В двухтомнике представлены материалы по применению классических методов машинного обучения в различных промышленных задачах. Первый том посвящен инструментам Python - основным библиотекам, классам и функциям, необходимым для предварительной подготовки данных, построения моделей машинного обучения, выполнения различных стратегий валидации. В конце первого тома разбираются задачи с собеседований по SQL, Python, математической статистике и теории вероятностей.
Издание рассчитано на специалистов по анализу данных, а также может быть полезно широкому кругу специалистов, интересующихся машинным обучением.