Cognitive Impairment. Circ. Res. 2017; 120(3): c. 573–591.
  10. Локшина А.Б., Захаров В.В. Легкие и умеренные когнитивные расстройствапри дисциркуляторной энцефалопатии. Неврологический журнал (Приложение). 2006; 11(1): с. 57–63.
  11. Duering M., Righart R., Wollenweber F.A. et al. Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology. 2015; 84: c. 1685–1692.
  12. Smith E.E., Schneider J.A., Wardlaw J.M. et al. Cerebral microinfarcts: the invisible lesions. Lancet Neurol. 2012; 11: c. 272–282.
  13. Sonnen J.A., Larson E.B., Crane P.K. et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann. Neurol. 2007; 62: c. 406–413.
  14. Westover M.B., Bianchi M.T., Yang C. et al. Estimating cerebral microinfarct burden from autopsy samples. Neurology. 2013; 80: c. 1365–1369.
  15. Qiu C., Cotch M.F., Sigurdsson S. et al. Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology. 2010; 75: c. 2221–2228.
  16. Poels M.M., Ikram M.A., van der Lugt A. et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology. 2012; 78: c. 326–333.
  17. Seo S.W., Hwa Lee B., Kim E.J. et al. Clinical significance of microbleeds in subcortical vascular dementia. Stroke. 2007; 38: c. 1949–1951.
  18. Hachinski V.C., Iliff L.D., Zilhka E., et al. Cerebral blood flow in dementia. Arch Neurol. 1975; 32(9): c. 632–637.
  19. Smith E.E., Greenberg S.M. Beta-amyloid, blood vessels, and brain function. Stroke. 2009; 40: c. 2601–2606.
  20. Greenberg S.M., Gurol M.E., Rosand J. et al. Amyloid angiopathy-related vascular cognitive impairment. Stroke. 2004; 35: c. 2616–2619.
  21. Gold G., Giannakopoulos P., Herrmann F.R. et al. Identification of Alzheimer and vascular lesions thresholds for mixed dementia. Brain. 2007; 130: c. 2830–2836.
  22. Sadowski M., Pankiewicz J., Scholtzova H. et al. Links between the pathology of Alzheimer"s disease and vascular dementia. Neurochem. Res. 2004; 29: c. 1257–1266.
  23. Bird T.D., Knopman D., Van Swieten J., et al. Epidemiology and genetics of frontotemporal dementia/Pick’s disease. Annals of Neurology. 2003; 54(Suppl 5): c. S29–S31.
  24. Onyike C.U., Diehl-Schmid J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry. 2013; 25(2): c. 130–137.
  25. Rosso S.M., Landweer E.-J., Houterman M., et al. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case-control study. Journal of Neurology, Neurosurgery and Psychiatry. 2003; 74(11): c. 1574–1576.
  26. Guerreiro R. et al. Investigating the genetic architecture of dementia with Lewy bodies: a two- stage genome-wide association study. The Lancet Neurology. 2018; 17(1): c. 64–74.
  27. Vergouw L.J.M. et al. An update on the genetics of dementia with Lewy bodies. Parkinsonism & related disorders. 2017; 43: c. 1–8.
  28. Irwin D.J. et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. The Lancet Neurology. 2017; 16(1): c. 55–65.
  29. Thomas M. (ed.). Inflammation in Parkinson"s Disease: Scientific and Clinical Aspects. Springer, 2014; 222 c.
  30. Kotzbauer P.T. et al. Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Archives of neurology. 2012; 69(10): c. 1326–1331.
  31. Jellinger K. A. Pathological substrate of dementia in Parkinson"s disease—its relation to DLB and DLBD. Parkinsonism & related disorders. 2006; 12(2): c. 119–120.
  32. Gomez-Tortosa E., Newell K., Irizarry M.C., et al. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology. 1999; 53: c. 1284–1291.
  33. Compta Y. et al. Lewy-and Alzheimer-type pathologies in Parkinson"s disease dementia: which is more important? Brain. 2011; 134(5): c. 1493–1505.
  34. Cagnin A. et al. Clinical and cognitive correlates of visual hallucinations in dementia with Lewy bodies. J Neurol Neurosurg Psychiatry. 2013; 84(5): c. 505–510.
  35. Harding A.J., Broe G.A., Halliday G.M. Visual hallucinations in Lewy body disease relate to Lewy bodies in the temporal lobe. Brain. 2002; 125(2): c. 391–403.
  36. Yokoi K. et al. Hallucinators find meaning in noises: pareidolic illusions in dementia with Lewy bodies. Neuropsychologia. 2014; 56: c. 245–254.
  37. Postuma R.B. et al. MDS clinical diagnostic criteria for Parkinson"s disease. Movement Disorders. 2015; 30(12): c. 1591–1601.
  38. Walker Z. et al. Lewy body dementias. The Lancet. 2015; 386(10004): c. 1683–1697.
  39. Fritz N.E. et al. Motor performance differentiates individuals with Lewy body dementia, Parkinson’s and Alzheimer’s disease. Gait & Posture. 2016; 50: c. 1–7.
  40. Dementia. Fact sheet N362. March 2015. URL: http://www.who.int/mediacentre/factsheets/fs362/en/. (дата обращения: 02.02.2020).
  41. World Alzheimer Report 2018. The state of the art of dementia research: New frontiers. London: ADI, 2018; 48 с.
  42. Sachdev P.S., Lipnicki D.M., Kochan N.A., et al. The Prevalence of Mild Cognitive Impairment in Diverse Geographical and Ethnocultural Regions: The COSMIC Collaboration. PLoS One. 2015; 10(11): e0142388 c. 1–19. URL: https://journals.plos.org/plosone/article/file? id=10.1371/journal.pone.0142388&type=printable
  43. Одинак М.М., Воробьев С.В., Фокин В.А. и др. Магнитно-резонансная морфометрия в дифференциальной диагностике посттравматических когнитивных нарушений. Неврология, нейропсихиатрия, психосоматика 2014; 2: с. 13–18.
  44. Яхно Н.Н., Преображенская И.С., Захаров В.В. и др. Распространенность когнитивных нарушений при неврологических заболеваниях (анализ работы специализированного амбулаторного приема). Неврология, нейропсихиатрия, психосоматика. 2012; 2: с. 30–35.
  45. Zhu X.C., Tan L., Wang H.F., et al. Rate of early onset Alzheimer"s disease: a systematic review and meta-analysis. Ann Transl Med. 2015; 3(3): 38. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356853/pdf/atm-03-03-38.pdf
  46. Белоусов Ю.Б., Зырянов С.К., Белоусов Д.Ю., Бекетов А.С. Клинико-экономические аспекты терапии болезни Альцгеймера в России. Качественная клиническая практика. 2009; спецвыпуск: с. 3–28.
  47. Случевская С.Ф. Клинико-эпидемиологическая характеристика и организация медико- социальной помощи психически больным пожилого возраста в Санкт-Петербурге: автореф. дис. канд. мед. наук. / Случевская С. Ф. — СПб, 2008; 201 с.
  48. Васенина Е.Е., Левин О.С., Сонин А.Г. Современные тенденции в эпидемиологии деменции и ведении пациентов с когнитивными нарушениями. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуск. 2017; 117(6): с. 87–95.
  49. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Arlington, VA: American Psychiatric Publishing, 2013; 992 c.
  50. Rizzi L., Rosset I., Roriz-Cruz M. Global Epidemiology of Dementia: Alzheimer’s and Vascular Types. BioMed Research International. 2014; 908915: c. 1–8.
  51. Калын Я.Б. Эпидемиология болезни Альцгеймера: сравнительный анализ эпидемиологических данных. Материалы III научно-практической конференции «Медико-социальные аспекты психического здоровья пожилого человека». М., 2011.
  52. Mijajlovic M.D., Pavlović A., Brainin M. et al. Post-stroke dementia – a comprehensive review. BMC Medicine. 2017; 15: 11. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241961/pdf/12916_2017_Article_779.pdf
  53. Чухловина М.Л. Особенности патогенеза, диагностики и лечения смешанной деменции. Журн. неврол. и психиатр. им. С.С. Корсакова. 2013; 1(113): с. 77–81.
  54. Zekry D., Hauw J.J., Gold G. Mixed dementia: epidemiology, diagnosis and treatment. J. Amer. Geriatr. Soc. 2002; 50(8): c. 1431–1438.
  55. Jellinger K.A., Attems J. Prevalence and pathology of vascular dementia in the oldest-old. J Alzheimers Dis. 2010; 21(4): c. 1283–1293.
  56. Custodio N., Montesinos R., Lira D., et al. Mixed dementia: A review of the evidence. Dement. Neuropsychol. 2017; 11(4): c. 364–370.
  57. Ratnavalli E., Brayne C., Dawson K., et al. The prevalence of frontotemporal dementia. Neurology. 2002; 58: c. 1615–1621.
  58. Mercy L., Hodges J.R., Dawson K., et al. Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology. 2008; 71: c. 1496–1499.
  59. Rosso S.M., Donker Kaat L., Baks T., et al. Frontotemporal dementia in the Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain. 2003; 126: c. 2016–2022.
  60. Coyle-Gilchrist I.T., Dick K.M., Patterson K., et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology. 2016; 86(18): c. 1736–1743.
  61. Lambert M.A., Bickel H., Prince M., et al. Estimating the burden of early onset dementia; systematic review of disease prevalence. Eur J Neurol. 2014; 21: c. 563–569.
  62. Johnson J.K., Diehl J., Mendez M.F., et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005; 62: c. 925–930.
  63. Kansal K., Mareddy M., Sloane K.L., et al. Survival in Frontotemporal Dementia Phenotypes: A Meta-Analysis. Dement Geriatr Cogn Disord. 2016; 41: c. 109–122.
  64. Vann Jones S.A., O’Brien J.T. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014; 44: c. 673–683.
  65. Mok W. et al. Clinicopathological concordance of dementia diagnoses by community versus tertiary care clinicians. American Journal of Alzheimer"s Disease & Other Dementias. 2004; 19(3): c. 161–165.
  66. Savica R. et al. Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA neurology. 2013; 70(11): c. 1396–1402.
  67. Perez F. et al. A 15-year population-based cohort study of the incidence of Parkinson"s disease and dementia with Lewy bodies in an elderly French cohort. Journal of Neurology, Neurosurgery & Psychiatry. 2010; 81(7): c. 742–746.
  68. Dubois B., Feldman H.H., Jacova C. et al. Advancing research diagnostic criteria for Alzheimer"s disease: the IWG-2 criteria. Lancet Neurol. 2014; 13(6): c. 614–629.
  69. Емелин А.Ю., Лобзин В.Ю., Воробьев С.В. Когнитивные нарушения: руководство для врачей. Москва, 2019; 416 с.
  70. Chare L., Hodges J.R., Leyton C.E., et al. New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. J Neurol Neurosurg Psychiatry. 2014; 85: c. 866–871.
  71. Чимагомедова А.Ш., Зорина Н.А., Араблинский А.В., Левин О.С. Клинико- визуализационная гетерогенность деменции с тельцами Леви. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2019; 119(9): c. 25–31.
  72. McKeith I., Taylor J., Thomas A. et al. Revisiting DLB Diagnosis: A Consideration of Prodromal DLB and of the Diagnostic Overlap With Alzheimer Disease. Journal of Geriatric Psychiatry and Neurology. 2016; 29: c. 249–253.
  73. Hamilton J.M. et al. Early visuospatial deficits predict the occurrence of visual hallucinations in autopsy-confirmed dementia with Lewy bodies. The American Journal of Geriatric Psychiatry. 2012; 20(9): c. 773–781.
  74. Okura T., Plassman B.L., Steffens D.C. Prevalence of neuropsychiatric symptoms and their association with functional limitations in older adults in the United States: The Aging, Demographics, and Memory Study. J. Am. Geriatr. Soc. 2010; 58: c. 330–337.
  75. Jack C.R. Jr., Albert M.S., Knopman D.S. et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer"s Association workgroups on diagnostic guidelines for Alzheimer"s disease. Alzheimers Dement. 2011; 7(3): c. 257–262.
  76. Emilien G., Durlach C., Minaker K.L. et al. Alzheimer’s disease: neuropsychology and pharmacology. Shpringer Bazel AG. 2012; 283 c.
  77. Petersen R.S., Smith G.E., Waring S.C. et al. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 1999; 56: c. 303–308.
  78. Feinberg T.E., Farah M.J. Behavioral neurology and neuropsychology. 2nd edition. McGrawHill, 2003; 910 c.
  79. Gauthier S. Clinical diagnosis and management of Alzheimer’s disease. Informa UK Ltd., 2007; 393 c.
  80. Zhao Q.F., Tan L., Wang H.F., et al. The prevalence of neuropsychiatric symptoms in Alzheimer"s disease: Systematic review and meta-analysis. J Affect Disord. 2016; 190: с. 264–271.
  81. Левин О.С. Диагностика и лечение деменции в клинической практике. М.: МЕДпресс- информ, 2010; 256 с.
  82. Гусев Е.И., Боголепова А.Н. Депрессивные расстройства у пациентов с цереброваскулярными заболеваниями. 2-е изд. М.: МЕДпресс-информ, 2017; 208 с.
  83. Mayo N.E., Wood-Dauphinee S., Cote R., et al. Activity, participation, and quality of life 6 months poststroke. Arch. Phys. Med. Rehabil. 2002; 83(8): c. 1035–1042.
  84. Caeiro L., Ferro J.M., Costa J. Apathy Secondary to Stroke: A Systematic Review and Meta- Analysis. Cerebrovasc. Dis. 2013; 35: c. 23–39.
  85. Lyketsos C.G., Lopez O.L., Jones B., et al. A population-based study of the prevalence of neuropsychiatric disturbances in dementia and mild cognitive impairment: Results from the Cardiovascular Health Study. JAMA 2002; 288: c. 1425–1483.
  86. Fernandez-Martínez M., Castro J., Molano A. et al. Prevalence of neuropsychiatric symptoms in Alzheimer"s disease and vascular dementia. Curr Alzheimer Res. 2008; 5(1): c. 61–69.
  87. Rascovsky K., Hodges J.R., Knopman D., et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134: c. 2456–2477.
  88. McKeith I.G., Boeve B.F., Dickson D.W. et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017; 89: c. 1–13.
  89. Ferman T.J. et al. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer"s disease. The Clinical Neuropsychologist. 2006; 20(4): c. 623–636.
  90. Varanese S. et al. Fluctuating cognition and different cognitive and behavioural profiles in Parkinson’s disease with dementia: comparison of dementia with Lewy bodies and Alzheimer’s disease. Journal of neurology. 2010; 257(6): c. 1004–1011.
  91. McKeith I.G. Dementia with Lewy bodies: a clinical overview. Dementia – CRC Press. 2017; С. 739–749.
  92. Левин О.С., Аникина М.А., Шиндряева Н.Н., Зимнякова О.С. Психотические нарушения при болезни Паркинсона и деменции с тельцами Леви. Журнал неврологии и психиатрии им. С.С. Корсакова. 2011; 6: c. 82–88.
  93. Ferman T.J. et al. Inclusion of RBD improves the diagnostic classification of dementia with Lewy bodies. Neurology. 2011; 77(9): c. 875–882.
  94. Thomas A.J., Taylor J.P., McKeith I. et al. Revision of assessment toolkits for improving the diagnosis of Lewy body dementia: The DIAMOND Lewy study. Int J Geriatr Psychiatry. 2018; 33(10): c. 1293–1304.
  95. Rueda A.D., Lau K.M., Saito N. et al. Self-rated and informant-rated everyday function in comparison to objective markers of Alzheimer"s disease. Alzheimers Dement. 2015; 11(9): c. 1080–1089.
  96. Jorm A.F., Christensen H., Korten A.E., et al. Informant ratings of cognitive decline in old age: validation against change on cognitive tests over 7 to 8 years. Psychol Med. 2000; 30(4): c. 981– 985.
  97. McKhann G.M., Knopman D.S., Chertkow H. et al. The diagnosis of dementia due to Alzheimer"s disease: recommendations from the National Institute on Aging-Alzheimer"s Association workgroups on diagnostic guidelines for Alzheimer"s disease. Alzheimers Dement. 2011; 7(3): c. 263–269.
  98. Albert M.S., DeKosky S.T., Dickson D., et al. The diagnosis of mild cognitive impairment due to Alzheimer"s disease: recommendations from the National Institute on Aging-Alzheimer"s Association workgroups on diagnostic guidelines for Alzheimer"s disease. Alzheimers Dement. 2011; 7(3): c. 270–279.
  99. Harrison J.K., Stott D.J., McShane R., et al. Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for the early diagnosis of dementia across a variety of healthcare settings. Cochrane Database Syst Rev. 2016; 11: CD011333. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011333.pub2/epdf/full/en
  100. Royall D., Lauterbach E., Kaufer D., et al. The cognitive correlates of functional status: A review from the Committee on Research of the American Neuropsychiatric Association. Journal of Neuropsychiatry & Clinical Neurosciences. 2007; 19: c. 249–265.
  101. McLennan S.N., Mathias J.L., Brennan L.C., et al. Cognitive impairment predicts functional capacity in dementia-free patients with cardiovascular disease. J Cardiovasc Nurs. 2010; 25(5): c. 390–397.
  102. Ruxton K., Woodman R.J., Mangoni A.A. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults: A systematic review and meta- analysis. Br J Clin Pharmacol. 2015; 80(2): c. 209–220.
  103. Coupland C.A.C., Hill T., Dening T., et al. Anticholinergic Drug Exposure and the Risk of Dementia: A Nested Case-Control Study. JAMA Intern Med. 2019; 179(8): c. 1084–1093.
  104. Joung K.I., Kim S., Cho Y.H., Cho S.I. Association of Anticholinergic Use with Incidence of Alzheimer"s Disease: Population-based Cohort Study. Sci Rep. 2019; 9(1): 6802. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494800/pdf/41598_2019_Article_43066.pdf
  105. Rawle M.J., Cooper R., Kuh D., Richards M. Associations Between Polypharmacy and Cognitive and Physical Capability: A British Birth Cohort Study. J Am Geriatr Soc. 2018; 66(5): c. 916–923.
  106. Tucker A.R., Ng K.T. Digoxin-related impairment of learning and memory in cardiac patients. Psychopharmacology. 1983; 81: c. 86–88.
  107. Gnjidic D., Hilmer S., Blyth F. et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol. 2012; 65(9): c. 989–995.
  108. Cannon-Albright L.A., Foster N.L., Schliep K., et al. Relative risk for Alzheimer disease based on complete family history. Neurology. 2019; 92(15): c. e1745–e1753.
  109. Mendez M.F. Early-Onset Alzheimer Disease. Neurol Clin. 2017; 35(2): c. 263–281.
  110. Levine D.A., Wadley V.G., Langa K.M., et al. Risk Factors for Poststroke Cognitive Decline: The REGARDS Study (Reasons for Geographic and Racial Differences in Stroke). Stroke. 2018; 49(4): c. 987–994.
  111. Ford E., Greenslade N., Paudyal P., et al. Predicting dementia from primary care records: A systematic review and meta-analysis. PLOS ONE. 2018; 13(3): e0194735. URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194735&type=printable
  112. Carr A.R., Mendez M.F. Affective Empathy in Behavioral Variant Frontotemporal Dementia: A Meta-Analysis. Front Neurol. 2018; 9(417): c. 1–8. URL: https://www.frontiersin.org/articles/10.3389/fneur.2018.00417/pdf
  113. Bora E., Walterfang M., Velakoulis D. Theory of mind in behavioural-variant frontotemporal dementia and Alzheimer"s disease: a meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry 2015; 86: c. 714–719.
  114. Chakrabarty T., Sepehry A., Jacova C., et al. The Prevalence of Depressive Symptoms in Frontotemporal Dementia: A Meta-Analysis. Dement Geriatr Cogn Disord 2015; 39: c. 257–271.
  115. Kamath V., Chaney G., DeRight J., Onyike C. A meta-analysis of neuropsychological, social cognitive, and olfactory functioning in the behavioral and language variants of frontotemporal dementia. Psychological Medicine 2019; 49(16): c. 2669–2680.
  116. Warren J.D., Rohrer J.D., Rossor M.N. Clinical review. Frontotemporal dementia. BMJ 2013; 347(f4827): c.1–9. URL: https://www.bmj.com/content/bmj/347/bmj.f4827.full.pdf
  117. Mishra A., Ferrari R., Heutink P., et al. Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain. 2017; 140(5): c. 1437–1446.
  118. Majumder V., Gregory J.M., Barria M.A. et al. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol 2018; 18(90): c. 1–7. URL: https://bmcneurol.biomedcentral.com/track/pdf/10.1186/s12883-018-1091-7
  119. Ferrari R., Wang Y., Vandrovcova J., et al. Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer"s and Parkinson"s diseases. Journal of Neurology, Neurosurgery & Psychiatry 2017; 88: c. 152–164.
  120. Curtis A.F., Masellis M., Hsiung G.R., et al. Sex differences in the prevalence of genetic mutations in FTD and ALS: A meta-analysis. Neurology. 2017; 89(15): c. 1633–1642.
  121. Zhang C.C., Zhu J.X., Wan Y., et al. Meta-analysis of the association between variants in MAPT and neurodegenerative diseases. Oncotarget. 2017; 8(27): c. 44994–45007.
  122. Faroqi-Shah Y., Friedman L. Production of Verb Tense in Agrammatic Aphasia: A Meta-Analysis and Further Data. Behav Neurol. 2015; 2015(983870): c. 1–15. URL: http://downloads.hindawi.com/journals/bn/2015/983870.pdf
  123. Battistella G., Borghesani V., Henry M., et al. Task-free functional language networks: reproducibility and clinical application. Journal of Neuroscience. 2019; 1485-19. URL: https://www.jneurosci.org/content/early/2019/12/18/JNEUROSCI.1485-19.2019
  124. Kamath V., Sutherland E., Chaney G. A Meta-Analysis of Neuropsychological Functioning in the Logopenic Variant of Primary Progressive Aphasia: Comparison with the Semantic and Non- Fluent Variants. Journal of the International Neuropsychological Society. 2019; c. 1–9.
  125. Poole M.L., Brodtmann A., Darby D., Vogel A.P. Motor Speech Phenotypes of Frontotemporal Dementia, Primary Progressive Aphasia, and Progressive Apraxia of Speech. J Speech Lang Hear Res. 2017; 60(4): c. 897–911.
  126. Mosimann U.P., Mather G., Wesnes K.A. et al. Visual perception in Parkinson disease dementia and dementia with Lewy bodies. Neurology. 2004; 63(11): c. 2091–2096.
  127. Collerton D., Burn D., McKeith I., O’Brien J. Systematic review and meta-analysis show that dementia with Lewy bodies is a visual-perceptual and attentional-executive dementia. Dementia and geriatric cognitive disorders. 2003; 16(4): c. 229–237.
  128. Postuma R.B., Gagnon J.F., Vendette M. et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology. 2009; 72: c. 1296–1300.
  129. Iranzo A., Fernandez-Arcos A., Tolosa E., et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS One 2014; 9: e89741. URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0089741&type=printable
  130. Postuma R.B., Arnulf I., Hogl B. et al. A single-question screen for rapid eye movement sleep behavior disorder: a multicenter validation study. Mov. Disord. 2012; 27(7): c. 913–916.
  131. Rizzo G., Arcuti S., Copetti M. et al. Accuracy of clinical diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry. 2018; 89(4): с. 358–366.
  132. Waldemar G., Dubois B., Emre M. et al. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. European Journal of Neurology 2007; 14: c. e1–e26.
  133. Borges M.K., Canevelli M., Cesari M., Aprahamian I. Frailty as a Predictor of Cognitive Disorders: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2019; 6(26): c. 1–8.
  134. Chen T.B., Yiao S.Y., Sun Y., et al. Comorbidity and dementia: A nationwide survey in Taiwan. PLOS ONE. 2017; 12(4): e0175475. https://journals.plos.org/plosone/article/file? id=10.1371/journal.pone.0175475&type=printable
  135. Biessels G.J., Whitmer R.A. Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia. 2020; 63: c. 3–9.
  136. Bunn F., Burn A.M., Goodman C., et al. Comorbidity and dementia: a scoping review of the literature. BMC Med. 2014; 12(192): c. 1–15. http://www.biomedcentral.com/1741-7015/12/192
  137. Falk N., Cole A., Meredith T.J. Evaluation of Suspected Dementia. Am Fam Physician. 2018; 97(6): c. 398–405.
  138. Urbanowitsch N., Degen C., Toro P., Schröder J. Neurological soft signs in aging, mild cognitive impairment, and Alzheimer"s disease – the impact of cognitive decline and cognitive reserve. Front Psychiatry. 2015; 6 (12): c. 1–5.
  139. Pasquini L., Llibre Guerra J., Prince M. et al. Neurological signs as early determinants of dementia and predictors of mortality among older adults in Latin America: a 10/66 study using the NEUROEX assessment. BMC Neurol. 2018; 18: 163. https://bmcneurol.biomedcentral.com/track/pdf/10.1186/s12883-018-1167-4
  140. Gasca-Salas C., Masellis M., Khoo E., et al. Characterization of Movement Disorder Phenomenology in Genetically Proven, Familial Frontotemporal Lobar Degeneration: A Systematic Review and Meta-Analysis. PLoS One. 2016; 11(4): e0153852. URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153852&type=printable
  141. Park H.K., Park K.H., Yoon B., et al. Clinical characteristics of parkinsonism in frontotemporal dementia according to subtypes. J Neurol Sci. 2017; 372: c. 51–56.
  142. Kasuga K., Kikuchi M., Tokutake T., et al. Systematic review and meta-analysis of Japanese familial Alzheimer"s disease and FTDP-17. J Hum Genet. 2015; 60(5): c. 281–283.
  143. Beeldman E., Raaphorst J., Klein Twennaar M., et al. The cognitive profile of behavioural variant FTD and its similarities with ALS: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry 2018; 89: c. 995–1002.
  144. Lomen-Hoerth C. et al. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002; 59(7): с. 1077–1079.
  145. Strong M. J. The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis. 2008; 9(6): c. 323–338.
  146. Lippa C.F., Duda J.E., Grossman M. et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology. 2007; 68(11): c. 812–819.
  147. Horimoto Y., Matsumoto M., Akatsu H. et al. Autonomic dysfunctions in dementia with Lewy bodies. Journal of neurology. 2003; 250(5): c. 530–533.
  148. Andersson M., Hansson O., Minthon L. et al. The period of hypotension following orthostatic challenge is prolonged in dementia with Lewy bodies. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied sciences. 2008; 23(2): c. 192–198.
  149. Horimoto Y., Matsumoto M., Akatsu H. et al. Autonomic dysfunctions in dementia with Lewy bodies. Journal of neurology. 2003; 250(5): с. 530–533.
  150. Stubendorff K., Aarsland D., Minthon L., Londos E. The impact of autonomic dysfunction on survival in patients with dementia with Lewy bodies and Parkinson"s disease with dementia. PloS one. 2012; 7(10): e45451. URL: https://journals.plos.org/plosone/article/file? id=10.1371/journal.pone.0045451&type=printable
  151. Saito Y., Ishikawa J., Harada K. Postprandial and orthostatic hypotension treated by Sitagliptin in a patient with dementia with Lewy bodies. The American journal of case reports. 2016; 17: c. 887–893.
  152. Schneider A.L., Jonassaint C., Sharrett A.R., et al. Hemoglobin, Anemia, and Cognitive Function: The Atherosclerosis Risk in Communities Study. J Gerontol A Biol Sci Med Sci. 2016; 71(6): c. 772–779.
  153. Dlugaj M., Winkler A., Weimar C., et al. Anemia and Mild Cognitive Impairment in the German General Population. J Alzheimers Dis. 2016; 49(4): c. 1031–1042.
  154. Agrawal S., Kumar S., Ingole V., et al. Does anemia affects cognitive functions in neurologically intact adult patients: Two year cross sectional study at rural tertiary care hospital. J Family Med Prim Care 2019; 8: c. 3005–3008.
  155. Etgen T., Sander D., Chonchol M., et al. Chronic kidney disease is associated with incident cognitive impairment in the elderly: The INVADE study. Nephrology Dialysis Transplantation. 2009; 24(10): c. 3144–3150.
  156. Yaffe K., Ackerson L., Tamura M. K., et al. Chronic kidney disease and cognitive function in older adults: findings from the chronic renal insufficiency cohort cognitive study. Journal of the American Geriatrics Society. 2010; 58(2): c. 338–345.
  157. Berger I., Wu S., Masson P., et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 2016; 14(206): c. 1–10.
  158. Hadjihambi A., Arias N., Sheikh M. et al. Hepatic encephalopathy: a critical current review. Hepatol Int. 2018; 12: c. 135–147.
  159. Bajaj J.S., Schubert C.M., Heuman D.M., et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology. 2010; 138(7): c. 2332–2340.
  160. Rondanelli M., Solerte S.B., Ferrari E. Electrolytes and cognitive function in the elderly: relationship between serum sodium and chloride concentrations and psychometric test scores. Panminerva Med. 1998; 40(3): c. 191–195.
  161. Yeung D.F., Hsu R. Expressive aphasia in a patient with chronic myelomonocytic leukemia. Springerplus. 2014; 3: 406. URL: https://springerplus.springeropen.com/track/pdf/10.1186/2193-1801-3-406
  162. Yaffe K., Blackwell T., Whitmer R., et al. Glycosylated hemoglobin level and development of cognitive impairment or dementia in older women. The journal of nutrition, health & aging. 2006; 10: c. 293–295.
  163. Binder J., Marczak A., Adler G. Glycosylated Hemoglobin and Cognitive Impairment in Patients at a Memory Clinic in Patients at a Memory Clinic. Int J Neurol Neurother. 2017; 4(069): c. 1–4.
  164. Marden J.R., Mayeda E.R., Tchetgen E.J., et al. High Hemoglobin A1c and Diabetes Predict Memory Decline in the Health and Retirement Study. Alzheimer Dis Assoc Disord. 2017; 31(1): c. 48–54.
  165. Rieben C., Segna D., da Costa B.R., et al. Subclinical Thyroid Dysfunction and the Risk of Cognitive Decline: a Meta-Analysis of Prospective Cohort Studies. The Journal of Clinical Endocrinology & Metabolism. 2016; 101(12): c. 4945–4954.
  166. Brown J., Sardar L. An autoimmune cause of confusion in a patient with a background of hypothyroidism. Endocrinol Diabetes Metab Case Rep. 2019; 2019: 19-0014. URL: https://edm.bioscientifica.com/downloadpdf/journals/edm/2019/1/EDM19-0014.xml
  167. Krysiak R., Szkróbka W., Okopień B. Sexual function and depressive symptoms in young women with hypothyroidism receiving levothyroxine/liothyronine combination therapy: a pilot study. Current Medical Research and Opinion. 2018; 34(9): c. 1579–1586.
  168. Najafi L., Malek M., Hadian A., et al. Depressive symptoms in patients with subclinical hypothyroidism – the effect of treatment with levothyroxine: a double-blind randomized clinical trial. Endocrine Research. 2015; 40(3): c. 121–126.
  169. Bottiglieri T., Laundy M., Crellin R., et al. Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry. 2000; 69(2): c. 228–232.
  170. Cho H.S., Huang L.K., Lee Y.T., et al. Suboptimal Baseline Serum Vitamin B12 Is Associated With Cognitive Decline in People With Alzheimer"s Disease Undergoing Cholinesterase Inhibitor Treatment. Front Neurol. 2018; 9(325): c. 1–5.
  171. Moore E., Mander A., Ames D., et al. Cognitive impairment and vitamin B12: a review. Int Psychogeriatr. 2012; 24(4): c. 541–556.
  172. Michelakos T., Kousoulis A.A., Katsiardanis K., et al. Serum Folate and B12 Levels in Association With Cognitive Impairment Among Seniors: Results From the VELESTINO Study in Greece and Meta-Analysis. Journal of Aging and Health. 2013; 25(4): с. 589–616
  173. De Francesco D., Winston A., Underwood J., et al. Cognitive function, depressive symptoms and syphilis in HIV-positive and HIV-negative individuals. International Journal of STD & AIDS. 2019; 30(5): c. 440–446.
  174. Marks M., Jarvis J.N., Howlett W., et al. Neurosyphilis in Africa: A systematic review. PLoS Negl Trop Dis. 2017; 11(8): e0005880. URL: https://journals.plos.org/plosntds/article/file? id=10.1371/journal.pntd.0005880&type=printable
  175. Crozatti L.L., de Brito M.H., Lopes B.N., de Campos F.P. Atypical behavioral and psychiatric symptoms: Neurosyphilis should always be considered. Autops Case Rep. 2015; 5(3): c. 43–47.
  176. Costiniuk C.T., MacPherson P.A. Neurocognitive and psychiatric changes as the initial presentation of neurosyphilis. CMAJ. 2013; 185(6): c. 499–503.
  177. Kristoferitsch W., Aboulenein-Djamshidian F., Jecel J., et al. Secondary dementia due to Lyme neuroborreliosis. Wien Klin Wochenschr. 2018; 130(15–16): c. 468–478.
  178. Miller Z.A., Sturm V.E., Camsari G.B., et al. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: Completing the picture. Neurol Neuroimmunol Neuroinflamm. 2016; 3(6): e301. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087253/pdf/NEURIMMINFL2016009704.pdf
  179. Constantinides V.C., Kasselimis D.S., Paraskevas G.P. et al. Anti-NMDA receptor encephalitis presenting as isolated aphasia in an adult. Neurocase. 2018; 24(4): c. 188–194.
  180. Hebert J., El-Sadi F., Maurice C., et al. Adult-Onset Anti-N-methyl-D-aspartate-receptor Encephalitis Presenting as a Non-Fluent Aphasia. Canadian Journal of Neurological Sciences. 2018; 45(2): c. 248–251.
  181. Ford A.H., Almeida O.P. Effect of Vitamin B Supplementation on Cognitive Function in the Elderly: A Systematic Review and Meta-Analysis. Drugs Aging. 2019; 36(5): c. 419–434.
  182. Smith A.D., Refsum H., Bottiglieri T., et al. Homocysteine and Dementia: An International Consensus Statement. J Alzheimers Dis. 2018; 62(2): c. 561–570.
  183. McCaddon A., Miller J.W. Assessing the association between homocysteine and cognition: reflections on Bradford Hill, meta-analyses, and causality. Nutr Rev. 2015; 73(10): c. 723–735.
  184. Douaud G., Refsum H., de Jager C.A., et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci USA. 2013; 110: c. 9523–9528.
  185. Hort J., O"Brien J.T., Gainotti G. et al. EFNS guidelines for the diagnosis and management of Alzheimer`s Disease. Eur J Neurol. 2010; 17(10): c. 1236–1248.
  186. Frisoni G.B., Boccardi M., Barkhof F., et al. Strategic roadmap for an early diagnosis of Alzheimer"s disease based on biomarkers. Lancet Neurol. 2017; 16(8): c. 661–676.
  187. Shea Y.F., Chu L.W., Chan A.O., et al. A systematic review of familial Alzheimer"s disease: Differences in presentation of clinical features among three mutated genes and potential ethnic differences. J Formos Med Assoc. 2016; 115(2): c. 67–75.
  188. Kowalska A. Poradnictwo i testowanie genetyczne dla rodzin z choroba Alzheimera [Genetic counseling and testing for families with Alzheimer"s disease]. Neurol Neurochir Pol. 2004; 38(6): c. 495–501.
  189. Goldman J.S., Hahn S.E., Catania J.W., et al. American College of Medical Genetics and the National Society of Genetic Counselors. Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 2011; 13: c. 597–605.
  190. Forlenza O.V. Radanovic M., Talib L.L. Cerebrospinal fluid biomarkers in Alzheimer’s disease: Diagnostic accuracy and prediction of dementia. Alzheimer’s & Dementia. 2015; 1: c. 455–463.
  191. Blennow K., Zetterberg H. Cerebrospinal fluid biomarkers for Alzheimer’sdisease. J. Alzheimers Dis. 2009; 18(2): c. 413–417.
  192. Koelsch G. BACE1 Function and Inhibition: Implications of Intervention in the Amyloid Pathway of Alzheimer"s Disease Pathology. Molecules (Basel, Switzerland). 2017; 22(10): 1723. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151801/pdf/molecules-22-01723.pdf
  193. Ritchie С., Smailagic N., Noel‐Storr A.H., et al. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer"s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017; 3(3): CD010803. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464349/pdf/CD010803.pdf
  194. Ferreira D., Perestelo-Pérez L., Westman E., et al. Meta-Review of CSF Core Biomarkers in Alzheimer"s Disease: The State-of-the-Art after the New Revised Diagnostic Criteria. Front Aging Neurosci. 2014; 6: 47. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970033/pdf/fnagi-06-00047.pdf
  195. Shaw L.M., Arias J., Blennow K. et al. Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease. Alzheimers Dement. 2018; 14(11): c. 1505–1521.
  196. Rosa M., Perucchi J., Medeiros L.R., et al. Accuracy of cerebrospinal fluid Aβ(1-42) for Alzheimer"s disease diagnosis: a systematic review and meta-analysis. J Alzheimers Dis. 2014; 40(2): c. 443–454.
  197. Wallin A., Kapaki E., Boban M., et al. Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease - A consensus report. BMC Neurol. 2017; 17(1): 102. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442599/pdf/12883_2017_Article_877.pdf
  198. Moroney J.T., Tang M.X., Berglund L., et al. Low-density lipoprotein cholesterol and the risk of dementia with stroke. JAMA. 1999; 282(3): c. 254–260.
  199. Anstey K.J., Ashby-Mitchell K., Peters R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J Alzheimers Dis. 2017; 56(1): c. 215–228.
  200. Appleton J.P., Scutt P., Sprigg N., Bath P.M. Hypercholesterolaemia and vascular dementia. Clin Sci (Lond). 2017; 131(14): с. 1561–1578.
  201. Rahemtullah A., Van Cott E.M. Hypercoagulation testing in ischemic stroke. Arch Pathol Lab Med. 2007; 131(6): с. 890–901.
  202. Engelborghs S. Clinical indications for analysis of Alzheimer’s disease CSF biomarkers. Rev Neurol (Paris) 2013; 169: c. 709–714.
  203. Чердак М.А., Яхно Н.Н. Нейродегенеративные и сосудистые факторы развития постинсультных когнитивных расстройств. Неврологический журнал. 2012; 17(5): c. 10–15.
  204. Tapiola T., Alafuzoff I., Herukka S.K., et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 2009; 66(3): c. 382–389.
  205. Rivero-Santana A., Ferreira D., Perestelo-Pérez L., et al. Cerebrospinal Fluid Biomarkers for the Differential Diagnosis between Alzheimer"s Disease and Frontotemporal Lobar Degeneration: Systematic Review, HSROC Analysis, and Confounding Factors. J Alzheimers Dis. 2017; 55(2): c. 625–644.
  206. Baldeiras I., Santana I., Leitão M.J., et al. Cerebrospinal fluid Aβ40 is similarly reduced in patients with Frontotemporal Lobar Degeneration and Alzheimer"s Disease. J Neurol Sci. 2015; 358(1–2): c. 308–316.
  207. Irwin D.J., McMillan C.T., Toledo J.B., et al. Comparison of cerebrospinal fluid levels of tau and Aβ 1-42 in Alzheimer disease and frontotemporal degeneration using 2 analytical platforms. Arch Neurol. 2012; 69(8): c. 1018–1025.
  208. Lleo A., Irwin D.J., Illán-Gala I., et al. A 2-Step Cerebrospinal Algorithm for the Selection of Frontotemporal Lobar Degeneration Subtypes. JAMA Neurol. 2018; 75(6): c. 738–745.
  209. Ishiki A., Kamada M., Kawamura Y., et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer"s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J. Neurochem. 2016; 136: c. 258–261.
  210. van Harten A.C., Kester M.I., Visser P.J., et al. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med. 2011; 49(3): c. 353–366.
  211. Mukaetova-Ladinska E.B., Monteith R., Perry E.K. Cerebrospinal fluid biomarkers for dementia with Lewy bodies. International Journal of Alzheimer’s Disease 2010; 2010: 536538, 17 c. URL: http://downloads.hindawi.com/journals/ijad/2010/536538.pdf
  212. Beynon R., Sterne J.A., Wilcock G., et al. Is MRI better than CT for detecting a vascular component to dementia? A systematic review and meta-analysis. BMC Neurol. 2012; 12(33): c. 1–10.
  213. Health Quality Ontario. The appropriate use of neuroimaging in the diagnostic work-up of dementia: an evidence-based analysis. Ont Health Technol Assess Ser. 2014; 14(1): c. 1–64.
  214. Clarfield A.M. The decreasing prevalence of reversible dementias: an updated meta‐analysis. Arch Intern Med 2003; 163: c. 2219–2229.
  215. Jelic V., Kowalski J. Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment. Clin EEG Neurosci. 2009; 40: c. 129–142.
  216. Wieser H.G., Schindler K., Zumsteg D. EEG in Creutzfeldt–Jakob disease. Clin Neurophysiol. 2006; 117: c. 935–951.
  217. Liedorp M., van der Flier W.M., Hoogervorst E.L., et al. Associations between patterns of EEG abnormalities and diagnosis in a large memory clinic cohort. Dement Geriatr Cogn Disord. 2009; 27: c. 18–23.
  218. De Flores R., La Joie R., Chételat G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience. 2015; 309: с. 29–50.
  219. Frisoni G.B., Jack C.R. HarP: the EADC-ADNI harmonized protocol for manual hippocampal segmentation. A standard of reference from a global working group. Alzheimers Dement. 2015; 11: c. 107–110.
  220. Ledig C., Schuh A., Guerrero R. et al. Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci Rep. 2018; 8: 11258. URL: https://www.nature.com/articles/s41598-018-29295-9.pdf
  221. Park M., Moon W.J. Structural MR Imaging in the Diagnosis of Alzheimer"s Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives. Korean J Radiol. 2016; 17(6): c. 827–845.
  222. Scheltens P., Launer L.J., Barkhof F., et al. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol. 1995; 242: c. 557–560.
  223. Scheltens P., Leys D., Barkhof F., et al. Atrophy of medial temporal lobes on MRI in "probable" Alzheimer"s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry. 1992; 55: c. 967–972.
  224. Martínez G., Vernooij R.W., Fuentes Padilla P., et al. 18F PET with flutemetamol for the early diagnosis of Alzheimer"s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017; 11: CD012884. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486287/pdf/CD012884.pdf
  225. Martínez G., Vernooij R.W., Fuentes Padilla P., et al. 18F PET with florbetaben for the early diagnosis of Alzheimer"s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017; 11: CD012883. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485979/pdf/CD012883.pdf
  226. Martínez G., Vernooij R.W., Fuentes Padilla P., et al. 18F PET with florbetapir for the early diagnosis of Alzheimer"s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017; 11: CD012216. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486090/pdf/CD012216.pdf
  227. Valotassiou V., Malamitsi J., Papatriantafyllou J., et al. SPECT and PET imaging in Alzheimer’s disease. Annals of Nuclear Medicine. 2018; 32(12): c. 1–11.
  228. Zhao Q., Chen X., Zhou Y. Quantitative multimodal multiparametric imaging in Alzheimer"s disease. Brain Inform. 2016; 3(1): c. 29–37.
  229. Zhang S., Smailagic N., Hyde C., et al. (11)C-PIB-PET for the early diagnosis of Alzheimer"s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2014; (7): CD010386. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464750/pdf/CD010386.pdf
  230. He W., Liu D., Radua J., et al. Meta-analytic comparison between PIB-PET and FDG-PET results in Alzheimer"s disease and MCI. Cell Biochem Biophys. 2015; 71(1): c. 17–26.
  231. Kantarci K. Magnetic Resonance Spectroscopy in Common Dementias. Neuroimag Clin N Am. 2013; 23: c. 393–406.
  232. Sachdev P., Kalaria R., O’Brien J. et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer disease and associated disorders. 2014; 28(3): c. 206–218.
  233. Roman G.C., Tatemichi T.K., Erkinjuntti T. et al. Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Work Group. Neurology. 1993; 43: c. 250–260.
  234. Filippi M., Agosta F., Barkhof F. EFNS task force: the use of neuroimaging in the diagnosis of Dementia. European Journal of Neurology. 2012; 19: c. 1487–1511.
  235. van Straaten E.C., Scheltens P., Knol D.L., et al. Operational definitions for the NINDS‐AIREN criteria for vascular dementia: an interobserver study. Stroke 2003; 34: c. 1907–1912.
  236. Одинак М.М., Емелин А.Ю., Лобзин В.Ю. Нарушение когнитивных функций при цереброваскулярной патологии. СПб.: ВМедА, 2006; 158 с.
  237. Ding M., Qiu C. Atrial Fibrillation, Cognitive Decline, and Dementia: an Epidemiologic Review. Curr Epidemiol Rep. 2018; 5(3): c. 252–261.
  238. Santangeli P., Di Biase L., Bai R., et al. Atrial fibrillation and the risk of incident dementia: a meta-analysis. Heart Rhythm. 2012; 9(11): c. 1761–1768.
  239. Islam M.M., Poly T.N., Walther B.A., et al. Association Between Atrial Fibrillation and Dementia: A Meta-Analysis. Front Aging Neurosci. 2019; 11(305): c. 1–15.
  240. Dagres N., Chao T.F., Fenelon G., et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/AsiaPacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society(LAHRS) expert consensus on arrhythmias and cognitive function: what is the best practice? Europace 2018; 20: c. 1399–1421.
  241. Arangalage D., Ederhy S., Dufour L., et al. Relationship between cognitive impairment and echocardiographic parameters: a review. J Am Soc Echocardiogr. 2015; 28(3): c. 264–274.
  242. Malojcic B., Giannakopoulos P., Sorond F.A., et al. Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer"s disease. BMC Med. 2017; 15(1): 27. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299782/pdf/12916_2017_Article_799.pdf
  243. Wendell C.R., Waldstein S.R., Ferrucci L., et al. Carotid atherosclerosis and prospective risk of dementia. Stroke. 2012; 43(12): c. 3319–3324.
  244. Li X., Ma X., Lin J., et al. Severe carotid artery stenosis evaluated by ultrasound is associated with post stroke vascular cognitive impairment. Brain Behav. 2017; 7: e00606. URL: https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.606
  245. Яхно Н.Н., Федорова Т.С., Дамулин И.В. и соавт. Влияние каротидной эндартерэктомии на динамику когнитивных нарушений у пациентов с атеросклеротическим стенозом сонных артерий. Журнал неврологии и психиатрии им. С.С. Корсакова. 2011; 111(3): с. 31–37.
  246. Bisenius S., Neumann J. and Schroeter M.L. Validating new diagnostic imaging criteria for primary progressive aphasia via anatomical likelihood estimation meta‐analyses. Eur J Neurol. 2016; 23: c. 704–712.
  247. Schroeter M.L., Neumann J. Combined Imaging Markers Dissociate Alzheimer"s Disease and Frontotemporal Lobar Degeneration - An ALE Meta-Analysis. Front Aging Neurosci. 2011; 3: 10. URL: https://www.frontiersin.org/articles/10.3389/fnagi.2011.00010/pdf
  248. Schroeter M.L., Laird A.R., Chwiesko C., et al. Conceptualizing neuropsychiatric diseases with multimodal data-driven meta-analyses – the case of behavioral variant frontotemporal dementia. Cortex. 2014; 57: c. 22–37.
  249. Fathy Y.Y., Hoogers S.E., Berendse H.W. et al. Differential insular cortex sub-regional atrophy in neurodegenerative diseases: a systematic review and meta-analysis. Brain Imaging and Behavior. 2019. URL: https://link.springer.com/content/pdf/10.1007/s11682-019-00099-3.pdf
  250. Chapleau M., Aldebert J., Montembeault M., Brambati S. Atrophy in Alzheimer’s Disease and Semantic Dementia: An ALE Meta-Analysis of Voxel-Based Morphometry Studies. Journal of Alzheimer"s Disease 2016; 54(3): c. 941–955.
  251. Cerami C. et al. Motor neuron dysfunctions in the frontotemporal lobar degeneration spectrum: A clinical and neurophysiological study. J Neurol Sci. 2015; 351(1-2): c. 72–77.
  252. Chester C., de Carvalho M., Miltenberger G., et al. Rapidly progressive frontotemporal dementia and bulbar amyotrophic lateral sclerosis in Portuguese patients with C9orf72 mutation. Amyotroph Lateral Scler Frontotemporal Degener. 2013; 14(1): c. 70–72.
  253. Benatar M., Wuu J., Fernandez C., et al. Motor neuron involvement in multisystem proteinopathy: implications for ALS. Neurology. 2013; 80(20): c. 1874–1880.
  254. Cantone M., Di Pino G., Capone F., et al. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clinical Neurophysiology. 2014; 125(8): c. 1509–1532.
  255. Benussi A., Di Lorenzo F., Dell"Era V., et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia. Neurology. 2017; 89 (7): c. 665–672.
  256. Pierantozzi M., Panella M., Palmieri M.G., et al. Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clinical Neurophysiology. 2004; 115(10): c. 2410–2418.
  257. Burton E.J. et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer"s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain. 2009; 132(1): c. 195–203.
  258. Harper L., Fumagalli G.G., Barkhof F. et al. MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain. 2016; 139(4): c. 1211–1225.
  259. Nedelska Z., Ferman T.J., Boeve B.F. et al. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiology of aging. 2015; 36(1): c. 452–461.
  260. Barber R., Ballard C., McKeith I.G. et al. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology. 2000; 54(6): c. 1304–1309.
  261. Barber R., Scheltens P., Gholkar A. et al. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer’s disease, vascular dementia, and normal aging. Journal of Neurology, Neurosurgery & Psychiatry. 1999; 67(1): c. 66–72.
  262. Tiraboschi P., Corso A., Guerra U.P., et al. I-2beta- carbomethoxy-3beta-(4-iodophenyl)-N-(3- fluoropropyl) nortropane single photon emission computed tomogra- phy and (123) I- metaiodobenzylguanidine myocardial scintigraphy in differentiating dementia with Lewy bodies from other dementias: a comparative study. Ann Neurol 2016; 80: с. 368–378.
  263. Komatsu J., Samuraki M., Nakajima K., et al. 123I-MIBG myocardial scintigraphy for the diagnosis of DLB: a multicentre 3-year follow-up study. J Neurol Neurosurg Psychiatry. 2018; 89(11): c. 1167–1173.
  264. McKeith I., O"Brien J., Walker Z. et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. The Lancet Neurology. 2007; 6(4): c. 305–313.
  265. Bonanni L., Thomas A., Tiraboschi P. et al. EEG comparisons in early Alzheimer"s disease, dementia with Lewy bodies and Parkinson"s disease with dementia patients with a 2-year follow-up. Brain. 2008; 131(3): c. 690–705.
  266. Bonanni L., Perfetti B., Bifolchetti S. et al. Quantitative electroencephalogram utility in predicting conversion of mild cognitive impairment to dementia with Lewy bodies. Neurobiology of aging. 2015; 36(1): c. 434–445.
  267. Colloby S.J., Cromarty R.A., Peraza L.R. et al. Multimodal EEG-MRI in the differential diagnosis of Alzheimer"s disease and dementia with Lewy bodies. Journal of psychiatric research. 2016; 78: c. 48–55.
  268. van der Zande J.J., Gouw A.A., van Steenoven I. et al. EEG characteristics of dementia with Lewy bodies, Alzheimer’s disease and mixed pathology. Frontiers in aging neuroscience. 2018; 10(190): c. 1–10. URL: https://www.frontiersin.org/articles/10.3389/fnagi.2018.00190/full
  269. Breton A., Casey D., Arnaoutoglou N.A. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies. Int J Geriatr Psychiatry. 2019; 34(2): c. 233–242.
  270. Belleville S., Fouquet C., Hudon C. et al. Neuropsychological Measures that Predict Progression from Mild Cognitive Impairment to Alzheimer"s type dementia in Older Adults: a Systematic Review and Meta-Analysis. Neuropsychol Rev. 2017; 27: c. 328–353.
  271. Borson S., Scanlan J.M., Chen P.J., et al. The Mini-Cog as a screen for dementia: Validation in a population-based sample. J Am Geriatr Soc 2003; 51: c. 1451–1454.
  272. Гуторова Д.А., Васенина Е.Е., Левин О.С. Скрининг когнитивных нарушений у лиц пожилого и старческого возраста с помощью шкалы 3-КТ. Журнал неврологии и психиатрии им. С.С. Корсакова, Спецвыпуски. 2016; 116(6): c. 35–40.
  273. Apostolova L.G., Cummings J.L. Neuropsychiatric manifestations in mild cognitive impairment: a systematic review of the literature. Dement Geriatr Cogn Disord. 2008; 25(2): c. 115–126.
  274. Aalten P., Verhey F.R., Boziki M., et al. Consistency of neuropsychiatric syndromes across dementias: results from the European Alzheimer Disease Consortium. Part II. Dement Geriatr Cogn Disord. 2008; 25(1): c. 1–8.
  275. Cordell C.B., Borson S., Boustani M., et al. Medicare Detection of Cognitive Impairment Workgroup. Alzheimer’s Association recommendations for operationalizing the detection of cognitive. Alzheimer’s & Dementia. 2013; 9: c. 141–150.
  276. Prado C.E., Watt S., Treeby M.S., Crowe S.F. Performance on neuropsychological assessment and progression to dementia: A meta-analysis. Psychol Aging. 2019; 34(7): c. 954–977.
  277. Fage B.A., Chan C.C., Gill S.S., et al. Mini-Cog for the diagnosis of Alzheimer"s disease dementia and other dementias within a community setting. Cochrane Database Syst Rev. 2015; 3(2): CD010860. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010860.pub2/epdf/full
  278. Seitz D.P., Chan C.C., Newton H.T., et al. Mini-Cog for the diagnosis of Alzheimer"s disease dementia and other dementias within a primary care setting. Cochrane Database Syst Rev. 2018; 2: CD011415. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6491332/pdf/CD011415.pdf
  279. Chan C.C.H., Fage B.A., Burton J.K., et al. Mini‐Cog for the diagnosis of Alzheimer’s disease dementia and other dementias within a secondary care setting. Cochrane Database of Systematic Reviews 2019; 9: CD011414. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011414.pub2/full
  280. Knopman D.S., DeKosky S.T., Cummings J.L., et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001; 56(9): c. 1143–1153.
  281. Feldman H.H., Jacova C., Robillard A., et al. Diagnosis and treatment of dementia: 2. Diagnosis. CMAJ. 2008; 178(7): c. 825–836.
  282. Lindbergh C.A., Dishman R.K., Miller L.S. Functional Disability in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Neuropsychol Rev. 2016; 26(2): c. 129–159.
  283. Castilla-Rilo J., López-Arrieta J., Bermejo-Pareja F., et al. Instrumental activities of daily living in the screening of dementia in population studies: a systematic review and meta-analysis. Int J Geriatr Psychiatry. 2007; 22(9): c. 829–836.
  284. Gallagher D., Fischer C.E., Iaboni A. Neuropsychiatric Symptoms in Mild Cognitive Impairment. Can J Psychiatry. 2017; 62(3): c. 161–169.
  285. Sorbi S., Hort J., Erkinjuntti T. et al. EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia. Eur J Neurol. 2012; 19(9): c. 1159–1179.
  286. Backhouse A., Ukoumunne O.C., Richards D.A. et al. The effectiveness of community-based coordinating interventions in dementia care: a meta-analysis and subgroup analysis of intervention components. BMC Health Serv Res. 2017; 17: 717. URL: https://bmchealthservres.biomedcentral.com/track/pdf/10.1186/s12913-017-2677-2
  287. Ganguli M., Dodge H.H., Shen C., DeKosky S.T. Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 2004; 63: c. 115–121.
  288. Di Carlo A., Lamassa M., Baldereschi M. et al. CIND and MCI in the Italian elderly: frequency, vascular risk factors, progression to dementia. Neurology 2007; 68: c. 1909–1916.
  289. Lopez O.L., Kuller L.H., Becker J.T., et al. Incidence of dementia in mild cognitive impairment in the Cardiovascular Health Study Cognition Study. Arch Neurol. 2007; 64: c. 416–420.
  290. Huey E.D., Manly J.J., Tang M.X., et al. Course and etiology of dysexecutive MCI in a community sample. Alzheimers Dement. 2013; 9: c. 632–639.
  291. Folstein M.F., Folstein S.E., McHugh P.R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12(3): c. 189–198.
  292. Arevalo-Rodriguez I., Smailagic N., Roqué I., et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer"s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2015; (3): CD010783. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD010783.pub2/epdf/full
  293. Creavin S.T., Wisniewski S., Noel-Storr A.H., et al. Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst Rev. 2016; (1): CD011145. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011145.pub2/epdf/full
  294. Левин О.С. Алгоритмы диагностики и лечения деменции / О.С.Левин.–8-е изд.–М.: МЕДпресс-информ, 2017; 192 с.
  295. Захаров В.В., Вознесенская Т.Г. Нервно-психические нарушения: диагностические тесты / под общ. ред. акад. РАН Н.Н.Яхно. 6-е изд. М.: МЕДпреcс-информ, 2018; 320 с.
  296. Ghafar M.Z.A.A., Miptah H.N., O"Caoimh R. Cognitive screening instruments to identify vascular cognitive impairment: A systematic review. Int J Geriatr Psychiatry. 2019; 34(8): c. 1114–1127.
  297. McGovern A., Pendlebury S.T., Mishra N.K., et al. Test Accuracy of Informant-Based Cognitive Screening Tests for Diagnosis of Dementia and Multidomain Cognitive Impairment in Stroke. Stroke. 2016; 47(2): 329–335.
  298. Moulin S., Leys D. Stroke occurring in patients with cognitive impairment or dementia. Arquivos de Neuro-Psiquiatria. 2017; 75(2): c. 117–121.
  299. Чердак М.А. Клиническая гетерогенность постинсультных когнитивных расстройств. Неврологический журнал. 2017; 22(5): с. 259–266.
  300. Coleman K., Coleman B., MacKinley J., et al. Detection and Differentiation of Frontotemporal Dementia and Related Disorders From Alzheimer Disease Using the Montreal Cognitive Assessment. Alzheimer Disease & Associated Disorders. 2016; 30(3): c. 258–263.
  301. Deutsch M.B., Liang L.J., Jimenez E.E., et al. Are we comparing frontotemporal dementia and Alzheimer disease patients with the right measures?.Int Psychogeriatr. 2016; 28(9): c. 1481– 1485.
  302. Rosen H.J., et al. Neuropsychological and functional measures of severity in Alzheimer disease, frontotemporal dementia, and semantic dementia. Alzheimer Disease and Associated Disorders. 2004; 18: c. 202–207.
  303. Freitas S., Simões M.R., Alves L., et al. Montreal Cognitive Assessment (MoCA): Validation study for Frontotemporal Dementia. Journal of Geriatric Psychiatry and Neurology. 2012; 25(3): c. 146–154.
  304. Hsieh S., Schubert S., Hoon C., et al. Validation of the Addenbrooke"s Cognitive Examination III in Frontotemporal Dementia and Alzheimer"s Disease. Dement Geriatr Cogn Disord 2013; 36: c. 242–250.
  305. Bier J.C., Ventura M., Donckels V., et al. Is the Addenbrooke"s cognitive examination effective to detect frontotemporal dementia? J Neurol. 2004; 251(4): c. 428–431.
  306. Larner A.J., Mitchell A.J. A meta-analysis of the accuracy of the Addenbrooke"s Cognitive Examination (ACE) and the Addenbrooke"s Cognitive Examination-Revised (ACE-R) in the detection of dementia. Int Psychogeriatr. 2014; 26(4): с. 555–563.
  307. Dudas R.B., Berrios G.E., Hodges J.R. The Addenbrooke"s cognitive examination (ACE) in the differential diagnosis of early dementias versus affective disorder. Am J Geriatr Psychiatry. 2005; 13(3): c. 218–226.
  308. Milan G., Lamenza F., Iavarone A., et al. Frontal Behavioural Inventory in the differential diagnosis of dementia. Acta Neurologica Scandinavica. 2008; 117: c. 260–265.
  309. Iavarone A., Ronga B., Pellegrino L., et al. The Frontal Assessment Battery (FAB): normative data from an Italian sample and performances of patients with Alzheimer"s disease and frontotemporal dementia. Funct Neurol. 2004; 19(3): c. 191–195.
  310. Stamelou M., Diehl-Schmid J., Hapfelmeier A., et al. The frontal assessment battery is not useful to discriminate progressive supranuclear palsy from frontotemporal dementias. Parkinsonism Relat Disord. 2015; 21(10): c. 1264–1268.
  311. Castiglioni S., Pelati O., Zuffi M., et al. The Frontal Assessment Battery Does Not Differentiate Frontotemporal Dementia from Alzheimer’s Disease. Dement Geriatr Cogn Disord 2006; 22: c. 125–131.
  312. Alberici A., Geroldi C., Cotelli M. et al. The Frontal Behavioural Inventory (Italian version) differentiates frontotemporal lobar degeneration variants from Alzheimer"s disease. Neurol Sci. 2007; 28: c. 80–86.
  313. Slachevsky A., Villalpando J.M., Sarazin M., et al. Frontal Assessment Battery and Differential Diagnosis of Frontotemporal Dementia and Alzheimer Disease. Arch Neurol. 2004; 61(7): c. 1104–1107.
  314. Gainotti G. The format of conceptual representations disrupted in semantic dementia: A position paper. Cortex. 2012; 48(5): c. 521–529.
  315. Binder J.R., Desai R.H., Graves W.W., Conant L.L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009; 19(12): c. 2767– 2796.
  316. Berndt R.S., Mitchum C.C., Haendiges A.N. Comprehension of reversible sentences in “agrammatism”: a meta-analysis. Cognition. 1996; 58(3): c. 289–308.
  317. Faroqi-Shah Y. Are regular and irregular verbs dissociated in non-fluent aphasia?: A meta- analysis. Brain Research Bulletin. 2007; 74(1–3): c. 1–13.
  318. Meyer A.M., Mack J.E., Thompson C.K. Tracking Passive Sentence Comprehension in Agrammatic Aphasia. J Neurolinguistics. 2012; 25(1): c. 31–43.
  319. Bertoux M., de Souza L.C., O’Callaghan C., et al. Social Cognition Deficits: The Key to Discriminate Behavioral Variant Frontotemporal Dementia from Alzheimer’s Disease Regardless of Amnesia? Journal of Alzheimer"s Disease. 2016; 49(4): c. 1065–1074.
  320. Mathias J.L., Morphett K. Neurobehavioral differences between Alzheimer"s disease and frontotemporal dementia: A meta-analysis, Journal of Clinical and Experimental Neuropsychology. 2010; 32(7): c. 682–698.
  321. Hutchings R., Palermo R., Piguet O. et al. Disrupted Face Processing in Frontotemporal Dementia: A Review of the Clinical and Neuroanatomical Evidence. Neuropsychol Rev. 2017; 27: c. 18–22.
  322. Harciarek M., Cosentino S. Language, executive function and social cognition in the diagnosis of frontotemporal dementia syndromes. Int Rev Psychiatry. 2013; 25(2): c. 178–196.
  323. Savage S.A., Lillo P., Kumfor F., et al. Emotion processing deficits distinguish pure amyotrophic lateral sclerosis from frontotemporal dementia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2014; 15(1–2): c. 39–46.
  324. Hutchinson A.D., Mathias J.L. Neuropsychological deficits in frontotemporal dementia and Alzheimer"s disease: a meta-analytic review. J Neurol Neurosurg Psychiatry. 2007; 78(9): c. 917– 928.
  325. Johnen A., Bertoux M. Psychological and Cognitive Markers of Behavioral Variant Frontotemporal Dementia-A Clinical Neuropsychologist"s View on Diagnostic Criteria and Beyond. Front Neurol. 2019; 10: 594. URL: https://www.frontiersin.org/articles/10.3389/fneur.2019.00594/pdf
  326. Poos J., Jiskoot L., Papma J., et al. Meta-analytic Review of Memory Impairment in Behavioral Variant Frontotemporal Dementia. Journal of the International Neuropsychological Society. 2018; 24(6): c. 593–605.
  327. Eikelboom W.S., Janssen N., Jiskoot L.C., et al. Episodic and working memory function in Primary Progressive Aphasia: A meta-analysis. Neuroscience & Biobehavioral Reviews. 2018; 92: c. 243–254.
  328. Чимагомедова А.Ш., Ляшенко Е.А., Бабкина О.В. и соавт. Социальные когнитивные функции при нейродегенеративных заболеваниях. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017; 117(11): с. 168–173.
  329. Biundo R., Weis L., Bostantjopoulou S. et al. MMSE and MoCA in Parkinson’s disease and dementia with Lewy bodies: a multicenter 1-year follow-up study. Journal of Neural Transmission. 2016; 123(4): c. 431–438.
  330. Wang C.S.M., Pai M.C., Chen P.L. et al. Montreal Cognitive Assessment and Mini-Mental State Examination performance in patients with mild-to-moderate dementia with Lewy bodies, Alzheimer"s disease, and normal participants in Taiwan. International psychogeriatrics. 2013; 25(11): c. 1839–1848.
  331. Shimomura T., Mori E., Yamashita H. et al. Cognitive loss in dementia with Lewy bodies and Alzheimer disease. Archives of Neurology. 1998; 55(12): c. 1547–1552.
  332. Johnson D.K., Morris J.C., Galvin J.E. Verbal and visuospatial deficits in dementia with Lewy bodies. Neurology. 2005; 65(8): c. 1232–1238.
  333. Hamilton J.M., Salmon D.P., Galasko D. et al. Visuospatial deficits predict rate of cognitive decline in autopsy-verified dementia with Lewy bodies. Neuropsychology. 2008; 22(6): c. 729– 737.
  334. Mori E., Shimomura T., Fujimori M. et al. Visuoperceptual impairment in dementia with Lewy bodies. Archives of Neurology. 2000; 57(4): c. 489–493.
  335. Boeve B.F., Silber M.H., Ferman T.J. et al. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder. Sleep medicine. 2013; 14(8): c. 754–762.
  336. Pao W.C., Boeve B.F., Ferman T.J. et al. Polysomnographic findings in dementia with Lewy bodies. The neurologist. 2013; 19(1): c. 1–6.
  337. Risk reduction of cognitive decline and dementia: WHO guidelines. Geneva: World Health Organization, 2019; 96 c.
  338. Williamson J.D., Pajewski N.M., Auchus A.P. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA. 2019; 321(6): c. 553–561.
  339. Beishon L.C., Harrison J.K., Harwood R.H., et al. The evidence for treating hypertension in older people with dementia: a systematic review. J Hum Hypertens. 2014; 28(5): c. 283–287.
  340. Axelsson J., Reinprecht F., Siennicki-Lantz A., Elmstahl S. Low ambulatory blood pressure is associated with lower cognitive function in healthy elderly men. Blood Press. Monit. 2008; 13: c. 269–275.
  341. Huang C.-Q., Dong B.-R., Zhang Y.-L., et al. Cognitive impairment and hypertension among Chinese nonagenarians and centenarians. Hypertens. Res. 2009; 32: c. 554–558.
  342. Forte G., De Pascalis V., Favieri F., Casagrande M. Effects of Blood Pressure on Cognitive Performance: A Systematic Review. J Clin Med. 2019; 9(1): 34. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7019226/pdf/jcm-09-00034.pdf
  343. Song D., Yu D.S.F., Li P.W.C., Lei Y. The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment: A systematic review and meta-analysis. Int J Nurs Stud. 2018; 79: c. 155–164.
  344. Northey J.M., Cherbuin N., Pumpa K.L., et al. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2018; 52(3): c. 154–160.
  345. Barha C.K., Davis J.C., Falck R.S., et al. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017; 46: c. 71–85.
  346. Singh B., Parsaik A.K., Mielke M.M., et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer"s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014; 39(2): c. 271–282.
  347. Chandler M.J., Parks A.C., Marsiske M., et al. Everyday Impact of Cognitive Interventions in Mild Cognitive Impairment: a Systematic Review and Meta-Analysis. Neuropsychol Rev. 2016; 26(3): c. 225–251.
  348. Sherman D.S., Mauser J., Nuno M., Sherzai D. The Efficacy of Cognitive Intervention in Mild Cognitive Impairment (MCI): a Meta-Analysis of Outcomes on Neuropsychological Measures. Neuropsychol Rev. 2017; 27(4): c. 440–484.
  349. Beydoun M.A., Beydoun H.A., Gamaldo A.A., et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014; 14: 643. URL: https://bmcpublichealth.biomedcentral.com/track/pdf/10.1186/1471-2458-14-643
  350. Petersen R.C., Lopez O.L., Armstrong M.J. Practice guideline update summary: Mild cognitive impairment. Neurology 2018; 90: c. 126–135.
  351. Green A.R., Oh E., Hilson L., et al. Anticholinergic burden in older adults with mild cognitive impairment. J. Am. Geriatr. Soc. 2016; 64: e313–e314.
  352. American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American Geriatrics society updated beers criteria for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 2012; 60: c. 616–631.
  353. O’Mahony D., O’Sullivan D., Byrne S., et al. STOPP/START criteria for potentially inappropriate prescribing in older people: version 2. Age Ageing. 2015; 44: c. 213–218.
  354. Hill N.T., Mowszowski L., Naismith S.L., et al. Computerized Cognitive Training in Older Adults With Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am J Psychiatry. 2017; 174(4): c. 329–340.
  355. Gavrilova S.I., Preuss U.W., Wong J.W., et al. Efficacy and safety of Ginkgo biloba extract EGb 761 in mild cognitive impairment with neuropsychiatric symptoms: a randomized, placebo‐ controlled, double‐blind, multi‐center trial. Int J Geriatr Psychiatry. 2014; 29: 1087–1095.
  356. Zhao M.X., Dong Z.H., Yu Z.H., et al. Effects of Ginkgo biloba extract in improving episodic memory of patients with mild cognitive impairment: a randomized controlled trial. Zhong Xi Yi Jie He Xue Bao. 2012; 10: c. 628–634.
  357. Kasper S., Bancher C., Eckert A., et al. Management of mild cognitive impairment (MCI): The need for national and international guidelines. World J Biol Psychiatry. 2020; 5: c. 1–16.
  358. Kandiah N., Ong P.A., Yuda T., et al. Treatment of dementia and mild cognitive impairment with or without cerebrovascular disease: Expert consensus on the use of Ginkgo biloba extract, EGb 761®. CNS Neurosci Ther. 2019; 25(2): c. 288–298.
  359. DeKosky S.T., Williamson J.D., Fitzpatrick A.L., et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA. 2008; 300: c. 2253–2262.
  360. Vellas B., Coley N., Ousset P.J., et al. Long‐term use of standardized Ginkgo biloba extract for the prevention of Alzheimer"s disease (GuidAge): a randomised placebo‐controlled trial. Lancet Neurol. 2012; 11: c. 851–859.
  361. Marvanova M. Mental Health Clinician Antipsychotic use in elderly patients with dementia: Efficacy and safety concerns. 2014; 4(4): c. 170–176.
  362. Doody R.S., Ferris S.H., Salloway S., et al. Donepezil treatment of patients with MCI: a 48week randomized, placebo-controlled trial. Neurology 2009; 72: c. 1555–1561.
  363. Salloway S., Ferris S., Kluger A., et al. Efficacy of donepezil in mild cognitive impairment: A randomized placebo-controlled trial. Neurology 2004; 63: c. 651–657.
  364. Winblad B., Gauthier S., Scinto L., et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology 2008; 70: c. 2024–2035.
  365. Feldman H.H., Ferris S., Winblad B., et al. Effect of rivastigmine on delay to diagnosis of Alzheimer"s disease from mild cognitive impairment: the InDDEx study. Lancet Neurol 2007; 6: c. 501–512.
  366. Knight R., Khondoker M., Magill N., et al. A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia. Dementia and Geriatric Cognitive Disorders. 2018; 45: c. 131–151.
  367. Na R., Yang J.H., Yeom Y., et al. A Systematic Review and Meta-Analysis of Nonpharmacological Interventions for Moderate to Severe Dementia. Psychiatry Investig. 2019; 16(5): с. 325–335.
  368. Zhang N., Wei C., Du H., et al. The Effect of Memantine on Cognitive Function and Behavioral and Psychological Symptoms in Mild-to-Moderate Alzheimer’s Disease Patients. Dement. Geriatr. Cogn. Disord. 2015; 40(1–2): c. 85–93.
  369. Birks J.S., Harvey R.J. Donepezil for dementia due to Alzheimer"s disease. Cochrane Database Syst Rev. 2018; 6(6): CD001190. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD001190.pub3/pdf/CDSR/CD00119
  370. Wilkinson D., Andersen H.F. Analysis of the Effect of Memantine in Reducing the Worsening of Clinical Symptoms in Patients with Moderate to Severe Alzheimer"s Disease. Dementia and Geriatric Cognitive Disorders. 2007; 24(2): c. 138–145.
  371. McShane R., Westby M.J., Roberts E. et al. Memantine for dementia. Cochrane Database Syst Rev. 2019; 3: CD003154. URL: https://doi.org/10.1002/14651858.CD003154.pub6
  372. Kishi T., Matsunaga S., Oya K. et al. Memantine for Alzheimer"s Disease: An Updated Systematic Review and Meta-analysis. J. Alzheimers Dis. 2017; 60(2): c. 401–425.
  373. Doody R.S., Tariot P.N., Pfeiffer E. et al. Meta-analysis of six-month memantine trials in Alzheimer’s disease. Alzheimer’s & Dementia. 2007; 3: c. 7–17.
  374. Cummings J., Lai Te-Jen, Hemrungrojn S. et al. Role of Donepezil in the Management of Neuropsychiatric Symptoms in Alzheimer’s Disease and Dementia with Lewy Bodies. CNS Neuroscience & Therapeutics. 2016; 22: c. 159–166.
  375. Randle J.M., Heckman G., Oremus M., Ho J. Intermittent Antipsychotic Medication, and Mortality in Institutionalized Older Adults: A Scoping Review Int J Geriatr Psychiatry. 2019; 34: c. 906–920.
  376. Leucht S., Wahlbeck K., Hamann J., Kissling W. New generation antipsychotics versus low- potency conventional antipsychotics: a systematic review and meta-analysis. The Lancet. 2003; 361(9369): c. 1581–1589.
  377. Schneider L.S., Dagerman K., Insel P.S. Efficacy and adverse effects of atypical antipsychotics for dementia: meta-analysis of randomized, placebo-controlled trials. Am J Geriatr Psychiatry. 2006; 14(3): c. 191–210.
  378. Trifiro G., Spina E., Gambassi G. Use of antipsychotics in elderly patients with dementia: do atypical and conventional agents have a similar safety profile? Pharmacol Res. 2009; 59(1): c. 1– 12.
  379. Dolder C.R., Nealy K.L., McKinsey J. Valproic acid in dementia: does an optimal dose exist? J. Pharm. Pract. 2012; 25(2): c. 142–150.
  380. Greenstein A., Chen A., Copeli F., et al. Gabapentin for behavioral and psychiatric symptoms of dementia. The American Journal of Geriatric Psychiatry. 2020; 28(4), Supplement: c. S85.
  381. Rabins P.V., Blacker D., Rovner B.W., et al. American Psychiatric Association practice guideline for the treatment of patients with Alzheimer’s disease and other dementias, second edition. Am J Psychiatry. 2007; 164(12 Suppl): c. 5–56.
  382. Mulsant B.H., Blumberger D.M., Ismail Z. et al. A systematic approach to the pharmacotherapy of geriatric major depression. Clin Geriatr Med. 2014; 30(3): c. 517–534.
  383. Bennabi D., Yrondi A., Charpeaud T., et al. Clinical guidelines for the management of depression with specific comorbid psychiatric conditions. French recommendations from experts (the French Association for Biological Psychiatry and Neuropsychopharmacology and the fondation FondaMental). BMC Psychiatry. 2019; 19(1): 50. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354367/pdf/12888_2019_Article_2025.pdf
  384. An H., Choi B., Park K.‐W. et al. The effect of escitalopram on mood and cognition in depressive Alzheimer"s disease subjects. Journal of Alzheimer"s disease 2017; 2: c. 727–735.
  385. Sharp S.I., Ballard C.G., Ziabreva I. et al. Cortical Serotonin 1A Receptor Levels Are Associated with Depression in Patients with Dementia with Lewy Bodies and Parkinson’s Disease Dementia. Dement Geriatr Cogn Disord. 2008; 26: c. 330–338.
  386. Buciuta A., Vinasi R.C., Coman H.G. Antidepressant Treatment for Depression in Alzheimer"s Dementia: Systematic Review Article. Journal of Aging Science. 2020; 8(3): 1000229. URL: https://www.longdom.org/pdfdownload.php?download=open-access/antidepressant-treatment- for-depression-in-alzheimers-dementia-systematic-review-article.pdf&aid=54498
  387. Dudas R., Malouf R., McCleery J., Dening T. Antidepressants for treating depression in dementia. Cochrane Database Syst Rev. 2018; 8(8): CD003944. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003944.pub2/epdf/full
  388. Nelson J.C., Devanand D.P. A systematic review and meta-analysis of placebo-controlled antidepressant studies in people with depression and dementia. J Am Geriatr Soc. 2011; 59(4): c. 577–585.
  389. Kinnunen K.M., Vikhanova A., Livingston G. The management of sleep disorders in dementia: an update. Curr Opin Psychiatry. 2017; 30(6): c. 491–497.
  390. Ooms S., Ju Y.E. Treatment of Sleep Disorders in Dementia. Curr Treat Options Neurol. 2016; 18(9): 40. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5363179/pdf/nihms852926.pdf
  391. Полуэктов М.Г., Бузунов Р.В., Авербух В.М. и др. Проект клинических рекомендаций по диагностике и лечению хронической инсомнии у взрослых. Consilium Medicum. Неврология и Ревматология (Прил.). 2016; 2: с. 41–51.
  392. Massironi G., Galluzzi S., Frisoni G.B. Drug treatment of REM sleep behavior disorders in dementia with Lewy bodies. Int Psychogeriatr. 2003;15(4): c. 377–383.
  393. Larsson V., Aarsland D., Ballard C. et al. The effect of memantine on sleep behaviour in dementia with Lewy bodies and Parkinson"s disease dementia. Int. J. Geriat. Psychiatry. 2010; 25: c. 1030–1038.
  394. Bloom H.G., Ahmed I., Alessi C.A. et al. Evidence-based recommendations for the assessment and management of sleep disorders in older persons. J Am Geriatr Soc. 2009; 57(5): c. 761–789.
  395. Gitlin L.N., Winter L., Dennis M.P., et al. Targeting and managing behavioral symptoms in individuals with dementia: a randomized trial of a nonpharmacological intervention. J Am Geriatr Soc. 2010; 58(8): c. 1465–1474.
  396. Mendelson W.B. Combining pharmacologic and nonpharmacologic therapies for insomnia. J Clin Psychiatry. 2007; 68 (Suppl.5): c. 19–23.
  397. Guarnieri B., Musicco M., Caffarra P. et al. Recommendations of the Sleep Study Group of the Italian Dementia Research Association (SINDem) on clinical assessment and management of sleep disorders in individuals with mild cognitive impairment and dementia: a clinical review. Neurol Sci. 2014; 35(9): c. 1329–1348.
  398. Parati G., Lombardi C., Hedner J., et al. European Respiratory Society; EU COST ACTION B26 members. Position paper on the management of patients with obstructive sleep apnea and hypertension: joint recommendations by the European Society of Hypertension, by the European Respiratory Society and by the members of European COST (COoperation in Scientific and Technological research) ACTION B26 on obstructive sleep apnea. J Hypertens. 2012; 30: c. 633–646.
  399. Wang M.L., Wang C., Tuo M., et al. Cognitive Effects of Treating Obstructive Sleep Apnea: A Meta-Analysis of Randomized Controlled Trials. J Alzheimers Dis. 2020; 75(3): c. 705–715.
  400. Bombois S., Derambure P., Pasquier F., Monaca C. Sleep disorders in aging and dementia. The journal of nutrition, health & aging. 2010; 14(3): c. 212–217.
  401. Deschenes C.L., McCurry S.M. Current treatments for sleep disturbances in individuals with dementia. Current psychiatry reports. 2009; 11(1): c. 20–26.
  402. Stepnowsky C.J. Jr, Marler M.R., Ancoli-Israel S. Determinants of nasal CPAP compliance. Sleep Med. 2002; 3(3): c. 239–247.
  403. Ayalon L., Ancoli-Israel S., Stepnowsky C. et al. Adherence to continuous positive airway pressure treatment in patients with Alzheimer’s disease and obstructive sleep apnea. Am J Geriatr Psychiatry. 2006; 14(2): c. 176–180.
  404. Dou K.X., Tan M.S., Tan C.C. et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer"s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimers Res Ther. 2018; 10(126): c. 1–10. URL: https://alzres.biomedcentral.com/track/pdf/10.1186/s13195-018-0457-9
  405. Birks J.S. Cholinesterase inhibitors for Alzheimer"s disease. Cochrane Database of Systematic Reviews 2006; 1: CD005593. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005593/epdf/full
  406. Lopez O.L., Becker J.T., Saxton J. et al. Alteration of a clinically meaningful outcome in the natural history of Alzheimer’s disease by cholinesterase inhibition. J. Am. Geriatr. Soc. 2005; 53: c. 83–87.
  407. Donepezil, galantamine, rivastigmine (review) and memantine for the treatment of Alzheimer"s disease (amended). /TA217. NICE technology appraisal guidance/ London: NICE. 2011. URL: https://www.nice.org.uk/guidance/ta217/resources/donepezil-galantamine-rivastigmine-and- memantine-for-the-treatment-of-alzheimers-disease-pdf-82600254699973
  408. Cummings J., Froelich L., Black S.E. et al. Randomized, double-blind, parallel-group, 48-week study for efficacy and safety of a higher-dose rivastigmine patch (15 vs. 10 cm2) in Alzheimer"s disease. Dement Geriatr Cogn Disord 2012; 33: c. 341–353.
  409. Winblad B., Black S.E., Homma A., et al. Donepezil treatment in severe Alzheimer"s disease: a pooled analysis of three clinical trials. Curr Med Res Opin 2009; 25: c. 2577–2587.
  410. Sabbagh M., Cummings J. Progressive cholinergic decline in Alzheimer’s disease: consideration for treatment with donepezil 23 mg in patients with moderate to severe symptomatology. BMC Neurology. 2011; 11: 21. URL: https://bmcneurol.biomedcentral.com/articles/10.1186/1471- 2377-11-21
  411. Wimo A., Winblad B., Shah S.N. et al. Impact of donepezil treatment for Alzheimer’s disease on caregiver time. Current Medical Research and Opinion. 2004; 20(8): c. 1221–1225.
  412. Jelic V., Haglund A., Kowalski J. et al. Donepezil treatment of severe Alzheimer’s disease in nursing home settings. A responder analysis. Dementia and Geriatric Cognitive Disorders. 2008; 26(5): c. 458–466.
  413. Feldman H., Gauthier S., Hecker J. et al. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology. 2001; 57(4): c. 613–620.
  414. Farlow M.R., Salloway S., Tariot P.N. et al. Effectiveness and tolerability of high-dose (23 mg/d) versus standard-dose (10mg/d) donepezil in moderate to severe Alzheimer’s disease: a 24-week, randomized, double-blind study. Clinical Therapeutics. 2010; 32(7): c. 1234–1251.
  415. Farlow M.R, Grossberg G., Gauthier S. et al. The ACTION study: methodology of a trial to evaluate safety and efficacy of a higher dose rivastigmine transdermal patch in severe Alzheimer"s disease. Curr Med Res Opin. 2010; 26(10): c. 2441–2447.
  416. Emre M. Switching cholinesterase inhibitors in patients with Alzheimer"s disease. Int. J. Clin. Pract. Suppl. 2002; 127: c. 64–72.
  417. Gauthier S., Emre M., Farlow M.R. et al. Strategies for continued successful treatment of Alzheimer"s disease: switching cholinesterase inhibitors. Curr Med Res Opin 2003; 19: c. 707– 714.
  418. Mohs R.C., Doody R.S., Morris J.C. et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology 2001; 57: с. 481–488.
  419. Karaman Y., Erdogan F., Koseoglu E. et al. A 12-month study of the efficacy of rivastigmine in patients with advanced moderate Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005; 19: с. 51–56.
  420. Lopez O.L., Becker J.T., Wisniewski S. et al Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry. 2002; 72: c. 310–314.
  421. Howard R., McShane R., Lindesay J. et al. Donepezil and memantine for moderate-to-severe Alzheimer"s disease. N. Engl. J. Med. 2012; 366: с. 893–903.
  422. Doody R.S., Geldmacher D.S., Gordon B. et al. Open-label, multicenter, phase 3 extension study of the safety and efficacy of donepezil in patients with Alzheimer disease. Arch. Neurol. 2001; 58: с. 427–433.
  423. Bond M., Rogers G., Peters J. et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer"s disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technol Assess. 2012; 16(21): c. 1–470.
  424. Hansen R.A., Gartlehner G., Webb A.P. et al. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clinical Interventions in Aging. 2008; 3(2): c. 211–225.
  425. Kim D.H., Brown R.T., Ding E.L. et al. Dementia medications and risk of falls, syncope, and related adverse events: meta-analysis of randomized controlled trials. J Am Geriatr Soc. 2011; 59: c. 1019–1031.
  426. Peskind E.R., Potkin S.G., Pomara N. et al Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry. 2006; 14(8): c. 704– 1543.
  427. Shi X., Lin X., Hu R. et al. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors. American Journal of Alzheimer’s Disease & Other Dementias. 2016; 31(5): c. 405–412.
  428. Jones R.W., Bayer A., Inglis F., et al. Safety and tolerability of once-daily versus twice-daily memantine: a randomised, double-blind study in moderate to severe Alzheimer"s disease. Int J Geriatr Psychiatry. 2007; 22(3): c. 258–262.
  429. Matsunaga S., Kishi T., Iwata N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: A systematic review and meta-analysis. Int J Neuropsychopharmacol. 2014; 18(5): pyu115. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376554/pdf/pyu115.pdf.
  430. Parsons C.G., Danysz W., Dekundy A., Pulte I. Memantine and Cholinesterase Inhibitors: Complementary Mechanisms in the Treatment of Alzheimer’s Disease. Neurotox Res. 2013; 24: c. 358–369.
  431. Tsoi K.F., Chan J.Y.C., Leung N.W.Y. et al. Combination Therapy Showed Limited Superiority Over Monotherapy for Alzheimer Disease: A Meta-analysis of 14 Randomized Trials. Journal of the American Medical Directors Association. 2016; 17(9): 863.e1–e8.
  432. Schmidt R., Hofer E., Bouwman F.H. et al. EFNS-ENS/EAN Guideline on concomitant use of cholinesterase inhibitors and memantine in moderate to severe Alzheimer’s disease. Eur. J. Neurol. 2015; 22: c. 889–898.
  433. Schmidtke K., Holthoff V., Kressig R.W., Molinuevo J.L. Combination of Memantine and cholinesterase inhibitors in the treatment of AD. Neurology News. 2011; 1: c. 1–8.
  434. Gillette-Guyonnet S., Andrieu S., Nourhashemi F., et al. Long-term progression of Alzheimer’s disease in patients under antidementia drugs. Alzheimers Dement. 2011; 7: c. 579–592.
  435. Chen R., Chan P.T., Chu H., et al. Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: A meta-analysis. PLoS One. 2017; 12(8): e0183586. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565113/pdf/pone.0183586.pdf
  436. Otálora-Esteba M., García-Alfonso C., Velasco M., et al. Rivastigmina parches sola o combinada con memantina, comparada con memantina sola en pacientes con enfermedad de Alzheimer moderada y severa: revisión sistemática de la literatura. Acta Neurol Colomb. 2016; 32(4): c. 337–346. URL: http://www.scielo.org.co/pdf/anco/v32n4/v32n4a12.pdf
  437. Alvarez X.A., Cacabelos R., Sampedro C. et al. Combination treatment in Alzheimer’s disease: results of a randomized, controlled trial with Cerebrolysin and Donepezil. Current Alzheimer Research. 2011; 8: с. 583–591.
  438. Gauthier S., Proaño J.V., Jia J., et al. Cerebrolysin in mild-to-moderate Alzheimer"s disease: a meta-analysis of randomized controlled clinical trials. Dement Geriatr Cogn Disord. 2015; 39(5- 6): c. 332–347.
  439. Гаврилова С.И. и соавт. ApoE генотип и эффективность нейротрофической и холинергической терапии при болезни Альцгеймера. Журнал Неврологии и Психиатрии. 2005; 4: с. 27–34.
  440. Savaskan E., Mueller H., Hoerr R., et al. Treatment effects of Ginkgo biloba extract EGb 761® on the spectrum of behavioral and psychological symptoms of dementia: meta-analysis of randomized controlled trials. Int Psychogeriatr. 2018; 30(3): c. 285–293.
  441. Weinmann S., Roll S., Schwarzbach C. et al Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatrics. 2010; 10: 14. URL: https://bmcgeriatr.biomedcentral.com/articles/10.1186/1471-2318-10-14
  442. Tana M.-S., Yua J.-T., Tanb C.-C. et al. Efficacy and Adverse Effects of Ginkgo Biloba for Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease. 2015; 43: c. 589–603.
  443. Hashiguchi M., Ohta Y., Shimizu M. et al. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. Journal of Pharmaceutical Health Care and Sciences. 2015; 1: 14. URL: https://jphcs.biomedcentral.com/articles/10.1186/s40780-015-0014- 7
  444. Yang G., Wang Y., Sun J. et al. Ginkgo Biloba for Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicinal Chemistry. 2016; 16(5): c. 520–528.
  445. Gorelick P.B., Scuteri A., Black S.E. Vascular Contributions to Cognitive Impairment and Dementia. A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2011; 42: c. 2672–2713.
  446. Hanon O., Pequignot R., Seux M.L., et al. Relationship between antihypertensive drug therapy and cognitive function in elderly hypertensive patients with memory complaints. J Hypertens. 2006; 24(10): c. 2101–2107.
  447. Rockwood K., Ebly E., Hachinski V., Hogan D. Presence and treatment of vascular risk factors in patients with vascular cognitive impairment. Arch Neurol. 1997; 54 (1): c. 33–39.
  448. Douiri A., McKevitt C., Emmett E.S., et al. Long-term effects of secondary prevention on cognitive function in stroke patients. Circulation. 2013; 128(12): c. 1341–1348.
  449. Pendlebury S.T., Rothwell P.M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009; 8(11): c. 1006–1018.
  450. Jin B.R., Liu H.Y. Comparative efficacy and safety of cognitive enhancers for treating vascular cognitive impairment: systematic review and Bayesian network meta-analysis. Neural Regen Res. 2019; 14(5): c. 805–816.
  451. Kavirajan H., Schneider L.S. Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol. 2007; 6(9): c. 782–792.
  452. Baskys A., Hou A.C. Vascular dementia: pharmacological treatment approaches and perspectives. Clin. Interv. Aging. 2007; 2(3): c. 327–335.
  453. Thomas S.J., Grossberg G.T. Memantine: a review of studies into its safety and efficacy in treating Alzheimer"s disease and other dementias Clin. Interv. Aging. 2009; 4: c. 367–377.
  454. Baor K.J., Boettger M.K., Seidler N.et al Influence of galantamine on vasomotor reactivity in Alzheimer’s disease and vascular dementia due to cerebral microangiopathy. Stroke. 2007; 38: c. 3186–3192.
  455. Xi Y., Wang M., Zhang W. et al. Neuronal damage, central cholinergic dysfunction and oxidative damage correlate with cognitive deficits in rats with chronic cerebral hypoperfusion. Neurobiol. Learn. Mem. 2014; 109: c. 7–19.
  456. Jiang L., Su L., Cui H., et al. Ginkgo biloba extract for dementia: a systematic review. Shanghai Arch Psychiatry. 2013; 25(1): c. 10–21.
  457. Gauthier S, Schlaefke S. Efficacy and tolerability of Ginkgo biloba extract EGb 761® in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging. 2014; 9: c. 2065–2077.
  458. Zhang H.F., Huang L.B., Zhong Y.B., et al. An Overview of Systematic Reviews of Ginkgo biloba Extracts for Mild Cognitive Impairment and Dementia. Front Aging Neurosci. 2016; 8: 276. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138224/pdf/fnagi-08-00276.pdf
  459. McKeage K., Lyseng-Williamson K.A. Ginkgo biloba extract EGb 761® in the symptomatic treatment of mild-to-moderate dementia: a profile of its use. Drugs Ther Perspect. 2018; 34(8): c. 358–366.
  460. Guekht A., Skoog I., Edmundson S., et al. ARTEMIDA Trial (A Randomized Trial of Efficacy, 12 Months International Double-Blind Actovegin): A Randomized Controlled Trial to Assess the Efficacy of Actovegin in Poststroke Cognitive Impairment. Stroke. 2017; 48(5): c. 1262–1270.
  461. Шавловская О.А. Применение Актовегина при нейропротективной терапии больных с цереброваскулярными заболеваниями. Журнал неврологии и психиатрии им. С.С. Корсакова. 2013; 113(6): c. 74–76.
  462. Jansen W., Brueckner G. W. Treatment of chronic cerebrovascular diseases with Actovegin forte. Therapiewoche. 1982; 41: c. 3–12.
  463. Letzel H., Schlichtiger U. Actovegin bei geriatrischen patienten mit hirnorganischem phychosyndrom. Therapiewoche. 1984; 34: c. 5280–5290.
  464. Mikhailova N.M., Selezneva N.D., Kalyn Ia.B., et al. Efficacy of actovegin in the treatment of elderly patients with vascular mild cognitive impairment. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2013; 113(7 Pt 2): c. 69–76.
  465. Cui S., Chen N., Yang M. et al. Cerebrolysin for vascular dementia. Cochrane Database of Systematic Reviews 2019; 11: CD008900. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD008900.pub3/full
  466. Herrmann W.M., Stephan K., Gaede K., et al. A multicenter randomized double-blind study on the efficacy and safety of nicergoline in patients with multi-infarct dementia. Dement Geriatr Cogn Disord. 1997; 8: c. 9–17.
  467. Saletu B., Paulus E., Linzmeyer L., et al. Nicergoline in senile dementia of Alzheimer type and multi‐infarct dementia: a double‐blind, placebo‐controlled, clinical and EEG/ERP mapping study. Psychopharmacology 1995; 117(4): c. 385–395.
  468. Sha M.C., Callahan C.M. The efficacy of pentoxifylline in the treatment of vascular dementia: a systematic review. Alzheimer Dis Assoc Disord. 2003; 17(1): c. 46–54.
  469. Nappi G., Bono G., Merlo P., et al. Long-term idebenone treatment of vascular and degenerative brain disorders of the elderly. Arch Gerontol Geriatr. 1992; 15(3): c. 261–269.
  470. Bergamasco B., Villardita C., Coppi R. Idebenone in the treatment of multi-infarct dementia: a randomised, double-blind, placebo controlled multicentre trial. Arch Gerontol Geriatr. 1992; 15(3): c. 271–278.
  471. Marigliano V., Abate G., Barbagallo G., et al. Randomized, double-blind, placebo controlled, multicentre study of idebenone in patients suffering from multi-infarct dementia. Arch Gerontol Geriatr 1992; 15(3): c. 239–248.
  472. Lingetti M., Porfido F.A., Ciarimboli M., et al. Evaluation of the clinical efficacy of idebenone in patients affected by chronic cerebrovascular disorders. Arch Gerontol Geriatr 1992; 15(3): c. 225–237.
  473. Cotroneo A.M., Castagna A., Putignano S., et al. Effectiveness and safety of citicoline in mild vascular cognitive impairment: the IDEALE study. Clin Interv Aging. 2013; 8: c. 131–137.
  474. Alvarez-Sabín J., Ortega G., Jacas C., et al. Long-term treatment with citicoline may improve poststroke vascular cognitive impairment. Cerebrovasc Dis. 2013; 35(2): c. 146–154.
  475. Cohen R.A., Browndyke J.N., Moser D.J., et al. Long-term citicoline (cytidine diphosphate choline) use in patients with vascular dementia: neuroimaging and neuropsychological outcomes. Cerebrovasc Dis. 2003; 16(3): c. 199–204.
  476. Zijlmans J.C., Katzenschlager R., Daniel S.E., Lees A.J. The L-dopa response in vascular parkinsonism. J Neurol Neurosurg Psychiatry. 2004; 75(4): с. 545–547.
  477. Fisicaro F., Lanza G., Grasso A.A., et al. Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Ther Adv Neurol Disord. 2019; 12: 1756286419878317. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/31598137
  478. Yip C.W., Cheong P.W., Green A., et al. A prospective pilot study of repetitive transcranial magnetic stimulation for gait dysfunction in vascular parkinsonism. Clin Neurol Neurosurg. 2013; 115(7): c. 887–891.
  479. Miguel-Puga A., Villafuerte G., Salas-Pacheco J., Arias-Carrión O. Therapeutic Interventions for Vascular Parkinsonism: A Systematic Review and Meta-analysis. Front Neurol. 2017; 8: 481. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/29018399/
  480. Briggs R, O"Neill D. Vascular gait dyspraxia. Clin Med (Lond). 2014; 14(2): c. 200–202.
  481. Francis-Coad J., Etherton-Beer C., Burton E. et al. Effectiveness of complex falls prevention interventions in residential aged care settings: a systematic review. JBI Database System Rev Implement Rep. 2018; 16(4): c. 973–1002.
  482. Cheng P., Tan L., Ning P., et al. Comparative Effectiveness of Published Interventions for Elderly Fall Prevention: A Systematic Review and Network Meta-Analysis. Int J Environ Res Public Health. 2018; 15(3): 498. URL: https://www.mdpi.com/1660-4601/15/3/498/pdf
  483. Burns A., O’Brien J. Clinical practice with anti-dementia drugs: a consensus statement from British Association for Psychopharmacology. J. Psychopharmacol. 2006; 20(6): c. 732–755.
  484. Zekry D., Gold G. Management of mixed dementia. Drugs Aging. 2010; 27(9): с. 715–728.
  485. Amenta F., Carotenuto A., Fasanaro A.M., et al. The ASCOMALVA (Association between the Cholinesterase Inhibitor Donepezil and the Cholinergic Precursor Choline Alphoscerate in Alzheimer"s Disease) Trial: interim results after two years of treatment. J Alzheimers Dis. 2014; 42(Suppl. 3): с. S281–S288.
  486. Ikeda M., Tanabe H., Horino T., et al. Care for patients with Pick’s disease – by using their preserved procedural memory. Seishin Shinkeigaku Zasshi. 1995; 97: c. 179–192.
  487. O’Connor C.M., Clemson L., da Silva T.B.L. et al. Enhancement of carer skills and patient function in the non-pharmacological management of frontotemporal dementia (FTD). Dement Neuropsychol. 2013; 7: c. 143–150.
  488. Tanabe H., Ikeda M., Komori K. Behavioral symptomatology and care of patients with frontotemporal lobe degeneration - based on the aspects of the phylogenetic and ontogenetic processes. Dement Geriatr Cogn Disord. 1999; 10(Suppl 1): c. 50–54.
  489. Robinson K.M. Rehabilitation applications in caring for patients with Pick’s disease and frontotemporal dementias. Neurology. 2001; 56: c. S56–S58.
  490. Shinagawa S., Nakajima S., Plitman E., et al. Non-Pharmacological Management for Patients with Frontotemporal Dementia: A Systematic Review. Journal of Alzheimer’s Disease. 2015; 45(1): c. 283–293.
  491. Nardell M., Tampi R.R. Pharmacological treatments for frontotemporal dementias: a systematic review of randomized controlled trials. Am J Alzheimers Dis Other Demen. 2014; 29(2): c. 123– 132.
  492. Moretti R., Torre P., Antonello R.M, et al. Frontotemporal Dementia: Paroxetine as a Possible Treatment of Behavior Symptoms. Eur Neurol 2003; 49: c. 13–19.
  493. Deakin J.B., Rahman S., Nestor P.J. et al. Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology 2004; 172: c. 400–408.
  494. Swartz J.R., Miller B.L., Lesser I.M., Darby A.L. Frontotemporal Dementia: Treatment Response to Serotonin Selective Reuptake Inhibitors. J Clin Psychiatry 1997; 58(5): c. 212–217.
  495. Hughes L.E., Rittman T., Regenthal R., et al. Improving response inhibition systems in frontotemporal dementia with citalopram. Brain. 2015; 138(Pt 7): c. 1961–1975.
  496. Meyer S., Mueller K., Gruenewald C., et al. Citalopram Improves Obsessive-Compulsive Crossword Puzzling in Frontotemporal Dementia. Case Rep Neurol. 2019; 11(1): c. 94–105.
  497. Prodan C.I., Monnot M., Ross E.D. Behavioural abnormalities associated with rapid deterioration of language functions in semantic dementia respond to sertraline. J Neurol Neurosurg Psychiatry. 2009; 80: c. 1416–1417.
  498. Boxer A.L., Lipton A.M., Womack K., et al. An open-label study of memantine treatment in 3 subtypes of frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord. 2009; 23(3): c. 211– 217.
  499. Boxer A.L., Knopman D.S., Kaufer D.I., et al. Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2013; 12(2): c. 149–156.
  500. Li P., Quan W., Zhou Y.Y., et al. Efficacy of memantine on neuropsychiatric symptoms associated with the severity of behavioral variant frontotemporal dementia: A six-month, open-label, self- controlled clinical trial. Exp Ther Med. 2016; 12(1): c. 492–498.
  501. Chow T.W., Fam D., Graff-Guerrero A., et al. Fluorodeoxyglucose positron emission tomography in semantic dementia after 6 months of memantine: an open-label pilot study. Int J Geriatr Psychiatry. 2013; 28(3): c. 319–325.
  502. Kishi T., Matsunaga S., Iwata N. Memantine for the treatment of frontotemporal dementia: a meta-analysis. Neuropsychiatr Dis Treat. 2015; 11: c. 2883–2885.
  503. Kertesz A., Morlog D., Light M., et al. Galantamine in Frontotemporal Dementia and Primary Progressive Aphasia. Dement Geriatr Cogn Disord 2008; 25: c. 178–185.
  504. Moretti R., Torre P., Antonello R.M. et al. Rivastigmine in Frontotemporal Dementia. Drugs Aging. 2004; 21: 931–937.
  505. Litvan I., Phipps M., Pharr V.L., et al. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology 2001; 57(3): c. 467–473.
  506. Kimura T., Takamatsu J. Pilot study of pharmacological treatment for frontotemporal dementia: Risk of donepezil treatment for behavioral and psychological symptoms. Geriatrics & Gerontology International. 2013; 13: c. 506–507.
  507. Mendez M.F., Shapira J.S., McMurtray A., Licht E. Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry. 2007; 15(1): c. 84– 87.
  508. Arciniegas D.B., Anderson C.A. Donepezil-Induced Confusional State in a Patient With Autopsy- Proven Behavioral-Variant Frontotemporal Dementia. The Journal of Neuropsychiatry and Clinical Neurosciences. 2013; 25(3): E25–E26.
  509. Yunusa I., Alsumali A., Garba A.E. et al. Assessment of Reported Comparative Effectiveness and Safety of Atypical Antipsychotics in the Treatment of Behavioral and Psychological Symptoms of Dementia: A Network Meta-analysis. JAMA Netw Open. 2019; 2(3): e190828. URL: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2728618
  510. Yeh T.C., Tzeng N.S., Li J.C., et al. Mortality Risk of Atypical Antipsychotics for Behavioral and Psychological Symptoms of Dementia: A Meta-Analysis, Meta-Regression, and Trial Sequential Analysis of Randomized Controlled Trials. J Clin Psychopharmacol. 2019; 39(5): c. 472–478.
  511. Curtis R.C., Resch D.S. Case of pick"s central lobar atrophy with apparent stabilization of cognitive decline after treatment with risperidone. J Clin Psychopharmacol. 2000; 20(3): c. 384– 385.
  512. Dorsey E.R., Rabbani A., Gallagher S.A., et al. Impact of FDA black box advisory on antipsychotic medication use. Arch Intern Med. 2010; 170: c. 96–103.
  513. Fellgiebel A., Muller M.J., Hiemke C. et al. Clinical improvement in a case of frontotemporal dementia under aripiprazole treatment corresponds to partial recovery of disturbed frontal glucose metabolism. World J Biol Psychiatry. 2007; 8: c. 123–126.
  514. Czarnecki K., Kumar N., Josephs K.A. Parkinsonism and tardive antecollis in frontotemporal dementia – increased sensitivity to newer antipsychotics? Eur J Neurol. 2008; 15: c. 199–201.
  515. Yu C.-E., Bird T.D., Bekris L.M., et al. The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol. 2010; 67: c. 161–170.
  516. Di Fabio R., Tessa A., Simons E.J., et al. Familial frontotemporal dementia with parkinsonism associated with the progranulin c.C1021T (p. Q341X) mutation. Parkinsonism Relat Disord. 2010; 16: c. 484–485.
  517. Stinton C. et al. Pharmacological management of Lewy body dementia: a systematic review and meta-analysis. American Journal of Psychiatry. 2015; 172(8): c. 731–742.
  518. Wang H., Yu J., Tang S., et al. Efficacy and safety of cholinesterase inhibitors and memantine in cognitive impairment in Parkinson"s disease, Parkinson"s disease dementia, and dementia with Lewy bodies: systematic review with meta-analysis and trial sequential analysis. Journal of Neurology, Neurosurgery & Psychiatry. 2015; 86: c. 135–143.
  519. Meng Y.H., Wang P.P., Song Y.X., Wang J.H. Cholinesterase inhibitors and memantine for Parkinson"s disease dementia and Lewy body dementia: A meta-analysis. Exp Ther Med. 2019; 17(3): c. 1611–1624.
  520. Rolinski M., Fox C., Maidment I., McShane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson"s disease dementia and cognitive impairment in Parkinson"s disease. Cochrane Database of Systematic Reviews. 2012; 3: CD006504. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD006504.pub2/full
  521. Wild R., Pettit T., Burns A. Cholinesterase inhibitors for dementia with Lewy bodies. Cochrane Database of Systematic Reviews. 2003; 3: CD003672. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003672/full
  522. Brennan L., Pantelyat A., Duda J.E., et al. Memantine and Cognition in Parkinson"s Disease Dementia/Dementia With Lewy Bodies: A Meta-Analysis. Mov Disord Clin Pract. 2015; 3(2): c. 161–167.
  523. Ma H., Huang Y., Cong Z., et al. The Efficacy and Safety of Atypical Antipsychotics for the Treatment of Dementia: A Meta-Analysis of Randomized Placebo-Controlled Trials. J Alzheimers Dis. 2014; 42(3): c. 915–937.
  524. Fischer C., Bozanovic R., Atkins J.H., Rourke S.B. Treatment of Delusions in Dementia with Lewy Bodies – Response to Pharmacotherapy. Dement Geriatr Cogn Disord. 2007; 23: c. 307–311.
  525. Schneider L.S., Dagerman K.S., Insel P. Risk of Death With Atypical Antipsychotic Drug Treatment for Dementia: Meta-analysis of Randomized Placebo-Controlled Trials. JAMA. 2005; 294(15): c. 1934–1943.
  526. Aarsland D., Perry R., Larsen J.P. et al. Neuroleptic Sensitivity in Parkinson"s Disease and Parkinsonian Dementias. J Clin Psychiatry. 2005; 66(5): c. 633–637.
  527. Kobayashi A., Kawanishi C., Matsumura T. et al. Quetiapine-induced neuroleptic malignant syndrome in dementia with Lewy bodies: A case report. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2006; 30(6): c. 1170–1172.
  528. Sechi G., Agnetti V., Masuri R. et al. Risperidone, neuroleptic malignant syndrome and probable dementia with Lewy bodies. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2000; 24(6): c. 1043–1051.
  529. Fernandez H.H., Trieschmann M.E., Burke M.A., Friedman J.H. Quetiapine for Psychosis in Parkinson"s Disease Versus Dementia With Lewy Bodies. J Clin Psychiatry. 2002; 63(6): c. 513– 515.
  530. Kurlan R. et al. Quetiapine for agitation or psychosis in patients with dementia and parkinsonism. Neurology. 2007; 68(17): c. 1356–1363.
  531. Bhamra M., Rajkumar A.P., Ffytche D.H., et al. Successful management of persistent distressing neuropsychiatric symptoms by clozapine in a patient suffering from dementia with Lewy bodies. BMJ Case Reports. 2018; 2018: bcr-2018-224710. URL: https://casereports.bmj.com/content/2018/bcr-2018-224710
  532. Takahashi H., Yoshida K., Sugita T., et al. Quetiapine treatment of psychotic symptoms and aggressive behavior in patients with dementia with Lewy bodies: A case series. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2003; 27(3): c. 549–553.
  533. Baskys A. Lewy Body Dementia: The Litmus Test for Neuroleptic Sensitivity and Extrapyramidal Symptoms. J Clin Psychiatry 2004; 65(suppl 11): c. 16–22.
  534. Richards K., Shue V. et al. Restless legs syndrome risk factors, behaviors, and diagnoses in persons with early to moderate dementia and sleep disturbance. Behavioral sleep medicine. 2010; 8(1): c. 48–61.
  535. Bliwise D.L. et al. Periodic leg movements in sleep and restless legs syndrome: considerations in geriatrics. Sleep medicine clinics. 2006; 1(2): c. 263–271.
  536. Fujishiro H. Effects of gabapentin enacarbil on restless legs syndrome and leg pain in dementia with Lewy bodies. Psychogeriatrics. 2014; 14(2): c. 132–134.
  537. Winkelmann J., Allen R.P., Högl B., et al. Treatment of restless legs syndrome: Evidence-based review and implications for clinical practice (Revised 2017). Mov Disord. 2018; 33(7): c. 1077– 1091.
  538. Kim Y., Wilkins K.M., Tampi R.R. Use of gabapentin in the treatment of behavioural and psychological symptoms of dementia: a review of the evidence. Drugs Aging. 2008; 25(3): c. 187– 196.
  539. Aurora R.N., Zak R.S., Maganti R.K. et al. Standards of Practice Committee. American Academy of Sleep Medicine. Best practice guide for the treatment of REM sleep behavior disorder (RBD). J Clin Sleep Med. 2010; 6(1): c. 85–95.
  540. Lapid M.I., Kuntz K.M., Mason S.S. et al. Efficacy, Safety, and Tolerability of Armodafinil Therapy for Hypersomnia Associated with Dementia with Lewy Bodies: A Pilot Study. Dement Geriatr Cogn Disord. 2017; 43(5–6): c. 269–280.
  541. Boot B.P. Comprehensive treatment of dementia with Lewy bodies. Alzheimer"s research & therapy. 2015; 7(1): c. 45. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448151/pdf/13195_2015_Article_128.pdf
  542. Arnulf I. Excessive daytime sleepiness in parkinsonism. Sleep medicine reviews. 2005; 9(3): c. 185–200.
  543. Arnold A.C., Raj S.R. Orthostatic Hypotension: A Practical Approach to Investigation and Management. Can J Cardiol. 2017; 33(12): c. 1725–1728.
  544. Taylor J.P., McKeith I.G. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020; 19(2): с. 157–169.
  545. Gibbons C.H., Schmidt P., Biaggioni I. et al. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol. 2017; 264(8): c. 1567–1582.
  546. Kaufer D. I et al. Pharmacologic therapy of dementia with Lewy bodies. Journal of geriatric psychiatry and neurology. 2002; 15(4): c. 224–232.
  547. Londos E. Practical treatment of Lewy body disease in the clinic: patient and physician perspectives. Neurology and therapy. 2018; 7(1): c. 13–22.
  548. Shibao C.A., Kaufmann H. Pharmacotherapy of Cardiovascular Autonomic Dysfunction in Parkinson Disease. CNS Drugs. 2017; 31(11): c. 975–989.
  549. Tan M.P., Parry S.W. Vasovagal syncope in the older patient. Journal of the American College of Cardiology. 2008; 51(6): c. 599–606.
  550. Ungar A., Mussi C., Ceccofiglio A., et al. Etiology of syncope and unexplained falls in elderly adults with dementia: syncope and dementia (SYD) study. Journal of the American Geriatrics Society. 2016; 64(8): c. 1567–1573.
  551. Sakakibara R., Uchiyama T., Yamanishi T., Kishi M. Dementia and lower urinary dysfunction: with a reference to anticholinergic use in elderly population. International journal of urology. 2008; 15(9): c. 778–788.
  552. Han D., Wang Y. Urinary incontinence in dementia. Incont. Pelvic Floor Dysfunct. 2008; 2(2): 63–66.
  553. Ransmayr G.N., Holliger S., Schletterer K., et al. Lower urinary tract symptoms in dementia with Lewy bodies, Parkinson disease, and Alzheimer disease. Neurology. 2008; 70(4): c. 299–303.
  554. Palma J.A., Kaufmann H. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Mov Disord. 2018; 33: с.372–390.
  555. Lucetti C., Logi C., Del Dotto P. et al. Levodopa response in dementia with lewy bodies: A 1-year follow-up study. Parkinsonism & Related Disorders. 2010; 16(8): c. 522–556.
  556. Molloy S., McKeith I.G., O"Brien J.T., Burn D.J. The role of levodopa in the management of dementia with Lewy bodies. J Neurol Neurosurg Psychiatry. 2005; 76(9): c. 1200–1203.
  557. Molloy S., Minett T., O"Brien J.T. et al. Levodopa use and sleep in patients with dementia with Lewy bodies. Mov. Disord. 2009; 24: c. 609–612.
  558. Molloy S.A., Rowan E.N., O"Brien J.T. et al. Effect of levodopa on cognitive function in Parkinson"s disease with and without dementia and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry. 2006; 77(12): c. 1323–1328.
  559. Goldman J.G. et al. Effects of dopaminergic medications on psychosis and motor function in dementia with Lewy bodies. Movement disorders: official journal of the Movement Disorder Society. 2008; 23(15): c. 2248–2250.
  560. Fujishiro H., Kasanuki K., Nakamura S. L‐dopa and mood fluctuation in DLB. Psychogeriatrics. 2013; 13: c. 250–253.
  561. Murata M. et al. Effect of zonisamide on parkinsonism in patients with dementia with Lewy bodies: A phase 3 randomized clinical trial. Parkinsonism & Related Disorders. 2019; 0(0): 7 c. URL: https://www.prd-journal.com/article/S1353-8020(19)30524-3/pdf
  562. Murata M., Odawara T., Hasegawa K., et al. Adjunct zonisamide to levodopa for DLB parkinsonism: A randomized double-blind phase 2 study. Neurology. 2018; 90(8): c. e664–e672.
  563. Mizuno Y., Takubo H., Mizuta E., Kuno S. Malignant syndrome in Parkinson’s disease: concept and review of the literature. Parkinsonism and related disorders. 2003; 9: c. 3–9.
  564. Magklis E., Anastasiou C. A., Kosmidis M. H., et al. Cognitive function, diet and lifestyle factors: a regression tree analysis. Clinical Nutrition ESPEN. 2016; 13: c. e69–e70.
  565. Haupt M. Strategien bei kognitiven Störungen. Förstl H (Hrsg). Lehrbuch der Gerontopsychiatrie und psychotherapie. Stuttgart: Thieme, 2003; c. 188–197.
  566. Gutzmann H. Therapeutische Ansätze bei Demenzen. In: Wächtler C (Hrsg). Demenzen. Stuttgart: Thieme, 2002; c. 50–71.
  567. Zucchella C., Sinforiani E., Tamburin S., et al. The Multidisciplinary Approach to Alzheimer"s Disease and Dementia. A Narrative Review of Non-Pharmacological Treatment. Front Neurol. 2018; 9: 1058. URL: https://www.frontiersin.org/articles/10.3389/fneur.2018.01058/pdf
  568. Bennett S., Laver K., Voigt-Radloff S., et al. Occupational therapy for people with dementia and their family carers provided at home: a systematic review and meta-analysis. BMJ Open. 2019; 9(11): e026308. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858232/pdf/bmjopen- 2018-026308.pdf
  569. Letts L., Edwards M., Berenyi J., et al. Using occupations to improve quality of life, health and wellness, and client and caregiver satisfaction for people with Alzheimer"s disease and related dementias. Am J Occup Ther. 2011; 65: c. 497–504.
  570. Steultjens E.M., Dekker J., Bouter L.M., et al. Evidence of the efficacy of occupational therapy in different conditions: an overview of systematic reviews. Clin Rehabil. 2005; 19: c. 247–254.
  571. Smallfield S., Heckenlaible C. Effectiveness of Occupational Therapy Interventions to Enhance Occupational Performance for Adults With Alzheimer"s Disease and Related Major Neurocognitive Disorders: A Systematic Review. Am J Occup Ther. 2017; 71(5): c. 7105180010p1–7105180010p9.
  572. Talassi E., Guerrecshi M., Feriani M. et al. Effectiveness of a cognitive rehabilitation program in mild dementia and mild cognitive impairment: a case control study. Arch Gerontol Geriatr. 2007; 44: c. 391–399.
  573. Cadorio I., Lousada M., Martins P., et al. Generalization and maintenance of treatment gains in primary progressive aphasia (PPA): a systematic review. Int J Lang Commun Disord 2017; 52: c. 543–560.
  574. Morello A.N.C., Lima T.M., Brandão L. Language and communication non-pharmacological interventions in patients with Alzheimer"s disease: a systematic review. Communication intervention in Alzheimer. Dement. Neuropsychol. 2017; 11(3): c. 227–241.
  575. Brady M.C., Kelly H., Godwin J., et al. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2016; (6): CD000425. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD000425.pub4/epdf/full/en
  576. Rogalski E.J., Saxon M., McKenna H., et al. Communication Bridge: A pilot feasibility study of Internet-based speech-language therapy for individuals with progressive aphasia. Alzheimers Dement. 2016; 2: c. 213–221.
  577. Jokel R., Cupit J., Rochon E., et al. Relearning lost vocabulary in nonfluent progressive aphasia with MossTalk Words®. Aphasiology 2009; 23: c. 175–191.
  578. Jokel R., Graham N.L., Rochon E., et al. Word retrieval therapies in primary progressive aphasia. Aphasiology 2014; 28: c. 1038–1068.
  579. Savage S.A., Ballard K.J., Piguet O., et al. Bringing words back to mind: Word retraining in semantic dementia. Dement Geriatr Cogn Disord. 2012; 34: c. 1–10.
  580. Henry M.L., Hubbard H.I., Grasso S.M., et al. Treatment for word retrieval in semantic and logopenic variants of primary progressive aphasia: Immediate and long-term outcomes. J Speech Lang Hear Res. 2019; 62(8): c. 2723–2749.
  581. Croot K., Raiser T., Taylor-Rubin C., et al. Lexical retrieval treatment in primary progressive aphasia: An investigation of treatment duration in a heterogeneous case series. Cortex 2019; 115: c. 133–158.
  582. Bahar-Fuchs A., Martyr A., Goh A.M., et al. Cognitive training for people with mild to moderate dementia. Cochrane Database Syst Rev. 2019; 3: CD013069. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD013069.pub2/epdf/abstract
  583. Bahar-Fuchs A., Clare L., Woods B. Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer"s disease and vascular dementia. Cochrane Database of Systematic Reviews. 2013; 6: CD003260. URL: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003260.pub2/epdf/full
  584. Karssemeijer E.G.A., Aaronson J.A., Bossers W.J. et al. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Res Rev. 2017; 40: c. 75–83.
  585. Brueggen K., Kasper E., Ochmann S., et al. Cognitive Rehabilitation in Alzheimer"s Disease: A Controlled Intervention Trial. J Alzheimers Dis. 2017; 57(4): c. 1315–1324.
  586. Alves J., Magalhães R., Thomas R.E. et al. Is there evidence for cognitive intervention in Alzheimer disease? A systematic review of efficacy, feasibility, and cost-effectiveness. Alzheimer Dis Assoc Disord. 2013; 27(3): c. 195–203.
  587. Perry W., Lacritz L., Roebuck-Spencer T., et al. Population Health Solutions for Assessing Cognitive Impairment in Geriatric Patients. Clin Neuropsychol. 2018; 32(7): c. 1193–1225.
  588. Heyn P., Abreu B.C., Ottenbacher K.J. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004; 85: 1694– 1704.
  589. Morrin H., Fang T., Servant D. et al. Systematic review of the efficacy of non-pharmacological interventions in people with Lewy body dementia. International Psychogeriatrics. 2018; 30(3): c. 395–407.
  590. Schwenk M., Zieschang T., Englert S., et al. Improvements in gait characteristics after intensive resistance and functional training in people with dementia: a randomised controlled trial. BMC Geriatr. 2014; 14: 73. URL: https://bmcgeriatr.biomedcentral.com/track/pdf/10.1186/1471-2318- 14-73
  591. Thompson C.A., Spilsbury K., Hall J., et al. Systematic review of information and support interventions for caregivers of people with dementia. BMC Geriatr. 2007; 7(18): c. 1–12.
  592. Elvish R., Lever S.-J., Johnstone J., et al. Psychological interventions for carers of people with dementia: A systematic review of quantitative and qualitative evidence. Counselling and Psychotherapy Research. 2013; 13(2): c. 106–125.
  593. Chow T.W., Pio F.J., Rockwood K. An international needs assessment of caregivers for frontotemporal dementia. Can J Neurol Sci. 2011; 38: c. 753–757.
  594. Harciarek M., Jodzio K. Neuropsychological differences between frontotemporal dementia and Alzheimer’s disease: A review. Neuropsychol Rev. 2005; 15: c. 131–145.
  595. Liberati G., Raffone A., Olivetti Belardinelli M. Cognitive reserve and its implications for rehabilitation and Alzheimer’s disease. Cogn Process. 2012; 13: c. 1–12.
  596. Peters R., Booth A., Rockwood K., et al. Combining modifiable risk factors and risk of dementia: a systematic review and meta-analysis. BMJ Open 2019; 9: e022846. URL: https://bmjopen.bmj.com/content/bmjopen/9/1/e022846.full.pdf
  597. Orgeta V, Mukadam N, Sommerlad A, Livingston G. The Lancet Commission on Dementia Prevention, Intervention, and Care: a call for action. Ir J Psychol Med. 2019; 36(2): с. 85–88.
  598. Livingston G., Sommerlad A., Orgeta V., et al. Dementia prevention, intervention, and care. Lancet. 2017; 390(10113): c. 2673–2734.
  599. Livingston G., Huntley J., Sommerlad A., et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020; 396(10248): c. 413–446.
  600. Weiss J., Kerfoot A., Freeman M., et al. Benefits and Harms of Treating Blood Pressure in Older Adults: A Systematic Review and Meta-analysis. Washington (DC): Department of Veterans Affairs (US); 2016. URL: https://www.ncbi.nlm.nih.gov/books/NBK414795/
  601. Levi Marpillat N., Macquin-Mavier I., Tropeano A.I., et al. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens. 2013; 31(6): c. 1073– 1082.
  602. Areosa Sastre A., Vernooij R.W., González-Colaço Harmand M., Martínez G. Effect of the treatment of Type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev. 2017; 6(6): CD003804. URL: https://doi.org/10.1002/14651858.CD003804.pub2
  603. Peñaherrera-Oviedo C., Moreno-Zambrano D., Palacios M., et al. Does Intensive Glucose Control Prevent Cognitive Decline in Diabetes? A Meta-Analysis. Int J Chronic Dis. 2015; 2015: 680104. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590930/pdf/IJCD2015-680104.pdf
  604. Chatterjee S., Peters S.A., Woodward M., et al. Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia. Diabetes Care. 2016; 39(2): c. 300–307.
  605. Hersi M., Irvine B., Gupta P., et al. Risk factors associated with the onset and progression of Alzheimer"s disease: A systematic review of the evidence. Neurotoxicology. 2017; 61: c. 143– 187.
  606. Reitz C. Dyslipidemia and the risk of Alzheimer"s disease. Curr Atheroscler Rep. 2013; 15(3): 307. URL: https://dx.doi.org/10.1007/s11883-012-0307-3
  607. Veronese N., Facchini S., Stubbs B., et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2017; 72: c. 87–94.
  608. Lafortune L., Martin S., Kelly S., et al. Behavioural Risk Factors in Mid-Life Associated with Successful Ageing, Disability, Dementia and Frailty in Later Life: A Rapid Systematic Review. PLoS One. 2016; 11(2): e0144405.
  609. Xu W., Wang H., Wan Y., et al. Alcohol consumption and dementia risk: a dose-response meta- analysis of prospective studies. Eur J Epidemiol. 2017; 32(1): c. 31–42.
  610. Kuiper JS, Zuidersma M, Oude Voshaar RC, et al. Social relationships and risk of dementia: a systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev 2015; 22: 39–57
  611. Dominguez L.J., Barbagallo M. Nutritional prevention of cognitive decline and dementia. Acta Biomed. 2018; 89(2): c. 276–290.
  612. Fillenbaum G.G., van Belle G., Morris J.C., et al. Consortium to Establish a Registry for Alzheimer"s Disease (CERAD): the first twenty years. Alzheimers Dement. 2008; 4(2): c. 96–109.
  613. International Classification of Diseases 11th Revision (ICD-11): https://icd.who.int/en
  614. Mesulam M.-M., Wieneke C., Thompson C., et al. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain 2012; 135: c. 1537–1553.
  615. Gorno-Tempini M.L., Hillis A., Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76: c. 1006–1014.
  616. Suzuki H., Gen K. Clinical efficacy of lamotrigine and changes in the dosages of concomitantly used psychotropic drugs in Alzheimer"s disease with behavioural and psychological symptoms of dementia: a preliminary open-label trial. Psychogeriatrics. 2015; 15(1): c. 32–37.
  617. Haan M. N. et al. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. The American journal of clinical nutrition. 2007; 85(2): c. 511–517.
  618. Zellner M. et al. Trospium chloride and oxybutynin hydrochloride in a german study of adults with urinary urge incontinence: results of a 12-week, multicenter, randomized, double-blind, parallel-group, flexible-dose noninferiority trial. Clinical therapeutics. 2009; 31(11): c. 2519– 2539.
  619. Liao C.H., Kuo H.C. Mirabegron escalation to 50 mg further improves daily urgency and urgency urinary incontinence in Asian patients with overactive bladder. Journal of the Formosan Medical Association. 2019; 118(3): c. 700–706.
  620. Staskin D. et al. A prospective, double-blind, randomized, two-period crossover, multicenter study to evaluate tolerability and patient preference between mirabegron and tolterodine in patients with overactive bladder (PREFER study). International urogynecology journal. 2018; 29(2): c. 273–283.
  621. Bonelli S. B. et al. L-dopa responsiveness in dementia with Lewy bodies, Parkinson disease with and without dementia //Neurology. – 2004. – Т. 63. – №. 2. – С. 376-378.
  622. Allen R. P., Earley C. J. Augmentation of the restless legs syndrome with carbidopa/levodopa //Sleep. – 1996. – Т. 19. – №. 3. – С. 205-213.
  623. Stinton C. et al. Pharmacological management of Lewy body dementia: a systematic review and meta-analysis //American Journal of Psychiatry. – 2015. – Т. 172. – №. 8. – С. 731-742.

Для продолжения работы требуется Registration
На предыдущую страницу

Предыдущая страница

Следующая страница

На следующую страницу
Список литературы
На предыдущую главу Предыдущая глава
оглавление
Следующая глава На следующую главу